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Pressure-induced temperature shift of the lock-in transition in some A 28X4 crystals
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The influence of hydrostatic stress on phase transitions of a "Lifshitz type-I'* system is discussed.
Taking into account third- and fifth-order coupling terms between the order parameter and the strains,
we show that the two lowest-order terms in the Landau free-energy expansion are both pressure depen-
dent. Within the "phase-modulation-only" approximation, a formula is derived, which gives the shift of
the lock-in transition temperature under the effect of a stress. A numerical comparison with the
Clausius-Clapeyron relation is shown.

The subject of this paper is the inhuence of hydrostatic
pressure on the successive phase transitions induced by
the instability of an irreducible representation from
which the Lifshitz invariant can be constructed. The
normal-incommensurate transition is of the second order
for a system satisfying this condition and the pressure-
induced shift of the transition temperature is described
by the Ehrenfest relation, in reasonable agreement with
experimental results. Ori the other hand, the order of the
lock-in phase transition is not clearly established. In the
framework of the Landau theory of second-order phase
transitions, we derive a formula giving, from the
knowledge of the pressure-induced shift of the normal-
incommensurate transition temperature, the displace-
ment of the lock-in transition temperature under the
effect of a hydrostatic stress. The numerical result, in the
case of potassium selenate, of which several thermophys-
ical quantities are available in the literature, is compared
with those obtained from the Clausius-Clapeyron relation
which is valid for a first-order phase transition. Al-
though this study focuses on K2SeO4, it can be extended
to other compounds and, in particular, to its isomorphs.

Potassium selenate undergoes a second-order transition
at T; =128 K from the normal Pnam phase to an incom-
mensurate phase, with a modulated wave vector
qo=(1 —5)a*/3, and then a lock-in transition to the
commensurate ferroelectric Pna2& phase with the unit
cell tripled along the a axis. The relevant free-energy
density can be written in terms of basis variables Q and
Q* belonging to the X2 representation of the small group
C2, at q, =

—,'a*, from which the Lifshitz invariant of the
form

with a =a&.(T —To) and Q =( I/i/2)ice~
The coefficients aT, b, c', c, and f are assumed to be

positive. Within the "phase-modulation-only" approxi-
mation, the equilibrium local phase variable is given by
the multisoliton solution of the sine-Gordon equation
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where E (y ) is the complete elliptic integral of the second
kind. Minimizing (2) with respect to y and i) leads to the
following system of equations:

2E(y) 2 ~d o T) T9 ~f & 1 (3a)

with v=3') &c/f. am(u, y) is a Jacobian elliptic func-
tion and y is the modulus of the elliptic functions. The
spatial variations of the phase variable satisfy the relation

380(x +k) =38O(x)+~

in which A, =2yK(y)/v is the intersoliton distance fixed
by the period of am(u, y). K(y) is the complete elliptic
integral of the first kind. Inserting 8o(x) into (1) and in-
tegrating over one period, one finds the ground-state en-
ergy per unit length

F= —,'ag

is constructed:
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T, is the lock-in transition temperature. The coefficients
involved in (3) can be estimated from experiment (see, for
example, Refs. 2—4). The temperature dependence of
both the modulus y and the order-parameter g can be de-
duced from the above system by computation. Neither
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saturation nor the discontinuity of g near T&, suggested
previously in Refs. 6 and 7, has been found. It is prob-
ably due to the small value of the lock-in energy provided
by the sixth-order term. The coefficient d will be as-
sumed positive. The lock-in transition temperature is
reached for y = 1:

T, =T — ~bd
2a v'fc

3(c' c)vr —d
8aTfc

(4)

To=(T, d laT—f) differs from the actual second-order
temperature T; by a small amount ( -0.7 K), which can
be neglected. ' In order to derive the shift of the lock-in
transition temperature under the efFect of the hydrostatic
stress, we introduce in (1) the following terms:

right-hand side gives the displacement of the second-
order transition temperature while the second term, ex-
plicitly involving the Lifshitz contribution (d term), gives
the rate of change of the temperature range for the stabil-
ity of the incommensurate phase. Result (8) is valid for
compounds showing a linear pressure shifting of the
phase-transition temperatures. With use of Eq. (7a), the
shift of the normal-incommensurate transition tempera-
ture can be written as

d TQ g hkSkk
dp QT

Such a result can also be derived from the thermodynam-
ic Ehrenfest relation, '

y hkek 9 + rf gkek 9 +
2 rf ckk'ek ek'+p rf ek

k k k, k' k

k, k'=1, 2, 3 .

dTo
0 g(

(&)
where
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The first two terms are the third- and the fifth-order cou-
pling terms between the strains ek and the order parame-
ter. This latter coupling is introduced in order to take
into account the nonlinear temperature dependence of
the measured strains. ' The next term is the elastic ener-

gy while p stands for the hydrostatic pressure. Replacing
the strains by their spontaneous values,

and

aT 0b,a =, g hk.Skkb'

2

AC, = Toa T
2b' (12)

ek = g Skk (hk +gk 1 )1 p g Skk
k' k'

(6)

a(p)=a —2p g hkSkk
k, k'

(7a)

leads to the renormalization of the coefficients a, b, and c'
involved in the previous equations:

represent, respectively, the discontinuities of the volume
thermal expansion coefficient and of the specific heat at
constant pressure. When the lock-in phase transition is
clearly of the first order, the term on the left-hand side of
Eq. (8) is given by the Clausius-Clapeyron relation, '

b(p)=b' 4p g gkSkk—with b'=b —2 g Skk.hkhk
k, k' k, k'

(7b)

dT)

dp AS
(13)

c"=c'—4 g gkhk Skk
k, k'

A term of eighth order and a term of the form

2
p oX Skk'

k, k'

(7c)

This formula, which is the main result of this paper, gives
the shift of the lock-in transition temperature under the
inAuence of a hydrostatic pressure. The first term on the

which do not play any role here, have been dropped. The
coeKcients c and c' can also be considered renormalized
by the fourth-order coupling terms, which do not appear
explicitly in the text, between the order parameter and
the shear strain e5 on one hand and the polarization, ly-

ing along the c axis, on the other hand. Skk. is the elastic
compliance tensor for T~ To. Taking into account (7b),
the differentiation of Eq. (4) with respect to pressure leads
to

dTo 2' d+ g gkSkk
dp dp ~T fc

in which 6V and AS are the changes of the volume and of
the entropy at the lock-in transition.

Let us now give a numerical application of formula (8)
in the case of potassium selenate, which has been inten-
sively investigated in the last decade. In order to esti-
mate the second term on the right-hand side of Eq. (8),
the temperature dependence of the spontaneous strains,
measured at atmospheric pressure, have been fitted by
expression (6) using the sums

~&k —& Skk gk
k'

(k, k' = 1,2,3) as free parameters. The temperature
dependence of the square of the order-parameter ampli-
tude has been approximated by the classical law
aT(TO —T)lb'. The value of aT=1.5X10~3 s 2K ' can
be deduced from the temperature dependence of the soft-
mode frequency" at q =qo, while the value of
b'=1. 1X10 dyn 'cm s can be deduced from Eq.
(12). The excess value of the specific heat b, C, =1.3X10
dyncm K ' at T=T; has been measured by the au-
thors of Refs. 12 and 13. We used the following values of
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Skk = I2.0,2.4,3.3 I X 10 ' dyn ' cm (see Ref. 14) and
those of

The knowledge of the b,pk sums allows us to estimate
the values of the coefficients

Soi~ i323= I
—0.6, —0.5, —1.3I X10 ' dyn ' cm gk= I

—3.3, —3.9,2. 3I X 10 dyn 'cm s

(see Refs. 2 and 3). The values of the coefficients
and the value of the second term on the right-hand side
of formula (8):

h; =
I O. 3,0.5, —3.8 I X 10 s

can be deduced from the values of
g APk = —2.0 Kkbar

~r+fc
(14)

dTQ ={3.1,7.7, —17.0I K kbar
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FIG. 1. Temperature dependence of the spontaneous strains
(from Ref. 8). The upper curve is the best fit of e3 (open circles).
The fitted value of hp, was found to be equal to 14.5X10"
dyn cm s . The two lower curves have been obtained with

AP, equal to —5.5X10" dyn cm s and i5Pz equal to
—10.5X10 ' dyn cm s . Note that e& (crosses) and e2 (tri-
angles) are negative.

given in Ref. 15 or from the discontinuities of the thermal
expansion coefficients' . o.; is an uniaxial stress. The
pressure-induced shift of the normal-incommensurate
transition temperature estimated from Eq. (10) is in good
agreement with the experimental results given in Refs.
16—18. The best fit of the main spontaneous strain along
the c axis, which has been measured with a reasonable
accuracy ( —10%), is shown in Fig. 1. The fitted value of
bP3 was found equal to 14.5X10 ' dyn cm s . It
shows that the effect of an uniaxial compressive stress
along the c axis leads to an increase of the lock-in transi-
tionn temperature (see below) while this latter decreases
under the effect of a hydrostatic pressure. ' ' The con-
tribution of both bP, and bP2 should then produce this
required decrease of the lock-in transition temperature.
The values —5.5X10 ' and —10.5X10 ' dyn cm s
for hP, and b.Pz, respectively, could fit the temperature
dependence of the spontaneous strains along the a and b
axes, which have been measured with high inaccuracy
(see Fig. 1). The values of hP, and EP2 also match the
pressure-induced shift of T& as will be shown in what fol-
lows.

The coefficient f =2.5 X 10' cm s, which is the curva-
ture of the soft mode along a, can be known from neu-
tron measurements. ' The coefficient d =f hq, with
hq=Jqo —q, ~

=
—,'5oa* near To, is equal to 5.0X10'

cms . 6Q=0.07 is the value of 6 at T+ TQ and the lat-
tice parameter along the a axis is equal to 7.6X 10 cm.
The value of the coefficient c=1.0X10 dyn cm s
can be deduced from Eq. (4) by fixing the value of T, =93
K and neglecting the second part on the right-hand side
which comes from the sixth-order terms. The value of
coefficient c has been underestimated in Ref. 4. The dis-
placement of the lock-in phase-transition temperature
calculated by means of formula (8) is then

dT] = —8.5 Kkbar
dp

(15)

An average value of dTQ/dp = —6.5 Kkbar ' has been
considered. ' ' Taking into account the large uncer-
tainties involved in the values of the various coefficients,
one can consider this result to be in reasonable agreement
with the experimental values —9.0 and —11.4 K kbar
given in Refs. 16 and 18, respectively.

Let us estimate the pressure-induced shift of the lock-
in transition temperature from the Clausius-Clapeyron
relation. Values of 2.4X10, 5.0X10,and 7.2X10
calmol ' K ' were obtained in Refs. 13, 12, and 19 for
the discontinuity of the entropy at T = T, . Changes of
volume at T = T, equal to —1.5 X 10 and —3.6 X 10
were reported by the authors of Refs. 13 and 9, respec-
tively, while the authors of Refs. 8 and 20 have not
detected any change of volume. Considering only their
own measurements, the authors of Ref. 13 have found
that the shift of the lock-in transition temperature is
about —13 Kkbar '. A value of —12.6 Kkbar ' has
been estimated by the author of Ref. 9 by using the value
of AS obtained in Ref. 12 and his own measurement of
hV.

The large experimental discrepancies mentioned above
do not allow one to draw definite conclusions. To
confirm the difference (or the similarity) between the re-
sult estimated from relation (8) derived here and the re-
sult estimated from the Clausius-Clap eyron relation,
careful measurements of the main physical quantities in-
volved in the problem are required.
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