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Magnetization curves for thin films of layered type-II superconductors,
Kolmogorov-Arnold-Moser theory, and the devil's staircase
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Magnetization curves for a thin-layered superconducting film in parallel magnetic field have been

shown to become devil's staircases provided the superconducting layers are perpendicular to the film

plane. The transition from an incomplete to a complete devil's staircase with decreasing temperature

is predicted. A chain of vortices is described by the generalized Frenkel-Kontorova model.
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FIG. l. Chain of vortices (solid circles) and their images (cir-
cles with dots, vortices; crossed circles, antivortices). The mag-
netic field is perpendicular to the xy plane.

The interest in vortex lattices in layered anisotropic su-
perconductors has been revived by the discovery of high-
T, compounds which appeared to be layered and aniso-
tropic. ' Application of a magnetic field parallel to the
Cu-0 layers creates a vortex lattice distorted by the an-
isotropy of the London penetration depths. In addition,
the order parameter variation along the e axis creates a
periodic potential with period a equal to the interlayer
spacing, which is typically about 10 A. The potential is
strong if the coherence length (~ is less than a. This
condition is met in YBaqCu307 ((&=4 A., a=8 A),
Bi2Sr2CaCu20s, and T12Sr2CaCu20s (g& =2 A, a=12
A) at low temperatures. ' The periodic potential be-
comes exponentially small for g&)) a, s which implies that
its strength may be changed simply by raising the temper-
ature. This periodic potential is believed to be responsible
for the pinning in these materials. ' Here I report that
the same periodic potential makes the magnetization
curves nonanalytic due to the incommensurability be-
tween the interlayer spacing a and the mean distance l be-
tween the vortices.

Consider a thin film with the c axis parallel to the plane
of the film. The magnetic field is applied parallel to both
the film and the ab planes. Introducing the frame of
reference as in Fig. 1 and rescaling x and y make the Lon-

p =po [1 —1/cosh (d/2X) ], (2)

s=so+ 2 g ( —1)"h(nd)+H[1 —1/cosh(d/2X)]
n-i

(3)

H,*~ = H, ~+ g ( —1)"h(nd) [1 —1/cosh(d/2A, )]
n 1

(4)

where h(x) =poKo(x/X)/2trk is the magnetic field creat-
ed by one vortex in a bulk superconductor. The vortex-
vortex repulsion

U(x) = 2 ( —1)"h(lx+«I) (5)
4X n-i

is convex and decreases as exp( —x/k) at large x.
Equations (2)-(5) have been derived supposing all the

vortices positioned in the middle of the film. Such a one-
dimensional chain realizes the minimal energy config-
uration in small fields only: H &H2. For H2 &H & H3
the vortices form two parallel chains, then three chains,
etc. 6 s The threshold field H2 has been calculated in Ref.
6 and experiinentally observed in Refs. 8 and 10. For
films with the thickness d=k the field H2 appears to be
about a couple of H, ~'s. The remaining part of the paper
will be restricted to the field region H, ] &H &H2 in
which vortices are situated exactly on the x axis (Fig. I).
The Gibbs free energy becomes

G =—g U (x; —xJ ) +g V(x, ) —pl, l'&J J

don equation isotropic

(~z/~ll)x y (~II/~J. )y ~ ~ll)'J. ~

The interlayer spacing a and the film thickness d are also
rescaled according to Eq. (1). Since the incommensura-
bility is more prominent in small fields I restrict myself to
H&(H, 2 and, therefore, the London approximation. The
boundary conditions for the London equation can be met
by introducing the images. Every vortex has a train of
images of alternating signs (Fig. 1), which modify the fiux

per vortex p, the effective energy per vortex e, and, conse-
quently, the lower critical field H, ~ =4trs/p:
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where I is the mean spacing between vortices, V(x
+a) =V(x) is the periodic potential mentioned in the be-
ginning of the paper, and p is the chemical potential:

ii
B

p = [I —1/cosh(d/2A, )](H H,*i—) .
4z

(7)

Equation (6) defines the generalized Frenkel-Kontorova
model, which differs from the classical model by assuming
an infinite range of interaction. The free energy must be
minimized in two steps: first, the vortex configuration [xjj
has to be found provided the average spacing l is fixed;
then 6 has to be minimized over 1. The first problem has
been exactly solved by Aubry" for the classical Frenkel-
Kontorova model (nearest neighbors only) and then gen-
eralized by Zaslavsky' for the infinite range of the in-
teraction. The main results can be summarized as follows:

(1) If l/a =p/q then [x„j is periodic: x„+~=x„+aq.
(2) If 1/a is irrational then fx„j is quasiperiodic, it is ei-

ther x„=f+(nl+a) for all n or x„=f (nl+a) for all n,
where both f(x) are monotonic; f+(x) )f (x) and
f(x+a) =f(x)+a [Fig. 2(b)].

(3) If l/a is irrational then for almost all l there exists a
critical value of V, such that for V& V, the f+(x) and

f (x) coincide and f(x) =f+ (x) =f (x) is an analytic
function [the Kolmogorov-Arnold-Moser torus, Fig.
2(a)l.

(4) There exists a continuum set of irrational (l/a)' s,
albeit of zero measure, such that V, =O, ' i.e. , [x„j is de-
scribed by a nonanalytic "Cantorus" even if the periodic
potential is of an arbitrarily small strength.

(5) It follows from property 2 that Int(l) & x„+1—x„
& Int(l ) +1.

After the [x„j optimized for some l is substituted into
Eq. (6) the G(l,p) obtained defines the magnetization
curve. Indeed, bearing in mind that p is linearly connect-
ed with H by Eq. (7) and the induction B =p/ld, with p
given in Eq. (2), is linear in I/1, one sees that minimizing
G(l,p) over i gives l(p) and, therefore, B(H). The graph
of B(H) is the devil s staircase (Fig. 3). It is monotonic
and continuous, but not analytic. It has plateaus at all ra-
tional (I/a)' s, which correspond to commensurate vortex
configurations. Incommensurate states characterized by
irrational vortex concentrations (I/a) exist on the Cantor
set of the H axis. The plateaus widths are determined by
the strength of the periodic potential, which can be easily
controlled by changing the temperature. ' At relatively
high temperatures V is small and does not exceed V, for
the majority of l's. The plateaus on the B(H) curve are

FIG. 3. Magnetic induction as a function of applied magnetic
field.

tiny and, moreover, although their number is infinite their
total width is small (an incomplete staircase). This state-
ment can be rephrased by saying that the complementary
Cantor set of H's corresponding to the incommensurate
states has positive measure. As the amplitude of V rises,
the plateaus become larger and the complementary Can-
tor set shrinks. Finally, as V exceeds the maximum of V,
over all 1's the measure of the Cantor set becomes zero.
Such a devil's staircase is called complete.

When Vis much stronger than the typical vortex-vortex
interaction, all the vortices are situated almost in the
minima of the periodic potential, i.e., x„ take only integer
values. This limiting case is equivalent to the lattice gas.
The corresponding discrete model has been exactly solved
in Ref. 14. The Cantor set on the H axis, corresponding
to the incommensurate vortex configurations, is not only
of zero measure but also of zero fractal dimension. '" This
means that in physical terms the magnetization curve
B(H) consists of plateaus only.

Below, I give the qualitative estimations showing that
the plateaus in B(H) are substantial for low temperatures
and for all the magnetic fields H, l (H (H2. Since H2 is
of the order of H, ~, the intervortex spacing l &&1. There
are two competing distances in the system: a, the period
of V(x), and the spacing between the vortices which
would establish in the absence of V. If the latter distance
is integer there is no competition: all vortices are situated
in the minima of V(x), so both the sum of V(xj) and the
rest of G are minimized. This commensurate situation
occurs at an infinite set of chemical potentials p=p,*,
SeZ:

a-

FIG. 2. Aubry functions (Ref. 11). (a) Kolniogorov-
Arnold-Moser torus and (b) Cantorus.

p, = g [U(nSa) —nSaU'(nSa)] . (g)
n=1

The set becomes dense near H, [. The primary, widest
steps occur near these p,*'s. Their widths can be estimat-
ed by introducing vortex displacements from the minima
of V(x): x„=nSa+u„and by expanding U(x) in the
power series near x =Sa, which gives the canonical
Frenkel-Kontorova model for u„. Denoting its energy as a
function of l by F, (l ), the p(l) dependence near p,* be-
comes

p(l) =p,*+F,(l) lBF, (l)/8l, —
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F,(!)is known to have cusps at all rational l; '' the values
of these cusps define through Eq. (9) the corresponding
secondary plateaus in 8(H). The primary plateaus are
related to the cusp of F,(!) at the origin (namely, !=Set).
Substituting K=U"(Sa) as the springs' strength into the
well-known estimation Ap ec (KV) ' (Refs. 11, 15, and
16), the plateau becomes

(lo)

where U can be estimated using Eq. (4); V strongly de-
pends on gs/a. If the coherence length (~(T) && a, the in-
terlayer spacing, the periodic potential V is quite strong:
V~Hzgz/8grcc (@o/4+k, );3 in the opposite case gs (T)
»a then V is exponentially weak: Vcx:exp( —8g /a ).
At low temperatures (s «a holds for YBa2Cu307, Bi2-
SrzCaCu20s, and TlzSr2CaCuzOs. Comparing the pla-
teau width (10) with the distance between the subsequent
plateaus p,* and p, +~, one finds that at low temperatures
the 8(H) devil's staircase consists mostly of plateaus for
all magnetic fields in which the one-dimensional vortex
chain is stable. At higher temperatures or in less discrete
compounds the plateaus are smaller and the magnetiza-
tion curve 8(H) looks like a smooth function, perhaps

with several tiny plateaus.
The 8(H) curve has been calculated by minimizing the

Gibbs energy (6), i.e., in the zero-temperature limit. Nev-
ertheless, the result holds also for nonzero temperatures.
This statement can be justified at least at relatively low
temperatures by the following well-known speculation.
All the above used energies are the energies per unit
length of a vortex. Statistic weights of different vortex
configurations are exp( —GL, /T), where G is given in Eq.
(6) and L, is the size of the sample in the z direction.
True thermodynamic limit L,~ ~ has the same effect on
the statistic weights as T 0 limit. Thus, fIuctuations of
vortices as wholes are suppressed by infinite L, . However,
temperature affects bulk variables like A, , g, H, ~, etc.
Some deviations of the vortex cores from the straight lines
also occur, which is believed to renormalize the energies,
but not to result in drastic changes, at least at moderate
temperatures.
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