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Linearized gap equation for a superconductor in a strong magnetic field
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A linearized gap equation for a superconductor in the presence of a strong magnetic field incorporat-
ing the Landau-level spectrum, the Pauli term, as well as the dynamical interaction is given. The most
commonly used model of a BCS-type pairing interaction of strength V is a special case of the dynamical
interaction, and in this case an exact solution to this linearized gap equation was obtained by us before.
From this solution, several new results recently obtained by Tesanovic et al. are recovered. By express-
ing the solution in terms of the Landau states, the Cooper pairing is shown to involve many Landau lev-
els.

In a recent paper, Tesanovic et al. ' (henceforth re-
ferred to as TRX) obtained very interesting results con-
cerning the superconductivity properties in a strong mag-
netic field when the Landau level spectrum is incorporat-
ed but within the usual BCS-type pairing interaction of
strength V which is local in space. In this Brief Report
we present a linearized gap equation which takes into ac-
count the dynamical interactions as well as makes explicit
use of the Landau level structure, so as to suitably in-
corporate the changes in the dielectric properties of the
electron gas in such strong fields which may in turn alter
the phonons and their density of states. Equipped with
this more general theory we may introduce a BCS-type

I

pairing interaction by suitably averaging over the dynam-
ical interaction near the Fermi surface as is usually done
in the conventional dynamical theory of superconductivi-
ty. Our derivation, unlike TRX, is without Grassmann
integrals and is thus more intuitive. Following well-
known steps, starting with the Gorkov anomalous
Green function, the linearized gap equation in coordinate
representation is found to be

a(r, r2)= f fK(r, r2, r314)h(r3r&)d r31 r4,

where
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Here a stands for the quantum numbers Landau level n, , degeneracy index k, and momentum p in the z direction and
1/2 2

4 (r)—:%„„(r)=o, 1 / ' ~/lo —ky P
—( —kl ) /2loH x —kl

Z 2"n! 0
(3)

o, is the spinor (0) for up spin and (, ) for down spin, are
the solutions of the usual free particle Hamiltonian in the
symmetric gauge A—= ( ——,'yH, —,'xH, O) with the corre-
sponding energy eigenvalues

2E:E„~ =(n+ —,
' )co, + —+—g|Lt~H .

2ftZ 3 2
(4)

Here p~ is the Bohr magneton, g is the g factor, equals 2
for free electron, co, =1/mls is the Larmor frequency, lo
is the square of the Larmor radius, c/eH, and + goes
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with o.,= l and —with o, = L.
H„(x) is the usual Hermite polynomial. It should be

noted here that this choice of the solution is made so that
we have a harmonic oscillator in the x direction centered
at kl 0 so that the summation over the degeneracy index k
can be carried out subsequently in a convenient way [see
Eq. (6)]. The position-dependent phase factors in Eq. (3)
appear naturally symmetrically in this procedure and are
a manifestation of the property of the system under
translation and concomitant gauge transformation in the
(x,y) plane. The dynamical interaction here appears in
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the form V,„and is related to the screened interaction
via

„d~ ImV(Q;r]rz)
V,„„(lEl;r,r )= V, (r,r )+2J0 ]r II+ E

ImV(Q;r]r2) is related to the imaginary part of the in-
verse of the total dynamical dielectric function contain-
ing contributions from phononic as well as electronic ex-
citations. V, is the unscreened Coulomb potential. Since
E is degenerate with respect to the k index, the respec-
tive bracketed terms can be summed over k thus

+a apa a apa 2~$2 a
0

(6)

The last factor in Eq. (6) is an important phase factor ex-
hibiting a subtle, combined translation and gauge trans-
formation property in the presence of a magnetic field
mentioned earlier. Also P= 1/k]] T, T is the temperature
close to the critical temperature T„and L„(x) is the usu-
al Laguerre polynomial, and p=(x, y). This equation
contains all the dynamical contributions to the Cooper
pair formation. Even though Im V may contain reso-
nances due to phonons, plasmons, magnetoplasmons, ex-
citons, etc. , V,„ is a smooth function of energy E and

can thus be parametrized in the usual way as a square
well in the energy space with a cutoff as in the BCS
scheme. The strength of the interaction is taken to be
that associated with those states near the Fermi energy so

that lEl =0 in these units contribute most. Thus only a
subset of states (a]a2a3a4) participate in the pairing
where the effective potential is most attractive.

Thus, a BCS-type model may be considered for further
study of the gap equation, wherein V,„ is taken to be en-

ergy independent nonzero only for lEl (0, the energy
cutoff, and local in space so that in Eq. (2) we may take

V,„~=V5(r3. —r~ ) forlE (II,
zero elsewhere . (7)

We may then perform the sums on n, and a2 as they now
become completeness statements on the 4 's yielding
5(r, —r3 )5(rz —r3 ) and hence the r3. integration leads to

K(r]rz, r314) = —
—,
' V5(r, —r2) g g

A3 cx4

tan hPE /2+ tanhBE /2
3T 41

E +E
4&

[4* (r])% (r3)][%*(r])% (r„)] .

Using Eqs. (6) and (1) we obtain

b, (r]r~) =5(r] —r2)b, ,(r]),
where now h, (r, ) obeys the integral equation

h, (r])=—yK(r]r2)b, (r2)d r~

with K(r]rz) given by

(10)

tanh/3E„ /2+ tanhPE„& /2

, , yy jf"
47r lo „„—(2]r)

i(P3+P4)(z& —z2 )

e

XL„,( lp» I'/21 0 )1„,( Ip» I'/2lo )e " 'e

It should be noted that this kernel, apart from the impor-
tant position dependent phase factor [last exponential in
Eq. (11)], has the translational and cylindrical sym-
metries. The phase factor is the outcome of the subtle
property of the electron system in a magnetic field men-
tioned earlier. It is this phase factor which led us to the
exact solution of the form

b,,(r])=hoe (12)

V (n3+n~)! I„„
3 4

(13)

with the condition that T and H obey the self-consistency
relation
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tanhPE„, /2+tanhPE„, /2

2' E„+E„n3p3 n4p4

in the notation of TRX, and we obtain their result for
T, (H )QL ).

(b) The quantum-limit approximation (QLA) of TRX
implies that only the terms with n 3

=n 4 contribute in Eq.
(13), and using

where we have used the integral
1.140,

(n3+n4)!f dx e 'L„(x)1.„(x)=
0 3 4

3 !n 4 ! 2

Equation (13) is an explicit version of the gap equation
given by TRX, their Eq. (3), in the Landau level represen-
tation. Several results of TRX follow from Eq. (13).

(a) If only the lowest Landau level is occupied, then
T, (H )H&L ) is given by

1= IV

4~l

we obtain Eq. (5) of TRX.
(c) In the low-field regime we may use the Poisson

summation formula to perform the sum over the Landau
levels leading to the dHvA oscillations. Retaining only
the first oscillatory terms, the result of TRX for T, in the
low field regime is recovered.

We may finally draw attention to the nature of the ex-
act solution, Eq. (12), of the gap equation, Eq. (10), by ex-
plicitly computing the matrix element 6 & associated
with it. In general, we have

with (15)
6 ii—= f f 0' (r))%'ti(r2)b(r)r2)d r)d r~ (17)

I N 1
1 149

T (H)H )C QL

and in the V model, this takes the form when explicitly
written out using Eqs. (3), (9), and (12):

2775(p +p ) 1/ 'ttl0 —(k +k' )I /2
~nkp; n'k'p' ~0 g2 (

—1)"
2" "(n!n'!) m=0

H„ lo H„

m!(n —m)!(n' —m)!

k —k'
v'2 lo

(18)

where [n, n '] is the smaller of n, n '. It should be pointed out that this has a factor which is not translationally invariant
in k, again exhibiting the special feature of the system which requires a gauge transformation when a translation in the
(x,y) plane is made for the system Hamiltonian to be invariant under translations. Under such transformatons the
wave functions acquire position-dependent phase factors which make important contributions in evaluating the integral
in Eq. (17). This shows that "pairing" in the Landau-level representation is maximal for p'= —p (expected as with the
usual Cooper pair) but among all the locations (k, k') of the centers of the orbits and (n, n ') pairs of Landau levels con-
nected by intermediate states m in the sum in Eq. (18). An examination of a few cases shows that

2~5(p +p')((/~t0 (k2+k 2)(2g2
kp;ok' ' ~0 2"(n!)'~

k —k'
lov'2 (19)

—(k +k' )1 /2= b,02~(p +p')()/vrl() e

The gap parameter in the ground Landau orbit appears
to be the largest with the off-diagonal ones such as the
one in Eq. (19) falling off'rapidly with increasing n as well
as on a scale kl0))1 and (k —k')l0))1. Thus the pair-
ing mechanism in the presence of the magnetic field in-
volves in general a large number of Landau states.

We may summarize this work by pointing out that the
effects of magnetic field on the superconducting proper-
ties are contained in Eq. (1) which takes account of the
degenerate Landau states in the presence of the magnetic
field, and possible modifications of the phonons and the
electron screening. A simplified BCS-like model may be
deduced from this under certain conditions and the re-

suiting gap equation and its solution are studied in some
detail.

Note added in proof. The sum in Eq. (18) can be per-
formed and the result is

( —1)"H„+„ k —k'
0l

A.K.R. is supported in part by ONR. The newer work
on the derivation of Eq. (1) and the analysis contained in
Eqs. (17), (18), and (19) was performed in TIFR, Bom-
bay, where the inspiration and collaboration of Professor
Divakaran and Professor Jha were of immense value in
completing the work in a very short time. Thanks are
due to NRL for supporting my trip to TIFR. The hospi-
tality of TIFR is gratefully acknowledged.



2810 BRIEF REPORTS

Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. Lett. 63,
2424 (1989).

~High Temperature Superconductivity, edited by V. L. Ginzburg
and D. A. Kirzhnits (Consultant Bureau, New York and Lon-
don, 1982), Chap 2.

A. K. Rajagopal and R. Vasudevan, Phys. Lett 20A, 585
(1966);23A, 539 (1966); and (unpublished).

4I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Serials,
and Products (Academic, New York, 1965).

5A. K. Rajagopal and John C. Ryan (unpublished).


