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Ground-state phase diagrams for physisorption systems in one dimension
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We examine the ground-state phase diagram for a one-dimensional physisorption system with
nearest-neighbor Lennard-Jones interactions. We conclude that the phase diagram is qualitatively
different from that of the Frenkel-Kontorowa model. In particular, we find that there are two basic re-
gions, one in which phase changes take place in a first-order manner and a second region of second-order
transitions. The sequence of appearance of the first-order transitions is analyzed and the position of the
boundary layer separating the two regions is obtained. It is shown that within the boundary layer the
phase diagram can become exceedingly complicated, with structure appearing on very small length
scales.

The phase diagrams of physisorbed systems have been
intensively studied for many years. ' These systems
represent an essential laboratory in which many types of
two-dimensional phase transitions can be studied. The
early experimental work on the determination of phase
diagrams relied on thermodynamic measurements of ad-
sorption isotherms and heat capacities. More recent
studies utilizing neutron, x-ray and electron-difFraction
techniques have proven to be particularly adept at prob-
ing atomic and molecular configurations, especially when
used in a complementary mode.

Physisorption phase diagrams are now known for
numerous combinations of adsorbates and substrates.
For nonspherical adsorbates, the inAuence of more com-
plicated types of interactions (for example, quadrupolar
in N2) yield low-temperature orientationally ordered
phases like the pinwheel and herringbone patterns. ' In
general, however, the low-temperature equilibrium
configurations for the classical noble gases are simple,
close-packed types of structures (the exception being Xe,
which is reported as disordered on some substrates ' ).

A simple model of physisorption was introduced by
Frenkel and Kontorowa" (FK) which consists of a set of
harmonically bonded atoms residing in a cosine external
potential. The model was solved in the continuum limit
by Frank and van der Merwe' who were able to associ-
ate the commensurate-incommensurate transition with an
instability with respect to domain-wall (soliton) forma-
tion. The ground state was studied in detail by Ying, '

who concluded that there were first-order transitions in
this model. This conclusion was corrected by Aubry,
who showed rigorously' ' that the transitions in the
FK model are continuous in the sense that there are no
coexisting phases. The ground state has been subsequent-
ly studied by many authors. ' Aubry, in particular,
showed that the ground-state equation of motion is
equivalent to the much studied standard map. ' Thus, an
enormous body of information is available concerning the
FK ground state.

In this paper, we wish to study the ground state of a
more realistic physisorption model by replacing the har-
monic bond of the FK model by a Lennard-Jones type of

interaction. The consequences of this change on the
ground-state phase diagram are profound. We shall ar-
gue that the FK ground-state phase diagram is qualita-
tively different from a realistic physisorption ground-
state phase diagram.

The key to this difference is the presence of a noncon-
vex well in a realistic interaction as compared with the
convex FK harmonic bond. Aubry's theorem, with re-
gards to the absence of first-order transitions, fails in the
presence of a nonconvex potential. Indeed, we shall show
that regions of first-order transitions dominate large areas
of the phase diagram.

Consider a one-dimensional system of atoms described
by a Hamiltonian of the form

H =g [ V( u; ) + 8'( u; —u;, )],
where the external field is a periodic function
V(u) = V(1+u), and the nearest-neighbor interaction W
is bounded from below and attains its unique minimum
when u; —u; i

=y. In Eq. (1), the variable
uE[ —oo, + ~]. In the model that we consider here, we
make the choices

V(u)= ,'f(y) Vo[1—co—s(2~u)],

IV(y ) =f(y ) ( —)"—2( —)'+ 1

We have 8"'(y)=72f(y)/y and, thus, by choosing
f(y) =const Xy, we eliminate the undesirable y depen-
dence of the curvature at the bottom of the well. For
definiteness, we use f ( y ) =y .

The ground-state configurations can be obtained by
solving the Griffiths-Chou (GC) minimax eigenvalue
equation:

V(u )+min[ W(u' —u )+S(u')] =F+S(u),

here E is the eigenvalue and S(u) is the (right-hand)
eigenfunction. GC showed that c is the energy per parti-
cle for a given configuration. The configuration can be
labeled by its winding number to where co=d/p mod(1)
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in FK-type systems by rigorous results due to Aubry. In
the sLJ system, the nonconvex part of the interaction al-
lows such a phase to be energetically favorable with
respect to the co= —', by allowing the system to lower its

energy by stretching one bond and shrinking the neigh-
bor bond. The —,

'-
—,
' coexistence region in Fig. 1 is given

by

V0=24y (7—13y )/rr

This produces a region with a maximum at
y=( —,', )' =0.803 56 and Vo= —,', (7/~) =2.2914.

The boundary layer between the regions of second- and
first-order transitions can be rather complicated. In Fig.
2, we blow up the phase diagram in the vicinity of Vo =2
and y=0.4. This interesting structure is a connection
between the su= —,

' phase in the first-order region and the
su= —,

' phase in the second-order region. It consists of a
series of regions of configurations of the type co=n/2n,
for n an integer, connected by first-order transitions. The
region is formed because of the ability of the system to
lower its energy by stretching and shrinking nearest-
neighbor bonds. Thus, the co= —,

' configuration has atoms
at Ix, 1 —x I and the co= —' configuration has atoms at
Ix, 1 —x, 1+y, 2 —y I with x +y =y. Thus, the co= —' sys-

tem has approximately three bond lengths of y and one
unit bond length. This pattern is maintained for the
higher periodic configurations. Thus, we may describe
the appearance of these co = n l2n states by
(2n —1) y„2+1=n or

y2„= (n —1)/(2n —1),
where y2, is the value of y at which the system makes a
transition from a state with period 2n —2 to a state with
period 2n. This relation predicts the occurrence of the
transitions with remarkable accuracy (e.g. , n =2
~y~=0. 333, n =3~y6=0. 400, etc). We can also ap-
proximately compute the width of the regions as a func-

tion of n L. et b,„—:y„+,—y„, then b,„=1/[(2n) —1 j or

lim 5„= 1

(2n)

We note that y =
—,'; however, at y-0. 49, this sequence

of states meets the co= —,
' tongue. Thus, there is a max-

imum periodic state in this sequence which can be es-
timated from the coexistence line at

Since y & —,', this approximate energy is nearly degenerate
with the co=y configurations and thus, from Eq. (7), we
expect that the boundary region of the phase diagram
around V0=2 will be complex.

There is considerable additional structure in this region
which appears at small length scales. In Fig. 3, we show
a portion of the boundary of the ~= —,

' configuration.
There are islands of phases sitting within the co= —,

' re-

gion, there is a region where the co= —,', , —,', , and —,', are
mixed together on a length scale much smaller than Fig.
3, and there is (to numerical accuracy) a quadruple point
signaling coexistence of the co= —,', —'„—,', , and —,', phases.
There are also numerous triple points.

The region 1, y &2 shown in Fig. 1 is similar in
structure to the region with 0 ~ y & 1. There is a large- Vo
first-order transition region and a small-Vo second-order
transition region separated by a boundary layer which
can be complicated. The boundary with the co= —', phase
has the same interesting shape as the co= —'

, boundary be-
cause of a scaling relationship in Eq. (7), y~y/n for an

y =0.49-+2n „=500 .

Thus, y =0.49 is not an accumulation line of n /2n
phases. It should also be noted that there are triple
points located at the top and bottom of each coexistence
line. The energy per particle for an m=n /2n system can
be easily written using this model:

r
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FIG. 2. A blowup of the connection between the co= —', first-

order region and the co=
2

second-order region. The sequence
of phases with co=n/2n can be modeled as groups of 2n —1

atoms separated by spacing y and one pair separated by unit
spacing. The boundary between the region of second-order
transitions and the co= n /2n phases can be complex.
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FIG. 3. A blowup of part of the border of the co=
6 phase in

Fig. 2 showing the extremely complex array of configurations at
this length scale.
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co=nil phase. In this region of y, connections between
the first- and second-order regions, like that of Fig. 2, ap-
pear for co=

2 3 4 and —', . Some of the smooth-looking
boundaries (like those of the co= —,

' and —', phases) show
much additional structure when viewed on a smaller
length scale than Fig. 1.

In this note we have discussed the ground-state phase
diagram for a realistic one-dimensional physisorption
model consisting of a chain of particles interacting with
nearest-neighbor Lennard-Jones forces and placed in an
external cosine potential. We have shown that this sys-
tem has a qualitatively different ground state than the
canonical FK model. The Lennard-Jones potential is
nonconvex, permitting first-order transitions to appear.
The physical basis for this behavior is that the asymmetry
of the potential in the neighborhood of the point of
infiexion permits the system to lower its energy in some
ranges of Vo by shrinking and stretching neighboring
bond lengths.

There may be some interesting experimental conse-
quences. As noted above, the reported ground-state
configurations of the classical noble gases tend to be close
packed and simple. We can predict that, if an adatom-
substrate combination can be found such that the
adatom-adatom equilibrium spacing is half of the periodi-
city of the substrate and that the system is strongly
bound in the sense that the corrugation height is twice
the adatom-adatom well depth, then the ground state will

occur in a region of the phase diagram where its struc-
ture may be exceedingly complicated. There has been
some interest in chemisorbed quasi-one-dimensional sys-
tems.

There has been a great deal of recent effort in examin-
ing the phase diagrams of systems interacting with non-
convex W(y). Yokoi, Tang, and Chou ' examined the
chiral XYmodel. They found an extremely rich structure
that included superdegenerate points, multiphase points,
an accumulation point of triple points, and winding num-
bers with nonminima1 periodicities. Marchand, Hood,
and Caille calculated phase diagrams for model noncon-
vex 8'(y)'s with a convex (parabolic) V(x). They found
first-order phase transitions, superdegenerate points,
winding numbers with nonminimal periodicity, and a
possible quasicontinuous transition. Marianer and
Bishop examined the statics and some dynamics for a
nonconvex 8, Sasaki and Floria, using a more compli-
cated version of the perturbed sinusoidal V of Griffiths
and Chou, found the occurrence of asymmetric periodic
structures, first-order phase transition, and other
features. Miller examined the ground state of a chain on
a discretized triangular lattice and found bands of super-
degenerate points, nonminimally periodic structures, and
evidence that taking the continuum limit is not simple.
We believe that the phase diagram of Fig. 1 represents
the generic type that applies to general physisorbed-type
systems.
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