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We analyzed the thermodynamic properties of the two-dimensional spin-2 frustrated antiferro-

magnetic Heisenberg model. Using a Lanczos-like technique to avoid the diagonalization of the
complete Hamiltonian matrix, we calculate the specific heat, uniform susceptibility, structure fac-
tor, and dimer susceptibility for different values of the frustration parameter, J2/Jl. At low tem-
peratures and intermediate values of J2/Jl, the enhancement of the column correlation function
shows that in this regime the dimer state may be the ground state. Although the behavior of the
magnetic structure factor at J2/Jl 0.5 can be roughly described by a dimer state, this kind of state
cannot explain an observed quasidegeneracy at J2/J& =0.6 of the values of the structure factor be-
tween q=(~, ~), (0,~), and (~/2, ~). We also calculated the twisted susceptibility at nonzero
momentum. For q=(0, m/2) we found an enhancement of a factor 2 at J2/Jl =0.6 with respect to
the infinite-temperature limit.

I. INTRODUCTION

Following the discovery of the oxide superconductors, '

the interest in two-dimensional quantum spin systems has
been renewed, mainly due to the possibility that super-
conductivity in the Cu02 layers may be related to their
magnetic properties. Although the CuOz layers have
both Cu and 0 orbitals, it has been suggested that for a
realistic set of parameters, the high-T, materials may be
described by a two-dimensional (2D) one-band Hubbard
model. In the strong Coulomb limit, and at half-filling,
this model can be further simplified to a spin system. In
this way, an effective spin- —, antiferromagnetic Heisen-
berg model (AFH) on the square lattice has been pro-
posed to describe the undoped compound. The rich
magnetic structure experimentally observed in La2Cu04
seems to be qualitatively described by this effective mod-
el.

Unfortunately, the situation for the doped case is less
clear. The kinetic part of the Hubbard Hamiltonian can
be considered under several approximations leading to
different effective Hamiltonians. In one of these propo-
sals, it is assumed that at a small density of carriers, the
holes can be integrated out yielding an effective spin
Hamiltonian, which is an antiferromagnetic Heisenberg
model with frustration (FAFH). The frustration is intro-
duced through an additional next-nearest-neighbor cou-
pling along the diagonal of the plaquettes of the lattice.
Although the validity of these approximations is ques-
tionable, the FAFH is an important model by itself, since
event the pure AFH has played a significant role in the
understanding of the magnetic properties of solids. In
this paper, we study the thermodynamic properties of the
spin- —,

' FAFH, defined by the Hamiltonian

H=J, gS; S,+,+J2+S; S,.~s. .

Here, i denotes the sites of a square lattice, while e are
vectors along the x or y directions, and 5 along the diago-
nal of the plaquettes. S; are spin- —,

' operators. We use
periodic boundary conditions and the energy scale is fixed
as Ji =1.

The model at J2=0 is well understood. At T =0 and
in the limit S—+ ~, the spins are classical vectors, and the
ground state is the Neel state. At S =

—,', the quantum
fluctuations are strong enough to reduce the staggered
magnetization from its classical value m =0.5 to
m =0.31. This finite value shows the existence of long-
range order. This result is strongly supported by numeri-
cal calculations. However, as predicted by the Mermin-
Wagner theorem, long-range order cannot exist for the
2D Heisenberg model at finite temperature. In the classi-
cal limit of the FAFH model, the next-nearest-neighbor
coupling J2 acts against the Neel order, which, neverthe-
less, is not completely destroyed for small J2. For
J2/J, )0.5, J2 is large enough to destroy the sublattice
magnetization, resulting in two decoupled Neel sublat-
tices in the classical limit. These two sublattices are cou-
pled only when quantum fluctuations are introduced.

At T =0, the spin- —,
' FAFH model has been analytical-

ly studied using several techniques. The ground-state
properties have been analyzed by a spin-wave approach,
1/X expansion, and series expansion around dimerized
Hamiltonians. These studies show that at a certain
value of the frustration interaction, J2/J

&
=0.5, quantum

fluctuations are strong enough to destroy the Neel order,
but they are in disagreement about the nature of the in-
termediate phase. Several proposals have been made for
the ground state in this region, including a spin-liquid
state (no broken symmetries), a spontaneously column-
dimerized state, twisted, ' and chiral order. " The static
properties of the ground state and excited states have
been studied using the Lanczos algorithm and by exact
diagonalization in finite clusters. ' ' At large J2, it was
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found' that the ground state is the collinear state
(configurations that have alternating rows, or columns, of
spins up or down). This state does not have the full sym-
metries of the lattice, since the horizontal and vertical
"strip" states are connected by a lattice rotation of ~/2.
Based on the T =0 behavior of zero-momentum correla-
tion functions, at intermediate values of J2/J„both di-

mers or twisted states were found to be possible candi-
dates. ' Since exact diagonalization or Lanczos tech-
niques must deal with the complete Hilbert space, its rap-
id increase in dimension with the number of sites restricts
the size of the clusters that can be handled. On the other
hand, a phase transition is only possible for an infinite
system, i.e., when an infinite number of degrees of free-
dom is considered. Then, to extract a conclusion from
finite lattice studies, one should try to compare the be-
havior of the order parameters for diA'erent lattice sizes.
In Ref. 12, three clusters of sizes X =8, 16, and 20 were
considered. The clusters X =8 and 20 are tilted squares,
which belong to the general class defined by X =l +k
sites, with l +k even. Nevertheless, unlike the X = 16
case, where the ground state is always even under the
space-group symmetry operations, for X =20, a change
in the symmetry of the ground state was observed as
J2/J, is increased, changing from even to odd under ro-
tations. This fact complicates the extrapolation to the
bulk limit. Indeed, this nonuniform behavior can be ex-
pected, since it has been shown that for the square lattice,
the pure Heisenberg model has diff'erent ground-state
symmetries if the number of sites is N =4n ( 3 i ) or
N =4n +2(8, ), where A, or 8, label two of the irreduc-
ible representations of the C4, group. ' Since„at large

J2/J&, the system is decoupled in two almost indepen-
dent sublattices, this means that in the X =20 case, each
one will contain (N/2)=10, i.e., belongs to the class
X =4n +2 with n =2, and so the ground state will be
odd under rotations in (~/2). This explains the puzzling
crossing of levels found in previous studies. ' C)n the oth-
er hand o larg Jz/Ji the N 16 ca ew 1 d coup e
two sublattices with 8=4n (n =2) sites in each one, and
so the symmetry of the ground state will remain un-
changed over the complete range of the frustration pa-
rameter Jz/J, . Then, we arrive at the conclusion that
the next cluster to be studied in order to perform a
reasonable finite size scaling contains % =32 sites. While
the properties at zero temperature can be obtained with
present Lanczos methods, ' the calculation at finite tem-
perature would be very dificult. The size of the Hilbert
space of the % =32 lattice is approximately 1.2 million
states after translations, rotations, rejections in one axis,
and spin-inversion symmetries are used. Thus, the nu-
merical eA'ort to study the thermodynamic properties of
this lattice would require performing 1.2 million times a
calculation equivalent to that needed to obtain the
ground-state properties (using the technique described in
this paper) or diagonalizing matrices of size
(1.2X 10")X(1.2X 10 ), which is impossible with
present-day supercomputers.

To completely characterize the model, we need not
only to study the static properties at T=O, but, also, to
calculate the dynamical properties' as well as to analyze

the behavior of the model at finite temperature, ' which
is the main goal of the present work. To analyze the
thermodynamic properties of the FAFH model, we have
used a Lanczos-like algorithm. ' Below, we briefly de-
scribe the method and present our results.

II. NUMERICAL METHOQ

where

z;= iv e (3)

Here, I ~i ) ) is any orthonormal set of states Ichosen as
eigenvectors of the Ising part of Eq. (I)], I ~

v) ) is a com-
plete set of eigenstates of H, and E denotes the energy of
the ~v) eigenstate. The Laplace transform of Eq. (3),
given by

(4)

is a resolvent operator G,.(s) = (i~(s H) ~i ), w—hich ad-
mits a continued fraction expansion

G;(s) = 1

s —a (b /s — —
)0 i l, i

The set of parameters Ia„,, b„, I are obtained using the
recurrence relation of the Lanczos algorithm. Starting
from an arbitrary state

~ fo) =
~i ), a set of orthogonal

states is generated:

(8)

In general, only a few iterations are needed to accu-
rately evaluate the resolvent. Then, calculating G, (s) for
a complete set of orthonormal states ~i ), the partition
function is obtained as

Z= —X ' QG( —s)

Once the set of coeKcients I a„;,b„, I is generated, the
evaluation of any diagonal operator can be done without
extra cost of CPU time (nondiagonal elements need more
computational elfort).

The sizes and geometries of the adequate lattices to
study are those that keep the main symmetries of the
whole system. ' For this reason, we have studied the tilt-
ed square with N =8 (we exclude N =10, since, for large

Contrary to what happens with Monte Carlo methods,
where nonpositive weights can be generated, the method
we have used can be applied to any quantum many-body
system of moderate size. It directly provides the parti-
tion function, from which all the thermodynamic quanti-
ties of interest are obtained by di6'erentiation. The stra-
tegy is based on the introduction of the resolvent opera-
tor for H. The partition function, Z =Tr exp( /3H), —can
be evaluated by rewriting it as

Z= gz, ,
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III. RESULTS

We have calculated the specific heat C =d(E )/dT
and uniform magnetic susceptibility. The notation ( )
denotes the statistical average. We have calculated spin-
correlation functions in momentum space. These quanti-
ties can be directly compared with neutron-scattering ex-
periments that measure spin fluctuations in magnetic sys-
tems. Moreover, in a quantum antiferromagnet, since the
Hamiltonian is symmetric under spin rotations, the stag-
gered magnetization m, , =(l/X) g; e;(S,') order pa-
rameter will be identically zero (here e; =+1 depending
on which sublattice the site i belongs). For this reason,
on a finite lattice calculation, the evaluation of m&, as
well as any other mean value of an operator that breaks
the inherent symmetry of the Hamiltonian is not useful
(unless an explicit source of symmetry breaking is intro-
duced). Then, it is necessary to evaluate the square of a
given order parameter. We have computed the structure
factor,

S(q) =—g e'q" "'(S'S' )
1

1,j
(10)

J2/J„ the system would consist of two sublattices with
an odd number of sites) and %=16, which has the full
geometry of the square. For X =16, we have implement-
ed the C4, point group and spatial translations, reducing
in this way the number of nonequivalent continued frac-
tions to be evaluated. In Table I, we summarize (for
N = 16) the size of the Hilbert space for the different sec-
tors of total spin projection and the corresponding reduc-
tion using symmetries. To double check our program, we
computed the ground-state energy at T =0 using a
modified Lanczos algorithm' and compared this result
with the corresponding ones at finite but small tempera-
ture. The accuracy of the method is illustrated in Table
II. The method we used is more e%cient than the diago-
nalization of the Hamiltonian matrix, and since the set of
coeI.cients obtained is temperature independent, it pro-
vides information about the whole range of temperatures.
To label the basis, we use a binary code adapted for a
symmetrized basis state. An important point in the finite
temperature calculations is the fact that one must consid-
er the different sectors of total spin projection,
Bo(S,=O), Bi(S,=+1), B2(S,=+2), and so on. Al-
though the contributions of the higher subspaces,
83, . . . , are negligible for the temperatures of interest,
the ones coming from the 8 i and Bz subspaces cannot be
ignored. Our results have been obtained considering all
the spin sectors.

TABLE I. Size of the Hilbert space for X = 16 in each sector
of total spin projection considering no symmetry reduction,
only translation symmetries and the complete spatial group.
The last two rows refer only to states that are not connected by
symmetry operations.

Spin projection
subspace, S,

+7
+6
+5
+4
+3
+2
+1

0

Complete
base

16
120
560

1 820
4 368
8 008

11 440
12 870

Translation
symmetry

1

9
35

122
273
511
715
822

Spatial
group

1

5

10
33
53

101
122
153

for different values of the allowed wave vector q in the
first Brillouin zone. The staggered magnetization m, can
be obtained from the Fourier transform S(q) of the spin-
spin correlation function m i

= (3/X)S (n, m), where
q=(n, vr) is the wave vector of the staggered magnetiza-
tion. The factor of 3 appears to be due to rotational in-
variance. We also calculated S(O, n), which is related
with the staggered magnetization m2 in the "collinear"
phase at large J2/J, . In Fig. 1, we present S(ir, ir) for
the AFH model, showing the enhancement of this order
parameter for increasing lattice size X and T~O. Al-
though it is difficult to show it numerically, we believe
that this order parameter is diverging exponentially with
1/T at low temperatures in the bulk limit as suggested by
renormalization group studies that map the model into a
classical 0(3) system.

In Fig. 2, we show S (m, vr ) and S (0,n) for the FAFH
model. As expected, for small Jz/Ji, S(ir, m) displays a
significant growth with decreasing temperature having, at
J2=0, a maximum value typical of a Neel-like order,
where spin fluctuations are correlated over long dis-
tances. Increasing J2, this order parameter is suppressed,
the crossover being near J2/Ji -0.6. On the other hand,
the structure factor S(0,7r) behaves in an opposite way
i.e., it increases with Jz, showing the existence of the col-
linear phase for J2/J, )O. S. For T—+0, we reproduce
the results obtained with the T =0 Lanczos algorithm. '

As an illustrative example of the contribution with tem-
perature of the different subspaces of total spin projec-
tion, we show in Fig. 3 the first three terms S, =0,+1,+2

TABLE II. Energies for different values of J2/J& at the smallest temperature studied (shown be-
tween parentheses) compared with the T =0 Lanczos results. The accuracy of the method is illustrated
by showing the corresponding values of the computed partition function.

0.10
0.25
0.50
0.70

—1.3196343
—1.201 9090
—1.057 24
—1.127 716

E (T =5X10-')
—1.3196341
—1.201 9085
—1.057 11
—1.127 35

Z ( T =5 X 10-')

9.456 669 008 111048 67E+0916
1.484 648 243 661 854 33E+0835
3.498 029 149 476 373 39E+0.734
1.288 087 951 315 621 66E+0783
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FIG. 1. Structure factor S(n, ~) in the Heisenberg model for
different lattice sizes N = 8, 10, and 16.

FIG. 3. The contribution to S(~,~) of the first three sub-

spaces S, =0(Bo),+1(B&), +2(B2) as a function of the tempera-

ture, for the FAFH with N =16.
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FIG. 2. Structure factor S(q) as a function of temperature
for several values of the frustration parameter J2 /J I and
N =16:(a) q=(m, ~) and (b) q=(0, ~).

in S(vr, m) for the FAFH and N =16. Note that, at large
temperatures, the results for all lattice sizes, J2 couplings
and q converges to the same number, showing that the
system is completely disordered in that regimen.

The uniform susceptibility y=(1/T)S(0, 0) shows a
broad maximum, both for the AFH as well as FAFH, as
is illustrated in Figs. 4(a) and 4(b), respectively. At high
temperatures, y is proportional to (1/T), i.e., it follows
Curie's law, and so, can be approximated quite well by its
high-temperature series expansion since its leading term
is precisely of order (1/T). In both models, the examined

g has no significant size dependence. For the AFH, there
is an excellent agreement between our results and those
of a Monte Carlo simulation, as is shown in Fig. 4(a).
Note that, at T =0, the uniform magnetization of a finite
system vanishes since the ground state is a spin singlet for
all values of Jz.

In Fig. 5, we show the specific heat C per site for the
AFH model calculated from the corresponding energy
data. No significant size dependence can be observed in
the specific heat, and again, the comparison with Monte
Carlo results is very good. Here, the peak in the
specific heat represents only a crossover but not a phase
transition (the size dependence is very small). The posi-
tion of the peak is at the inflection point of the S(rf', vr) vs
T curve. However, note that the behavior of C for the
FAFH model, shown for N =8 and 16 in Fig. 6, is non-
trivial, having a sharpening of the peak and a bigger size
dependence at J2/J, =0.5, but not for other values of the
frustrating parameter out of the intermediate region.
The position of the peak goes through a minimum in this
region. While there are clear differences between small
and intermediate values of frustration, we cannot decide,
studying these small lattices, whether they correspond to
an actual phase transition or are just due to abrupt cross-
overs in the energy.

In order to study in more detail the region J2/J, =0.5,
in which a new phase could exist, we have analyzed the
possibility of a column dimerized state. The presence of
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where i belongs to one of the two sublattices, and g;=+1,
depending on which of the two sublattices the point be-
longs to. We have studied only the Ising part of
g" = ( i(1/X) g; 6;"I ), shown in Fig. 7, since at T =0,
we obtained similar qualitative results either considering
the complete operator, Eq. (11), or only the z component
of each vector. The behavior of this order parameter
with temperature is in agreement with the numerical re-
sults at T =0 showing an enhancement of the column or-
der. It is not yet clear if the dimer ground state survives
the bulk limit (a finite size scaling will be needed using
dig'erent lattices), but its behavior with J2 and T is
characteristic of an enhanced order in the intermediate
region, i.e. , the order parameter is large at small tempera-
tures and then it is suppressed at high temperatures.
Whether there is a phase transition at finite temperature
near J2 /J

&
-0.5 cannot be decided by the present

analysis. All of these results regarding the dimer state
have also recently been found by Singh and Narayanan. '
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FIG. 4. Uniform susceptibility vs temperature for (a) the an-
tiferromagnetic Heisenberg model for di8'erent lattice sizes.
The open circles are MC results for 8X8 lattice, taken from
Ref. 20 and {b) the FAFH for diAerent values of the frustration
parameter.
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FIG. 5. Specific heat C/N for the antiferromagnetic Heisen-
berg model for diferent lattice sizes, N=8, 10, and 16. The
open circles indicate MC results for a 12 X 12 lattice (taken from
Ref. 20).

FIG. 6. Specific heat C/N of the frustrated antiferromagnet-
ic Heisenberg model, for di6'erent lattice sizes, (a) N = 8 and (b)
N =16.
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FIG. 9. Comparison of the ground-state energy as a function
of J2 /J& with the energy of the dimer and XÃ —R VB variation-
al states. We also include the ground state energy in the weak
coupling limit J2 « J, .

It is clear that there is no room in these states to explain
the quasidegeneracy observed in the structure factors at
Jz/J, =0.6. Also, note that we believe (although we
have not done the calculation explicitly) that the R VB
state cannot explain the enhancement in the dimer sus-
ceptibility found at intermediate values of frustration,
and thus, we are not presenting it as a serious candidate
for the ground state of the J, —J2 model. We are only
pointing out that the other states besides the dimer can
roughly explain the results for the structure factors.

Another state that as been proposed as a possible can-
didate for the ground state in the intermediate region of
the FAFH is the twisted state. In the classical limit, it
has been shown that twisted and spin order in the ground
state in the intermediate region exist if exchange cou-
plings at a distance of two lattice spacings are also con-
sidered. ' The properties of the J, —J2 —J3 model have
been analyzed using spin-wave techniques and numerical
diagonalizations at T =0. Even when the FAFH model
Hamiltonian does not contain such a term as J3 explicit-
ly, it may appear as a result of thermal and quantum Auc-
tuations as was pointed out in Ref. 11. The classical
twisted state is different from the quantum mechanical
twisted state, since the latter does not have spin order,
only twisted order. Recently, ' it has been found that the
twisted order parameter changes very little with tempera-
ture showing that it is not enhanced with frustration, but
simply less suppressed than in a Neel state. This calcula-
tion is very convincing, but we want to analyze this issue
in more detail. For this purpose, we study at T=O the
twisted susceptibility,

@(q)=—g e'q'' j ((S XS,+s) (S;&S;+s)) . (I&)
i,j,5, 5'

This susceptibility measures the current-current spin
correlation function in the xy plane. We generalize here
previous calculations to the q&(0, 0) case. In Fig. 10, we

FIG. 10. Twisted susceptibility at T=O as a function of
J, /J l at q = (0,0) and (0, m /2).

present our results. In the intermediate region, the twist-
ed susceptibility at q = (0,~/2) is enhanced by a factor of
2 with respect to the infinite-temperature limit —, showing
a maximum at J2/J& =(0.5 —0.6). We do not have a
simple explanation for these results. Clearly, a finite-size
scaling analysis is needed to show if this maximum sur-
vives in the thermodynamic limit, but nevertheless, the
twisted susceptibility at q=(O, vr/2) cannot be discared
using the infinite-temperature argument. Finally, we
have not analyzed the uniform chiral order parameter, "
since, at T=O, no indications of enhancement of this
type of spin order have been found.

IV. SUMMARY

We have studied finite-temperature properties of the
spin- —,

' frustrated antiferromagentic Heisenberg model on
a square lattice using an exact diagonalization technique,
which is based on the Lanczos algorithm. We have cal-
culated static properties, such as specific heat, uniform
susceptibility, spin-spin correlation functions in momen-
tum space, and the corresponding susceptibility of the di-
mer order parameter. The study of the 4 X4 lattice
shows an enhancement at low temperatures, in the ap-
propriate region of parameter space, both in S [(vr/2), n]
and in the column operator (which indicates dimer or-
der). While the enhancement of this structure factor can
be explained by a dimer state, the results at Jz /J& =0.6 (a
near degeneracy of many structure factors) remain a puz-
zle. Nevertheless, we agree with Ref. 21 that the dimer
state is a very strong candidate for the ground state of the
FAFH in the intermediate region of frustration.

We have also calculated the twisted susceptibility at
T =0 and nonzero q, finding in the intermediate region an
enhancement of this quantity for both q=(0, 0) and
q=(O, vr/2). The possibility of a nonuniform twist has
not been considered before in the literature, to the best of
our knowledge. At T =0, for J2/J

&
0.6 and

q = (0, m /2), there is an enhancement of a factor of 2 with
respect to the infinite-temperature limit, contrary to what
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happens for q=(0, 0), where the twisted susceptibility has
no appreciable change in all the temperature range.
Thus, we believe that the possible existence of twisted or-
der in this model is not completely ruled out as implied
by Ref. 21.

With respect to a possible phase transition at finite
temperature in the intermediate region of the coupling
parameters, our results indicate a sharpening of the
specific heat in the region of interest. However, a study-
ing only small systems, we cannot show convincingly if
this peak will diverge in the thermodynamic limit.
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