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Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields
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We consider the problem of phase locking of fluxon oscillations in long Josephson junctions irradiated
by an external microwave field consisting of two harmonic signals, one at frequency co and the other at
frequency co/2 added together (biharmonic driver). The analysis is performed in terms of a two-
dimensional map constructed in terms of the fluxon time of flight and fluxon's energy inside the junction.
As a result we find that the second driver enhances the stability of the phase-locking state and can be
used to suppress the phase-locking chaos in the middle of the step induced by the first driver.

I. INTRODUCTION II. THE MAP MODEL

In some previous papers we have described the phase-
locking phenomenon observed in long Josephson junc-
tions, in the presence of an external microwave field, in
terms of a two-dimensional map for the time of flight and
the fluxon energy inside the junction. ' Such a map
reduction was achieved under the assumption that the
motion of a single fluxon inside the junction couples to
the microwave field through boundary conditions. By us-
ing this approach it was shown that an external harmonic
driver can induce the phase-locked dynamics on a
subharmonic step to be chaotic through a cascade of
period-doubling bifurcations. The aim of the present pa-
per is to extend this analysis to the case in which the
junction is irradiated by a biharmonic driver, i.e., a driver
consisting of two harmonic fields, one of frequency co and
another of frequency cu/2, added together. In the context
of small Josephson junctions, subharmonic drivers were
shown to stabilize fixed points against bifurcation.
Here, in the long Josephson junctions case, we find that
the ~/2 driver splits the fixed point corresponding to the
fluxon equal time-of-flight dynamics into two stable fixed
points, one of which is physically more relevant (it has
larger stability domains in current and larger basin of at-
traction). We show that, by increasing the amplitude of
the subharmonic signal, the stability of this stable fixed
point is enhanced, and quite surprisingly, the chaos gen-
erated by the first driver in the central portion of the
step is suppressed. We think that this chaos suppression
phenomenon is of general validity and we expect it to be
observed in other systems too. The paper is organized as
follows. In Sec. II, we introduce the system and we
briefly sketch the derivation of the phase-locking map for
a junction of in-line geometry in the presence of a bihar-
monic driver. In Sec. III, we study the existence of the
fixed points of such a map and find the range of locking
in the current as a function of the amplitudes of the two
rf fields. Moreover, by studying the linearized map, we
show that the stability of the physically relevant fixed
point is enhanced by the co/2 driver and that this stabili-
zation can be used to destroy chaos. In Sec. IV, we com-
pare these results with those obtained by numerical itera-
tions of the map, and finally, in Sec. V, we summarize the
main results of the paper.

We briefly sketch the derivation of the map model,
referring for more details to Refs. [l—3]. Let us start by
recalling that the electrodynamics of a long Josephson
junction of in-line geometry is described by the damped
sine-Gordon equation in normalized form (for details on
normalizations see Ref. 2)

P „—P„—sing = ttP,

with boundary conditions

P, (0, t) =ir+rl(t),

p„(L, t) = lr+g(t) .—
(2)

Here L denotes the normalized length of the junction, ~ is
a constant representing the dc bias current through the
junction, and rj(t) is a time-dependent magnetic field of
the form

il(t) =rI, cos(cot+8)+ ii2 cos t+8—(3)

modeling the external microwave field. We distinguish
between magnetic and electric couplings according to
whether we change the signs of both g, and gz at the
ends of the junction or not. In the following, however,
we consider only the case of electric coupling (the results
are easily generalizable to the case of magnetic coupling
as well). The dynamics of a single fluxon inside the junc-
tion can be described by the perturbation theory of
McLaughlin and Scott. ' Following these authors, we
find, for the fluxon momentum,

dp = —aP,
dt

(4)

where zo denotes the reduced momentum P/8 evaluated
at time to. By inverting Eq. (5) and imposing X—Xo =L,
we obtain, for the time required by the fluxon to trans-
verse the junction,

from which the trajectory of the fluxon inside the junc-
tion is readily obtained, "
X(t) =Xo+a '[sinh 'zo —sinh '(zoe )],
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( U2 1 )i/2

k+r
—1 k

C( U —1)' —SUk
(6)

hU= —[i~+g(t)] .
2

From Eq. (7) we obtain a relation between Uk and Uk+ „
U„,=CU„—S(U„'—1)'"

where C=cosh(aL), S:—sinh(aL), U is the reduced
fiuxon energy U= H/—8=(1—X) ', and we used sub-
scripts k's to denote the value at the kth reflection. At
the edges of the junction the fluxon is kicked by the
boundary terms (2) and (neglecting the losses during the
refiection) its energy changes according to

Tq ——( U*,4ir/co T—+ ), T3 =—( U*, 2'/co+ T ) . (14)

'92
K 'g) '772 + K + K+ xJ)+

8g)
(15)

and

As a difference from the case of the single harmonic
driver considered in Refs. 2 and 3, we have four possible
values (instead of two) of the phase of the driving signal
for which the equal time of flight solution is possible.
Furthermore, when F12=0, we see from Eq. (11) that these
values exactly reduce to the ones derived in Refs. 2 and 3.
The ranges of bias current for which the fixed points T', ,
T4, and T2, T3 exist are, respectively, derived from Eq.
(11) as

+ K+ YI i cos( co Tk + i ) + 'g2cos —Tk + i2 2

2

K XJ ) + 'g2 K K+ 'g ) +
12

8g)
(16)

which, together with Eq. (6), constitute a two-
dimensional map of the half-cylinder S'XIR into itself
(note that the T variable is periodic with period 4'/co).
Fixed points of this map corresponding to phase-locked
dynamics of the fluxon inside the junction, are studied in
the next section.

from which we note that they are different and asym-
metric with respect to the point K=17. Furthermore,
when g2=0, these ranges coincide and the asymmetry
disappears, in agreement with the results of Refs. 2 and 3.
The stability of these fixed points is studied in terms of
the Jacobian matrix of the mapping evaluated at U*, T*,

sinh(aL )g
'

a
III. EXISTENCE AND STABILITY OF FIXED POINTS

The equal time of flight fixed points are easily found in
the following manner. We insert the locking condition where

—y(T*) E—y(T*) (17)

(9)

into Eq. (6) and solve the resulting equation for U as

C —E
[(c—E)'—s']'" ' (10)

where E:—exp( —m~ra/co) and m denotes the subhar-
monic order. By substituting this expression into Eq. (8)
and imposing the fixed-point condition Uk+, = Uk = U*,
we obtain

cos
2
CO

712
2 K+ 'Q] Kp

2@i

1/2

where

2(C —1)(1+E)K=
~(1—2EC+E')'" (12)

represents the value of the bias current at which the rf-
induced step intersects the unperturbed (i), =0, i)2=0)
zero-field step. We note that T+ E [O, vr/co] while
T H[ir/co, 2'/co] so that the equal time of the fiight
fixed points is given by

T*, —= (U*, T+), T2 =(U*,T )

together with the ones obtained from these by reflection,
respectively, around 4~/co and 2~/co, i.e.,

I20 ~ i), sin(AT;*)+ sin (18)

where i = 1, 2, 3, and 4, and

4aE(1+E)sinh (aL)
ace[1 2E cosh—(aL )+E~] ~2

(19)

From Eq. (18) we see that the left inequality in Eq. (18)
can never be satisfied for T j, while it is always satisfied
for T4. This implies that T*, is always unstable while T4
is stable if the right inequality is also fulfilled. For T2,
T3 we have a more complicated situation since, depend-
ing on the ratio i), /i)~, we may have T2 stable and T3
unstable or vice versa. For simplicity, in the following
we restrict ourselves to the case in which the amplitude
gz of the subharmonic driver is smaller than g, . In this
case, from Eq. (18) it follows that the only stable fixed
points corresponding to the equal time-of-flight solution
are given by T2 and T4. In Fig. 1 we have reported the
ranges of stability in current, as derived from Eq. (18),
versus g2 for the fixed points T2 and T4 and for parame-
ter values L =12, o.=0.05, I =8, g& =0.21. The vertical
continuous intervals ranging from F2=0 to q =0.18 in in-

y( )=—,g=(U* —1)
2 dx

By requiring that all the eigenvalues of 8 are in the unit
circle, we get, as a sufficient condition for the stability,
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where the fluxon's oscillations may be stopped or des-
troyed by the external field. These should correspond to
phase-locked states which are observable only by a fine
scanning on initial conditions. In the next section we
compare these results with the one obtained by numerical
iterations of the map.

0. 2
IV. NUMERICAL RESULTS

0. 0—0 . 0 1 0 „03 0. 07 0. 1 0. 15 0. 19

By direct iterations of the map (6) and (7), we construct
the I - V characteristic of the junction by computing, for a
given value of the dc current ~, the average voltage
defined as

FIG. 1. Intervals of stability in current as derived from Eq.
(18) for the fixed points T2 (solid intervals) and T4 (dashed in-
tervals) for parameter values L =12, a=0.05, co=1.5, m =8,
g1=0.21, and for g2 values ranging from g, =0 (right most in-
terval) to F2=0. 18 by increments of 0.01. The dashed intervals
are shifted by 0.002 along the g2 axis in order to avoid overlap-
ping.

crements of 0.01 refer to the fixed point Tz while the cor-
responding dashed ones, referring to T4, have been shift-
ed by 0.002 along the g2 axis in order to avoid overlap-
ping. We see that the upper and lower ends of these in-
tervals coincide with the corresponding limiting values
given by Eqs. (15) and (16), and the onset of instability is
at the center of the step. Furthermore, violation of in-
equality (18) first occurs at i~ values for which the eigen-
values of the Jacobian matrix leaves the unit circle at —1

along the negative real axis. This implies that the fixed
point loses stability in a flip bifurcation with the birth of
a stable period-2 orbit. The internal ends of the intervals
in Fig. 1 represent the current values at which bifurca-
tions occur. From this figure we also see that when
gz=0, the ranges of stability in current of the two fixed
points coincide, being, in this limit, T2 =—T4. By increas-
ing g2, the two intervals of stability relative to the fixed
point T4 move apart and the instability region in the
center is increased, while for T2 they merge into a single
interval shrinking to zero the instability region in the
middle. This suggests that, on the step corresponding to
the fixed point T2, the second driver can be used to
reduce (eventually destroy) the chaotic behavior observed
in the middle of subharmonic steps and reported in Ref.
3. For the step corresponding to T4, the situation is just
the opposite, i.e., the biharmonic microwave field
enhances the instability in center of the step. On the oth-
er hand, from Fig. 1 we see that the fixed point T4 has
ranges of stability in current smaller than the ones rela-
tive to T2 and, by increasing g2, the upper stability
branch of T4 overlaps with the stability range of T2.
From this we may expect that, when T4 becomes unsta-
ble, the system switches over to the more stable fixed
point Tz and no intrinsic instability (chaos) will be in the
system. As to the lower stability branches of T4 in Fig.
1, we expect them to be physically less interesting since,
by increasing g2, they go down in the current region

Here TF denotes the fluxon time of flight directly calcu-
lated from the map as TI;=:Tq+,—T~, . In Fig. 2 we re-
port a typical current-voltage characteristic for the case
of locking at a subharmonic frequency. The smooth
curve in this figure represents the current-voltage charac-
teristic (zero-field step) in the absence of external signals,
while the discontinuous one represents a subharmonic
step of order I= 8 induced by a biharmonic driver with
amplitudes g, =0.18, F2=0.01, and co=1.5. The param-
eters of the junction are fixed, here and in the following,
to be I = 12, a =0.05, and the average voltage is comput-
ed over the first 100 iterations of the map after 300 free
iterations. The step in Fig. 2 corresponds to the fixed
point T2 and its extension in the current agrees well with
the analytic prediction of Eq. (16). According to stability
analysis, this point loses stability in a flip bifurcation at
two values of the current determined by Eq. (18) (see the
solid intervals in Fig. 1). In Fig. 3 we reported the bifur-
cation diagram for the time TL —=Tz+& —Tk required by
the fluxon to transverse the junction versus K as the bifur-
cation parameter ~ is varied along the step of Fig. 2. In

0 2

0. D L..

D. 30 O. 35 0. 10 0. 50

FIG. 2. Current-voltage characteristic referring to the fixed
point T2 for a junction with parameters L = 12, a =0.05, and in
the presence of a biharmonic field with pl=0. 18, q&=0.01,
co=1.5. The solid curve denotes the unperturbed zero-field step
while the discontinuous one represents a subharmonic step of
order m =8
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FIG. 3. Bifurcation diagram for TL —= T&+&
—

T& vs K as K is
varied along the step of Fig. 2. The parameters are the same as
in Fig. 2.

FIG. 4. Current-voltage characteristics as in Fig. 2 but for
g&=0.21 and g„respectively, 0 (left-hand curve) and 0.02
(right-hand curve). There is an offset of 0.125 between the two
curves along the ( V) axis in order to avoid overlapping.

TABLE I. Numerical and analytical bifurcation values rela-
tive to the fixed point T2 for different values of g2 and with
g&=0. 18, co=1.5, L =12, +=0.05.

0.00
0.01
0.02
0.03
0.04

K& an

0.3480
0.3630
0.3790
0.3970
0.4210

Ki num

0.3476
0.3628
0.3786
0.3966
0.4207

K2 an

0.4945
0.4900
0.4845
0.4770
0.4645

K2 num

0.4941
0.4897
0.4848
0.4774
0.4649

Table I we reported the analytical and the numerical
values of these bifurcation points for different values of g2
and for g& =0.18, from which we see that they agree well
up to three significant digits. Furthermore, we note that
the range of existence of the period-2 solution rapidly de-
creases with increasing values of gz in agreement with the
results of Fig. 1. This stabilization against bifurcation be-
comes more important at higher values of g& where
chaotic dynamics may become possible. In Fig. 4 we
show two sets of current voltage characteristics for a
junction driven by a biharmonic field with g& =0.21 and
g2, respectively, given by F2=0 (left curves) and F2=0.02
(right curves). In this figure the second set of curves was
shifted by 0.125 along the voltage axis in order to avoid
overlapping. The continuous curves denote the unper-
turbed zero-field step, while the discontinuous ones are
subharmonic steps of order m =8. We see that when
F2=0, the voltage wanders from the phase-locked value
over the central portion of the step, while, when
F2=0.01, the step is perfectly vertical. In Fig. 5 we re-
port the bifurcation diagram TL versus ~ for g, =0.21
and F2=0. From this figure it is evident that the break-
down of phase locking in the central portion of the step
of Fig. 4 (F2=0 curve) is due to the appearance of chaos.
This result is confirmed by the power spectra analysis of
the time sequence TL as reported in Ref. 3. In Fig. 6 we

reported similar bifurcation diagrams to those in Fig. 3
for increasing values of q2 starting from F2=0.02 (left
most curve) up to rlz=0. 14 (right most curve), in incre-
ments of 0.02. (In order to avoid overlapping, an offset of
3 between the diagrams was introduced along the TL
axis. ) We see that the period-doubling cascade from or-
der to chaos and the corresponding reversed one, from
chaos to order, shown in Fig. 3, disappear when we in-
crease the amplitude of the subharmonic driver. At the
value F2=0. 14, no bifurcations are present and the equal
time-of-Aight solution is stable in the whole range of ex-
istence. We see that the stabilization against bifurcation
of the fixed point T2 induced by the subharmonic driver
shrinks to zero the instability portion of the step and, as a
consequence, the chaos in the central portion is
suppressed. This is in agreement with the results predict-
ed by Eq. (18) as also seen from a comparison between
Fig. 4 and Fig. 1 (solid intervals). This chaos suppression
induced by the subharmonic signal we expect to be of
general validity for systems in which the transition from
regular to chaotic behavior is approached through period
doubling. As to the fixed point T4, we have reported in
Fig. 7 the corresponding m =8 subharmonic step induced
by a biharmonic field with g &

=0.21, g2 =0.03, and
co=1.5. The step on the left-hand side in Fig. 7 was ob-
tained by using, as initial conditions for T and U, the
ones corresponding to the fixed point T4 evaluated at the
bottom of the step (a=a —

q&
—

gz) and iterating the map
for increasing values of ~ while the step on the right-hand
side was obtained by starting with initial conditions T4 at
the top of the step and by decreasing a (the step on the
right-hand side is shifted by 0.125 along the ( V) axis to
avoid overlapping). From this figure we see the presence
of hysteresis at the bottom, due to the existence of two
fixed points Tz, T4 both simultaneously stable in that
current region (see Fig. 1). In Fig. 8 we have on the
right-hand side and on the left-hand side the correspond-
ing bifurcation diagram for the steps in Fig. 7 (the dia-
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FIG. 5. Same as in Fig. 3 but for q& =0.21, F2=0, and ~ is varied along the q2=0 characteristic of Fig. 4.
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FIG. 6. Bifurcation diagrams as in Fig. 5 for increasing values of g2 from g& =0.02 (left most diagram) to g, =0.14 (right most dia-
gram) in increments of 0.02. To avoid overlapping, an offset of 3 between the diagrams was introduced along TL.
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FIG. 7. Current-voltage characteristics obtained by taking,

as initial conditions, the fixed point T4 evaluated, respectively,
at the bottom (left-hand step) and at the top (right-hand step).
The arrows indicate the verse in which the current is successive-
ly varied. The parameter values were fixed to g &

=0.21,
g2=0. 03, su=1. 5, L =12, a=0.05, and the right-hand step has
been shifted by a 0.125 along the ( V) axis.

gram on the left-hand side is shifted by 4n/m along the T
axis), from which it is clear that, by varying the current
along the steps, at some point in the bifurcation cascade
relative to the fixed-point T4 one switches over the other
stable fixed point (horizontal arrows indicate the jump,
the other arrows denote the verse in which the current is

changed). We also see that this switchover corresponds,
in the current voltage characteristic, to the little bump on
the left step of Fig. 7 (on the other step it is not visible).
We can therefore conclude that, as consequence of the
overlapping of the stability domains of the fixed points
for small values of rr2 (see Fig. l), the corresponding steps
look very similar. By increasing g2, the overlapping will
be only on the top of the step while at the bottom there
will be a small vertical portion of the step corresponding
to the dashed lower branches of Fig. 1. By increasing g2
these small vertical steps go down in current at values for
which the Auxon can stop or can be destroyed by the
driver, therefore they can be seen only by properly choos-
ing the initial conditions. From this point of view they
appear physically less important.

V. CONCLUSIONS

We have shown that the addition of a small subhar-
monic signal of frequency co/2 to the fundamental driver
(biharmonic driver) enhances the stability of phase-
locking states in long Josephson junctions and can be
used to suppress the chaos appearing in the middle of a
subharmonic step. This result is of particular importance
in practical applications of the phase-locked Josephson
oscillator since it gives the possibility to eliminate the
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FIG. 8. Bifurcation diagrams for the phase TI,. vs ~ relative to the steps of Fig. 7. The left-hand diagram corresponds to the left-
hand step in Fig. 7 and the right-hand diagram has been shifted by 4m/co along the Tq axis. The vertical arrows denote the verse in
which the current is varied while the horizontal ones denote the value of a. at which the system jumps over the bifurcation tree rela-
tive to the fixed point T2 .
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deterministic noise when operating on subhalmonic
steps. Finally, we remark that this chaos suppression by
biharmonic drivers is a phenomenon that extends to all
systems which have a transition from order to chaos via
period doubling. Further work in this direction is
presently in progress.
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