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We calculate the lower critical field H,, for a magnetic field applied parallel to the layers of a
Josephson-coupled layer model of high-T, superconductors. This result is obtained by using an expres-
sion for the vortex line energy that explicitly involves the gauge-invariant phase difference between su-
perconducting layers. We examine the behavior of H,; as a function of temperature and discuss the
manifestation of the superconductor discreteness below a crossover temperature where the coherence
length £.(T) becomes comparable to the lattice constant ¢. This temperature dependence is contrasted
with the standard result for H_, for a continuous anisotropic type-II superconductor.

I. INTRODUCTION

Measurements of the lower critical field H,,, either by
rf surface resistance! "3 or magnetization*° techniques,
have usually been interpreted using Ginzburg-Landau
(GL) theory. The determination of H_,,, which provides
valuable information on ab-plane versus c-axis anisotro-
py, is all the more useful for high-T, materials, since it
can be measured directly, whereas the upper critical field
H_, cannot. The known high-T, compounds are general-
ly accepted to have a layered structure and an associated
small coherence length (£,) in the ¢ direction. The aniso-
tropic GL theory’ provides an adequate description for
H_, for these materials when the applied field is oriented
perpendicular to the layers. However, when the applied
field is oriented parallel to the layers, the anisotropic GL
theory may not be appropriate when £, is of the size of
the c-direction lattice constant. The present work ad-
dresses this point by using the detailed result for the vor-
tex core structure in a layered anisotropic high-T, super-
conductor.?

In an earlier work® we developed a model of anisotrop-
ic high-T, superconductors based on an infinite periodic
stack of Josephson-coupled, parallel superconducting lay-
ers. This model, which is similar to those of Bu-
laevskii’ !> and Lawrence and Doniach,'® consists of al-
ternating superconducting and insulating layers of thick-
ness d, and d;, respectively, giving a stacking periodicity
of s =d;+d;. In Ref. 17 Volkov developed a Josephson-
coupled layer model where the insulating regions have
zero thickness. In Ref. 18 a model for anisotropic high-
T, superconductors was constructed by using an array of
Josephson-coupled superconducting blocks. When the
blocks are fused in the a and b directions, but weakly
coupled in the ¢ direction, a layer model is obtained
which is similar to that which we use. The theory for the
structure of an isolated vortex parallel to the layers
developed in Ref. 8 is used in this paper to find the lower
critical field H,,.

For calculational purposes in the following, the layers
in our model are taken to be parallel to the xy (ab) plane,
with the center of the insulating layers at z =z, =ns
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(n =0,£1,%2,...) (see Fig. 1). In this phenomenological
description of a high-T, superconductor, we regard the
superconducting layers as corresponding to the double
CuO, planes in compounds like Y 1:2:3 (YBa,Cu;0,_;)
or Bi 2:2:1:2 (Bi,Sr,CaCu,0y). The insulating regions
roughly correspond to the other layers, with the values of
d; and s depending on the details of the particular materi-
al. In general, the length s is typically on the order of 10
A. In Y 1:2:3, we take s to correspond to the lattice con-
stant ¢, but in Bi 2:2:1:2, which has two formula units per
unit cell, we take s =c /2.

We note that our theory may apply to the new or-
ganic  superconductors. For instance, in the

:/n+1/é%%
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FIG. 1. Geometry of the Josephson-coupled layer model.
The insulating layers of thickness d; alternate with supercon-
ducting layers (cross hatched) of thickness d;. The middles of
the insulating layers are in the planes z, =ns (n =0,+1,%2,...)
where s =d; +d,.
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bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) family,
the compound «k-(BEDT-TTF),-Cu(NCS), has a layered
structure consisting of alternating sheets of BEDT-TTF
molecules and Cu(NCS), ions.!” It has been reported that
the parallel penetration depth at low temperatures is very
large (on the order of several mm) in this compound and
therefore Josephson coupling of the layers may be impor-
tant.!® This particular BEDT-TTF compound has a re-
sulting anisotropy of approximately &, /&, ~19.202! We
mention that both the upper’®?! and lower critical fields?
have been estimated in this organic superconductor.

In this paper we calculate the lower critical field H,,
for a magnetic field applied parallel to the layers of the
above model. The lower critical field is obtained from the
vortex line energy €; by the usual thermodynamic rela-
tion (e.g., Refs. 23-25)

(1.1)

where ¢y=hc /2e is the flux quantum. However, €, itself
is found by employing an expression explicitly involving
the gauge-invariant phase difference Ay, across succes-
sive superconducting layers. In the following section, we
recall the necessary results® for calculating e;,. After
evaluating the vortex line energy in Sec. III we discuss
the consequences for the lower critical field. We finish
with a brief summary and some concluding remarks in
Sec. IV.

Expressions derived from GL theory that involve &,
cannot remain valid when £, becomes smaller than the
periodicity length. In general, we expect such expres-
sions to be replaced by corresponding expressions in
which £, is replaced by c or the layer spacing, which be-
comes the smallest length in the problem. While expres-
sions for H,; based upon the anisotropic GL theory
should be correct at temperatures sufficiently high that
the coherence length &.(7T) is much larger than the lattice
constant ¢, our result applies for low temperatures, below
a crossover temperature, at which £.(7T) becomes approx-
imately equal to the lattice constant c. We note that the
existence of such a crossover temperature may be indicat-
ed by data from torque-magnetometry experiments on
untwinned single crystals of Y 1:2:3.2° Current theory
based on a three-dimensional (3D) London treatment ap-
pears inadequate to explain these results at lower temper-
atures when the magnetic field lies close to the CuO,
planes.?® We expect that at low enough temperature the
discreteness of the superconductor will become manifest.
In the theory presented in Ref. 8, the discreteness of the
superconductor, for temperatures below the crossover
temperature, was reflected in the dimensions of the vor-
tex core area, which in turn modified the result for the
viscous drag coefficient and flux flow resistivity (calculat-
ed for vortex motion parallel to the layers).

Our discussion assumes some knowledge of the behav-
ior of Josephson junctions. Background information on
single Josephson junctions, including the basic relations
between the gauge-invariant phase difference and electric
and magnetic fields, can be found, e.g., in Refs. 27-31.
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II. SUMMARY OF MODEL OF ANISOTROPIC
LAYERED SUPERCONDUCTORS

Here we recall and discuss the results from Ref. 8 that
we need for calculating the vortex line energy in the next
section. For that purpose we assume that a single vortex
is present in the central (or » =0) insulating layer of the
model. With the vortex parallel to the x axis (a direction)
and centered on the origin, the magnetic field produced,
b(y,z)=Xb(y,z), is to a high degree of accuracy when
5 <<Ap, B

o

m (2.1)

b(y,z)= K,(R),
where K » is a modified Bessel function of the second kind

of order p and
R=@§+y’+zH)'?,

Y=y /A, Z=z/Ay, Uo=s/2h, . (2.2)

The relation between the magnetic field of the vortex, the
supercurrent density j(y,z), and the superfluid velocity
a (y,z) in a superconducting layer can be expressed as

as=a+&V7/, j=— , (2.3)
21
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where a(y,z) is the vector potential, VXa=b, and y(y,z)
is the phase of the order parameter. In Eq. (2.3), A, is the
intrinsic penetration depth, taken to be isotropic, of the
individual superconducting layers of thickness d;. The
penetration depths A, and A, govern the behavior of the
vortex magnetic field and screening supercurrent density
outside the core region, as briefly discussed below. These
penetration depths are related to A, by% 1832

Sz =P 4 e

A=
b d, 8msJ, s

(2.4)

The geometric factor d; /s in Eq. (2.4) may be thought of
as arising from conservation of the supercurrent density
in the periodic layers. It is seen that the penetration
depth A, is composed of two parts: one due to the intrin-
sic screening and the other due to the weak Josephson
coupling. In the extreme limit of infinite Josephson cou-
pling (J,— ) the latter contribution vanishes, the
geometric mean of A, and A, is simply A, and we recover
the case of a continuous anisotropic type-II superconduc-
tor. In the limit that the insulator thickness d;—0, we
again have a continuous superconductor, d; —s, Jo— ©,
and A, —A,, A,—A,. For further discussion along these
lines, see Ref. 18. In the case of the known high-T, ma-
terials the Josephson coupling term dominates in the
penetration depth A, so that we typically have
A2>>A2~A2Z. For instance, in Y 1:2:3 (Refs. 33-35) the
anisotropy ratio kg /A2 =30 and in Bi and Tl compounds
this ratio is far larger.*®

In the following we also require expressions for the
gauge-invariant phase difference,
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Ay,,(y)=y,,(y)—7,,+1(y)—fﬁ—ﬂfc a-dl 2.5)
0 n

of the superconducting wave function across the junction
between superconducting layers n and n +1. In Eq. (2.5),
v, is the phase of the order parameter at the top of the
nth superconducting layer (where z =z,—d;/2) and
¥ +1 18 the phase at the bottom of the (n + 1)st supercon-
ducting layer (where z =z, +d; /2). The contour C, con-
nects these two points; i.e, it extends directly across the
junction, from the bottom to the top of the nth insulating
layer. By using Eq. (2.1), Ampere’s law, and the Joseph-
son relation J,(y,z)=J,sinAy,(y), we have the phase
difference (2.5) as

2u,K(R)y
R
where the good approximation®!832 1/A2~87%sJ,/cé,
was used. Since it can be shown that the maximum of
Ay, decreases with n approximately as 1/2|n|, we can

well approximate the phase difference by using the
asymptotic form K ;(x)=1/x, for x near zero, giving

sinAy, (y)= N (2.6a)

280y
R?

We recall that for the component of the supercurrent
density j pointing in the b direction, the length scale for
exponential decay along the z (c¢) axis is set by the
penetration depth A,. Similarly, for the component
pointing in the c¢ direction, the length scale for decay
along the y (b) axis is set by A,. The streamlines of the
supercurrent, which also represent contours of constant
magnetic field, are elliptical except for small zig-zags due
to the intervening insulating layers (see Fig. 2). The ex-

sinAy ,(y)= (2.6b)
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FIG. 2. A sketch of the supercurrent distribution around a
single vortex in the barrier region of the central Josephson junc-
tion in an infinite layer model of an anisotropic high-T, super-
conductor. The vortex is parallel to the x axis (@ direction).
The London penetration depths A, and A, give the scale for the
decay of the supercurrent components pointing in the b and ¢
directions, respectively. The streamlines of the supercurrent,
which also represent contours of constant magnetic field, would
be ellipses in the absence of the intervening insulating layers.
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plicit solution (2.1) does not model the straight super-
current streamlines in the insulating layers. However,
the error introduced in this approximation is small be-
cause the magnetic field outside of the vortex core
changes significantly in magnitude only over a distance
A, or A., and these lengths are normally much larger
than the insulator thickness d;.

In Eq. (2.1), #, serves as a dimensionless vortex-core
radius. Typically, #y=s/2A, is of the order of the re-
ciprocal of the Ginzburg-Landau parameter k, or approx-
imately 1072 in a high-T, superconductor. It gives the
distance at which the Josephson tunneling current densi-
ty reaches its maximum value (J,) in the central junction
as Y. —#o. For &, Ss/2, the continuum description for
the magnetic field of the vortex and the gauge-invariant
phase difference loses its validity, and the vortex, which
fits between neighboring superconducting layers, behaves
as a Josephson vortex rather than an Abrikosov vortex.
This is the case with which we are concerned, where the
amplitude of the order parameter is not suppressed in the
vortex core, for temperatures below the crossover tem-
perature.

It can be noted that for the Josephson-coupled layer
model,? there are two length scales, y,,,, and A, required
to characterize the spatial variation of J,(y,z =0) and
b(y,z=0). The peak value of J,(y,z=0) occurs at
Y =Y max =SA./2A,, while for large values of y, both
J,(y,z=0) and b (y,z =0) are dominated by the exponen-
tial exp(—y /A.). This is in contrast to the case of a sin-
gle Josephson junction where the Josephson penetration-
depth A; is the sole length scale needed to describe J, and
b.

III. CALCULATION OF VORTEX LINE ENERGY

The free energy per unit length of vortex line, mea-
sured relative to the free energy per length in the Meiss-
ner state, can be written as a sum of electromagnetic and
Josephson-coupling contributions

€1=€ gMT €1y - (3.1

Each energy contribution is described in more detail
below. We note, however, that no condensation energy
term is included in Eq. (3.1) to reflect variation in the or-
der parameter on each layer. Although we expect such
variation to be small, a condensation energy term for the
superconducting layers closest to the vortex axis would
be needed if dimensional crossover and its effects were to
be studied in detail.

In Eq. (3.1), g,y is the electromagnetic-field energy
per unit length of vortex, which is the sum of the
magnetic-field energy per unit length, and the energy per
unit length due to the kinetic energy of supercurrents.
The respective energy densities of these two contributions
are proportional to the square of b and the square of the
supercurrent density. We have for the electromagnetic
energy density in the superconducting layers

p2  2mAl

Fpy=——+—"0}+j} .

5 T2 (3.2)
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As a first step in writing €, directly in terms of the
gauge-invariant phase difference, we transform Eq. (3.2).
From a vector identity and Ampere’s law we have

V~(axb)=b2—a~7j . (3.3)
Then by employing the expressions (2.3) for the super-

current density and superfluid velocity, respectively, in
terms of the vector potential a we obtain

1 $o .

=—V:(aXb)———V- . 4
Fpym 8#\7 (aXb) 47TCV (3v,) (3.4)
As usual, b=V Xa and V-j=0 were also used. For the
insulating layers in the model, only the term b2%/8r is
present in Fgy, which by Eq. (3.3) can be written in the
form

b _ 1 1.

—=—V:(aXb)+—ja.

87 B V-(aXb) S ia

(3.5)

The term €, in Eq. (3.1) is the Josephson-coupling en-
ergy per length. The Josephson-coupling energy per unit
area of junction # is

Fy, ZM(I—cosAyn) .

e (3.6)

To obtain £;; we must integrate (3.6) over the junction
area corresponding to the unit length of the vortex and
sum over all junctions.

We now find the electromagnetic line energy €, gy for
an infinite stack of Josephson junctions, obtained from
Egs. (3.4) and (3.5). By integrating over all superconduct-
ing and insulating layers and summing, to obtain an in-
tegration over all space, and applying the divergence
theorem (assuming that b vanishes at infinity), the first
term on the right-hand side (RHS) of (3.4) and (3.5) con-
tributes nothing to €, gy The contribution of the second
term on the RHS of (3.4) would similarly be zero except
that the gauge-invariant phase difference across the junc-
tion does not vanish. By using (3.4) and (3.5) and apply-
ing the divergence theorem to each junction of our mod-
el, we thus obtain

%o

frEMT T 4mc

_ﬁj‘,_ f_wmdy J2(y) [Vn(y)—7n+1(y)

21
—=— |  dza,(y)
40 fcn y

(3.7a)

Since j,=J,=J,sinAy,, the Josephson tunneling
current density, Eq. (3.7a) can be written in terms of the
gauge-invariant phase difference Ay, Eq. (2.5), as

bolo S [ 7 dy Ay,(y)sinAy,(y) . (3.7b)
47TC — o

n=-—o0

ElEM™T T

Combining Eq. (3.7b) with Eq. (3.6) integrated and
summed over all junctions, we have for the vortex line en-
ergy
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z—:l=¢°J° i f_w dy[1—cosAy,(y)

2mec 2

—1Ay,(y)sinAy,(y)] . (3.8a)

Because of the symmetry of the phase difference in each
junction of the stack,

Ayo(p)=2m— Ay —y),

Ay, (y»)=—Ay,(—y), 170.

Eq. (3.8a) can be written in terms of the current per unit
length flowing around the vortex, I,= fg° J,(y,z=0)dy,
as

_ dolo , dolo

! 2c Tc

> fomdy[l—cosAy,,(y)

— 1Ay, (y)siny ,(¥)] .
(3.8b)

Alternatively, I =cb (0,0) /47 by Faraday’s law, so that
the vortex line energy becomes
_ ¢¢b(0,0)

8

$o’o

me

€

“+

> fowdy[ 1—cosAy,(y)

n=—oo

—4Ay,(»)sinAy ()], (3.9

which is a general expression showing ¢, as a dominant
electromagnetic line energy term plus a sum over all junc-
tions of Josephson and electromagnetic line energy con-
tributions. For the case of a single superconducting film,
the electromagnetic line energy was calculated by the
above means in Ref. 37. However, Eq. (3.9) is an expres-
sion for the vortex line energy in a layered, Josephson-
coupled type-II superconductor.

As applied to our layer model, separating out the con-
tribution of the central junction, Eq. (3.9) yields

¢2 2
=—-2—0~—K0(ﬁo)+#
167 )"b}‘c 167 A’bkc
2
4 $o/o
me

€; (1—1n2)

S fo""dy[l—cosAy,,(y)

n=1
(3.10)

where Eq. (2.1) was used for b and Eq. (2.6b) with Z=0,
to very good approximation, for sinAy,. Since Ay, is
fairly small for layers with n0, there is a great deal of
cancellation in the integrand in the last term of Eq.
(3.10):

—+Ay,(y)sinAy,(»)],

l—cosAy,(y)—1Ay,(y)sinAy,(y)

Ay

)
a L1HOoyiN]. (31D
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Therefore, using Eq. (2.6b), for n = 1, we can well approx-
imate

Ay, (y)=sinAy,,(y)=
u

n+#0) .

When Egs. (3.11) and (3.12) are used, the last term of Eq.
(3.10) becomes

&
3847 AL\,

(§'ES/7\.1,, (3.12)

2, (3.13a)

where we define the infinite sum

— < 1
=D

——————=~0.11308 .
< (1+4n2)3?

(3.13b)

By using expression (3.13a) for the last term of Eq.
(3.10) we find that the total energy per unit length of vor-
tex line (3.1) can be written as

)

=——2  [Ky(@y)+1—In2+13].
lévzkokc[ orro 7 21]

£ (3.14)

From Egs. (1.1) and (3.14) we then have the lower critical
field for vortices parallel to the layers as

bo
47T)Lb }\'C

N
20,

H,= [KO +1~1nz+—2%21 (3.15)

The result (3.15) can be expanded for very small argu-
ments of the zeroth-order modified Bessel function, due
to the smallness of #,, using Ky(z)=—In(z/2)—C,
C =~0.5772 being Euler’s constant, as

b Ay(T)
= e | 2

H, , (3.16)

where the approximate numerical values of £; and C
have been used and we have explicitly indicated the tem-
perature dependence of the penetration depths. In Ref.
11 Bulaevskii considered a discrete, Josephson-coupled
superconductor and calculated H,; to logarithmic accu-
racy. This paper refines that result by including the line-
energy contributions from the core region.

The result (3.16) can be compared to the standard re-
sult23—25,38—40

b0

H e .1
el 4rhy A, 317

(Ink, +0.50)

for a continuous anisotropic type-II superconductor
where the Ginzburg-Landau parameter «, =A,(T)/&.(T)
is only weakly dependent on temperature. Because the
stacking periodicity s has replaced the coherence length
in expression (3.17), Eq. (3.16) will yield a modified tem-
perature dependence for H,.,. This effect occurs at and
below a crossover temperature’®* =43 where the coher-
ence length £.(T) becomes comparable with the lattice
constant c.

An idea of the temperature dependence of the lower
critical field (3.16) can be found by using, for instance, the
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result of the “two-fluid”’ approximation?*
MT)=M0)(1—¢4) 7172 (3.18)

for A,. (Here t=T /T, is the reduced temperature.) Us-
ing expression (3.18) in Eq. (3.16) we have

b0 1
H,=—"" | —— __4+4
T G (D) | 2T
A (0)
+In +1.12 | . (3.19)

In Fig. 3(a) we have plotted expression (3.19) for
47A,(0)A(0)H,, /¢, versus reduced temperature for the
ratio A,(0)/s =100, approximating Y 1:2:3. Also plotted
(dashed) for comparison is the corresponding expression
from (3.17) with «,=330. Below some (reduced) cross-
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B
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FIG. 3 (a) Lower critical field H,(T)/[¢o/47A,(0)A.(0)] for
a vortex along the a axis vs reduced temperature t =T /T, for
parameters corresponding to YBa,Cu;0,. The solid curve
shows the Josephson core model result derived in this paper,
Eq. (3.19), shown here for A,(0)/s=100. The dashed curve
shows the Abrikosov core model, Eq. (3.17), for k,=330. At
low temperatures, below a (reduced) crossover temperature of
the order of t*~0.9, the temperature dependence of H,, should
follow the Josephson core result, while at high temperatures
above t*, H,, should follow the Abrikosov core result. (b) Same
as (a), but for parameters corresponding to Bi,Sr,CaCu,Oy:
Ay(0)/s=100 for the Josephson core result and «,
=A, /&, =2000 for the Abrikosov core result.
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over temperature t*, H,, will follow the temperature
dependence of (3.19) instead of (3.17).

In order to obtain a rough estimate of the crossover
temperature,?®*! % we note that £.(0)=3 A T.=92.5
K, and ¢ =11.9 A for the Y 1:2:3 compound. 3 pf we use
the rough temperature dependence & (T)=§.(0)(1
—1)" 172 we have E(T*)=c=s when

=T, {1—[£.(0)/c]*} or T*~0.94T,~87 K. There-
fore, the crossover temperature can be quite near 7,. Of
course, the precise value of t* depends on the criteria
used to obtain it. In turn, the condition for crossover to
occur should be found by a detailed theory taking into
account variation of the order parameter.

Shown in Fig. 3(b) are similar results corresponding to
the Bi 2:2:1:2 compound, which has an effective-mass an-
isotropy ratio of 3000.%¢ Using £,(0)~0.6 A and ¢=30.6
A,* and £,(T*)=s =c /2 we obtain t*~0.9985, so that
the crossover temperature is very close to T,. The Abri-
kosov core result applies only for a very limited tempera-
ture range near T.

IV. SUMMARY

We have determined the lower critical field H,, for a
magnetic field applied parallel to the layers of a
Josephson-coupled layer model of high-T, superconduc-
tors, based on the theory of the structure of an isolated
vortex.® In so doing, we developed an expression (3.9) in-
volving the gauge-invariant phase difference for the vor-
tex line energy in a layered, Josephson-coupled type-II
superconductor. Our result (3.16), like that of Ref. 11,
takes into account the discreteness of a high-T, supercon-
ductor.

The orders of magnitude of the H,, expressions for the
Josephson-core case [Eq. (3.16)] and the Abrikosov-core
case [Eq. (3.17)] are the same because of the common pre-
factor ¢,/4mA,A.. The strong similarities between the
two expressions arise because the magnetic field and su-
percurrent density distributions for the two cases look
identical at distances r well outside the core region.
Differences arise, however, in the logarithmic factors;
their arguments can be thought of as the ratios of upper
to lower cutoffs of logarithmically divergent integral. As
we explain below, although the upper cutoffs are the
same for both Egs. (3.16) and (3.17), the lower cutoffs are
not, because the dimensions of the Josephson and Abri-
kosov cores differ.

The contours of constant magnetic field and the
current-density streamlines for both cases are ellipses for
which the ratio of the semimajor axis to the semiminor
axis is A, /A, =(m,/m,)!/?, where m_, and m, are the di-
mensionless effective masses in the anisotropic
Ginzburg-Landau theory.*’ Outside the cores but within
a distance A, along the y axis (b axis) and within A, along
the z axis (c axis) (see Fig. 2), the main contributor to the
logarithmic factor in Eq. (3.17) is the supercurrent kinetic
energy density, which varies roughly as 1/r2, where r is
the distance from the vortex axis. The logarithmic factor
in Eq. (3.16), on the other hand, arises from a combina-
tion of the supercurrent kinetic energy density parallel to
the layers and the Josephson-coupling energy associated
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with currents perpendicular to the layers. Well outside
the core, the Josephson term can be linearized, the two
terms can be combined, and the result can be written in a
form identical to the supercurrent kinetic energy contri-
bution with an Abrikosov core. Thus the effective upper
cutoffs are the same for the two cases.

The Abrikosov core has an elliptical shape for which
the ratio of the semimajor axis to the semiminor axis is
&, /E.=(m./m;)'?%, the same as the ratio for the ellipti-
cal magnetic-field contours. The supercurrent kinetic en-
ergy thus contributes a term involving a logarithm,
whose argument is the ratio of the upper cutoff to the
lower cutoff. This ratio is, aside from numerical factors
of order unity,

}\c/gb:(A/g)(mbmc)1/2=(A/§)/mal/2:Ka

along the y axis (b axis). The same result is obtained
along the z axis (c axis), where the corresponding ratio is

Ay /E.=(A/ENmym )V 2=(A/E)/m}?=k,

As discussed in Ref. 8, the Josephson core can be ap-
proximated as an ellipse with semimajor axis

=(s/2)A, /Ay =(s/2)(m, /my)'"?

y max

and semiminor axis s/2 (half the periodicity length).
Here y,,, is the distance from the axis along the y direc-
tion at which the gauge-invariant phase difference Ayy(y)
across the central junction becomes equal to 7 /2 and the
Josephson current density J,(y,0)=J,sinAy,(y) reaches
its maximum value, J,.* The ratio of the semimajor axis
to the semiminor axis of the Josephson core is then
Vmax /(8 /2)=(m./m,)1"?, the same ratio as for the Abri-
kosov core. The contributions that play the role of the
supercurrent kinetic energy density again contribute a
term involving a logarithm whose argument can be
thought of as the ratio of an upper cutoff to a lower
cutoff. This ratio is A, /y nay =(2A/E)m}/?=2L, /s along
the y axis (b axis); the corresponding ratio along the z axis
(c axis) is A, /(s /2), the same result. We stress that, al-
though a description in terms of cutoffs is helpful in un-
derstanding the origin of the arguments of the logarith-
mic factors, we actually used more sophisticated methods
to obtain the logarithmic and constant terms in Egs.
(3.16) and (3.17).

In our calculation we ignored the small condensation
energy contribution to the total line energy of a Joseph-
son vortex. Inclusion of this term would be required to
precisely determine the crossover temperature, below
which our type of result should hold. In Sec. III, we il-
lustrated the behavior of H,, as a function of temperature
for parameters corresponding to Y 1:2:3 and Bi 2:2:1:2.
Referring to Fig. 3(a), we can note that there is surpris-
ingly little difference between the Josephson core result
(3.16) and the Abrikosov core result (3.17) for Y 1:2:3.
Because the c-direction coherence length £.(T) can be so
small (in comparison with ¢) in a high-T, superconduc-
tor, the crossover temperature can be very near the tran-
sition temperature. A case in point is provided by the Bi
2:2:1:2 compound, results for which are shown in Fig.
3(b), where the Josephson core model applies over nearly
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the entire range of temperatures.

Our model assumes Josephson-coupled superconduct-
ing layers separated by insulating material only. It is pos-
sible that a more suitable model for some high-7, com-
pounds should include normal metal layers, in which case
proximity effects will occur in addition to Josephson tun-
neling. Such a model might be appropriate in Bi and Tl
compounds, which have a similar layered structure. We
mention that a result for H,, in a layer model with prox-
imity effect has been given in Ref. 47. Additionally, in
the study of magnetization data, the possible breakdown
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of an intrinsic proximity effect has been discussed in Ref.
48.
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