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The dynamic renormalization-group Aow equations for model F of Halperin, Hohenberg, and Siggia
[Phys. Rev. B 13, 1299 (1976)] are calculated by means of renormalized field theory within the minimal-
renormalization scheme up to two-loop order. These equations are combined with the Borel-
resummation results for the static renormalization-group functions computed by Schloms and Dohm.
The corresponding static fixed point destabilizes the dynamic-scaling fixed point in two-loop order. The
nonuniversal initial values of the static and dynamic How equations are identified for the k transition of
He at various pressures. Predictions are made for the bulk thermal conductivity very close to Tz where

the departures from dynamic scaling should be observable. Effective static and dynamic parameters are
computed that can be applied to other critical phenomena above and below the A, line of He.

I. INTRODUCTION

It is well known that the ideal properties of the
superAuid transition of He provide a unique opportunity
to test the renormalization-group (RG) theory of dynam-
ic critical phenomena' in a highly quantitative sense.
In recent years the experimental accuracy has reached a
level which permits us to measure not only dynamic bulk
phenomena with improved resolution but also dynamic
finite-size, nonequilibrium, and nonlinear properties
deeply in the critical region (for a review see Ref. 4).
These high-resolution measurements reveal new physical
effects and open up the possibility of testing new aspects
of the RG theory which have previously not been amen-
able to experimental verification.

The theoretical description of these phenomena is
based on the RG transformation which maps correlation
(and response) functions from the critical to the noncriti-
cal region. This transformation implies a decomposition
of a correlation function into an exponential integral
times an amplitude function that depends on effective di-
mensionless couplings c;(l). The details of this decompo-
sition depend on the particular renormalization pro-
cedure employed. We shall use the field-theoretic RG ap-
proach within the minimal subtraction scheme which
provides important simplifications in calculations beyond
lowest order. The effective couplings c;(l) satisfy RG
Aow equations

dc;(l)
l

' =P, (tc(l)I),

where the dimensionless How parameter l varies between
l =O(1) (noncritical background) and l =0 (asymptotic
criticality).

It is expected that sufFiciently close to the superfluid
transition of He a complete description of the low-
frequency critical dynamics is provided by the so-called
model F ' ' " of Halperin, Hohenberg, and Siggia and by
appropriate extensions thereof. The extensions may in™
elude the effect of restricted geometries and of external

heat sources, ' ' the first-sound' and the shear modes, '

the He concentration, ' ' and the effects of vortices
(such as mutual friction). ' The effective static' and dy-
namic" couplings c;(l) of model F are (i) the four-point
coupling u (l) of the Landau-Ginzburg-Wilson functional,
(ii) the coupling y(l) between the order parameter fo and
the entropy variable mo, (iii) the reversible dynamic cou-
pling F(l) between go and mo, (iv) the effective ratio w'(l)
of relaxation rates of go and mo, and (v) an effective non-
dissipative dynamic coupling w "(l) which originates from
the equations of motion of an interacting Bose system.
It is customary to combine w'(l) and w "(l) in a complex
parameter w(l)=w'(l)+iw "(l) Thus . for model F the
couplings c; ( l) in (1.1) are

[c(1)}=u(l), y(l), F(l), w(l) . (1.2)

The Aow parameter / can be interpreted as a distance
from criticality not only in the sense that l = l(t) depends
on the reduced temperature t =(T —Tz)IT& but more
generally

l =l(t, k, L ', co, QO) . (1.3)

Here we consider a parameter space spanned by the ex-
perimental controllable parameters t, k (wave number), co

(frequency), L ' (inverse size of the system), and by a
nonequilibrium parameter Qo (such as an external heat
current) which drives the system away from the equilibri-
um. Criticality (l =0) is reached only as each of these pa-
rameters tends to zero. It is important to realize that,
within the minimal subtraction scheme, the functions
p, (Ic})do not depend on the parameters t, k, L ', co, Qo,
thus the variety of different critical phenomena in the en-
tire (t, k, L ', co, Qo)-parameter space above and below Tz
is governed by the same set of RG liow equations (1.1).
Clearly the calculation of the corresponding functions P„,
P, PF, and P„ is a crucial ingredient of the theory which
has considerable impact on all dynamic critical phenome-
na along the A, line of He (as well as for systems within
the same universality class like the XY transition of Mnpz
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above the bicritical point. '

The static functions /3„and P have been computed re-
cently by means of the Borel resummation method, and
the dynamic function Pz has been calculated in Ref. 11
up to two-loop order. The most complicated part of the
Aow equations, however, consists of the complex function
P . En this paper we publish the missing information on
/3 as derived from a complete two-loop calculation.

So far this function /3 was available only in an unpub-
lished report. The effective parameters w(l) and F(l)
obtained from the two-loop functions P and PF and the
ensuing theoretical predictions have been used and dis-
cussed already in a number of papers ' ' ' ' as
well as in unpublished work. We expect that the
RG How equations of model F will remain relevant also
in future developments (e.g., dynamic finite-size and sur-
face effects, nonlinear and nonequilibrium phenomena,
dynamic critical effects of vortices, analysis of very high
resolution experiments on bulk transport coefficients).

A special motivation for publishing our calculation is
due to recent high-resolution measurements of the bulk
thermal conductivity above T&. These data are in seri-
ous disagreement with the theoretical prediction based on
our two-loop model-F calculation. This disagreement
does not seem to be explainable in terms of surface or
finite-size effects as indicated by recent calculations' and
by measurements of the Kapitza resistance above T&.

In Sec. II we introduce our notation and definitions.
The two-loop result for /3 is presented in Sec. EII and the
instability of the dynamic-scaling fixed point is brieAy dis-
cussed. In Sec. IV the procedure is described how to
determine the effective parameters for the superAuid tran-
sition of He, and predictions are made for the bulk
thermal conductivity very close to T& at several pres-
sures. The appendixes contain the main information on
the two-loop calculation and on the numerical results for
the effective static and dynamic parameters.

II. MODEL AND DEFINITIONS

6H . 6a
g (x, t)= —2I +ig p +e&,

&Co 5mpa, nII , 6H
mo(x, t)=XQV 2goIm l/Io +em

Bt '
5m 0 ~Co

(2.1)

H = f d"x( ,'~ I@ I
+ ,'IV—v/i

I
+u—

(2.2)

+ 2yo m Q +porno Ii//QI homo ) . (2.3)

We consider the following set of coupled Langevin
equations for the complex order parameter i//0(x, t) and
the conserved secondary variable mo(x, t) as introduced
by Halperin, Hohenberg, and Siggia

Throughout this paper we use the notation and sign con-
vention of Refs. 11 and 19. Instead of up and ~0 we shall
employ

and

uo uo 2 YQYQ (2.6)

1'0 =7 0+2&pit pgp (2.7)

where we consider hp as a function of ip Pp and up or up
[see (A25) in Appendix A]. We define the following re-
normalized quantities:

Z —1/2
q

r =Z„'(ro roc) ~

u =p Z~ Z gad up~

z 1/2 1/2m — gp mp,
—&/&Z —&/2Z —

& g &/2 &/&
rn r d +0 VP &

Zg Lap+0

I =ZI-I 0,
—&/2Z —&/2 g I/2 —&/2

d gp+0

with a=4 —d and the geometrical factor"'

Ad=
I'(3 —d /2)

2d —2ird /2( d 2 )

(2.8)

(2.9)

(2.10)

(2.1 1)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

The various Z factors are functions only of the dimen-
sionless renormalized parameters u, y, and

w =I /A, =w'+iw",

F =g/k .

(2.17)

(2.18)

Explicit expressions for the Z factors in the minimal sub-
traction scheme are given in Appendix C. The parameter
p ' is an arbitrary reference length of the renormalized
theory. We need the following static and dynamic
renormalization-group functions:

/3„(u) =(/ a„u), ,

g„(u) =(pB„lnZ„')0,

(y, l2) = (pB„lnZ ')0,

(2 ( w, F,y, u ) = (pB„lnZ2 )0,

0r(w, F, y, p) = (/2d&lnZr )o .

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

The differentiations in (2.19)—(2.23) are taken at fixed un-
renormalized parameters. The parameters u, y, F, and
w' are real and non-negative. The complex conjugate of
w will be denoted by

The Gaussian Langevin forces have the nonvanishing
correlations

w =w tw (2.24)

& e,(x, t)ep0, 0) ) =4E.,'fi(x) fi(t),

( e.(x, t)e (O, O) ) = —2X,V'fi(x)n(t) .

(2.4)

(2.5)

which should not be confused with the fixed point value
of w. The real and imaginary parts of the latter will be
denoted by (w')* and (w" )*, see (3.35) and (3.41).
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III. RENORMALIZATION-GROUP FLOW EQUATIONS Pr(y, u)= —,'y[ —E+2$„(u)+g (y, u)] . (3.9)

A. General form

The effective dynamic parameters w (l) and F(l) are
defined as the solutions of the following renormalization-
group Aow equations:

l =/3 (w (l),F(l), y(l), u (l)),dw(l)

l =/3~(w(l), F(l),y(i), u(l)) .dF(l)

(3.1)

(3.2)

The effective static parameters u (l) and y(l) in (3.1) and
(3.2) are independent of w(l) and F(l) and are the solu-
tions of

P„(u)=40u (1+15.1lu)/(1+34. 25u),

g„(u)= 16u (1—10u)+485 lu —57309u

The function g in (3.7) and (3.9) has the form'

(y, u)=4y B(u) .

(3.10)

(3.11)

(3.12)

Owing to the minimal renormalization scheme, the func-
tions gr, gz, P„, g„, and g are independent of e and
therefore applicable directly at e= 1 (d =3). The static
functions P„and g„are accurately known from the Borel
resummation method. In the region 0 ~ u 8 0 (u ') these
functions can be represented as

l =/3„(u(l)),du (I)

l =/3 (y(l), u(l)) .dy(l)

(3.3)
Here the u dependence is negligible,

B(u)=1+0(u ), (3.13)

(3.4) since B (u) —1 5 0 (q) (Ref. 41) with g=0.04 (Ref. 42).

The Bow parameter l may vary between 0 and ~. At
1=1, the effective parameters are identical with the re-
normalized parameters

u(1)=u, y(1)=y, w(1)=w, F(1)=F . (3.5)

/3 (w, F,y, u)=w [j„(w,F, y, u )

—gz( wF, y, u)],
/3F(w, F,y, u)= —,'F [ —e+g (y, u) 2(z(—w, F,y, u )],

P„(u)= au+/3„(u), —

(3.6)

(3.7)

(3.8)

The functions on the right-hand sides of (3.1)—(3.4) have
the following form:

B. Dynamic RG functions in two-loop order

To derive the function gr up to two-loop order requires
one to calculate the pole terms of the 3 one-loop and 44
two-loop diagrams that contribute to the vertex function
I -„see (Al) of Appendix A. The general topology of
the diagrams is shown in Fig. 1. To obtain the analytic
expressions of these diagrams one must consider time-
ordered vertices and distinguish between correlation and
response propagators. ' These expressions are given in
Appendix A and the ensuing dynamic renormalization
factor Zz is given in Appendix C. The resulting function

gr up to 0(F,yF, y F,y F,y, yFu, F u, y u, u ) has
the form

+4(ai+r/i)ln 2(w+w*)
+4(az+qz+F D 5)ln w+w*

(3.14)

with

D =yw ——2'iF, D'=yw*+ —,'iF, (3.15)

3 e2
5= 2w* +3w +6ww* +Sw w*

2w(1+w) w* (w+w*)
In the following expressions for a;(w, F,y, u), g, (w, F,y, u), and Q;(w, F,y, u) we use the abbreviations

x =(1+w) ', y =(w+w*) ', u =4u +2y

The expressions read

a, = —2(u iyFw ') +8u(y+ —,'iF)Dx w ' —2y —Dx~w '[(2y+iF) +2iFy(l+w)w '],
l&=72D y (w —w*)xyw +4iF Dx w '(2u+D2x w '),

(3.16)

(3.17)

(3.18)

(3.19)
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a@=—u ww ' —y xw* [2iFyw*+F (w +w )]+vxw [4y ww i—Fyw(2w +w*)—
—,'F (w +w )]

+2Dy x [ —yw* ' —ywy+2iF(w+w')w' ],
g2=iFuxy[ D—+wD*(w+2w')w' ]—2y D (w —w*)xyw ,'F——yD(l+2w)x yw

+F yD*(w +2w*)xyw* 2—iF Dy x2w* '+ ,'yF—Dxw* [(w +2w*)y+(w+w*)(l —2w)w ],
Q, = —16y wx (1+3w+w ) —8D x (y+iFw ') —8uyx(yw+D)+8y Dx [8—(2+w)x]

4F—Dy wx y+6yF Dx w' ' Fx—w '+16iFy x(1 w—x ) 4F—y x 4iF—yx

Q2= —16(u —y ) +4(v —y )xw '[2iFy(l+2w)+F ]+4(u iFy—w ')(u+2y +iFyx)

+Su Dw '(y iFx) —32y D—w '+4iFy Dx 4F y—D(1+2w)x w '+iF Dx~w '(x —3w* ') .

(3.20)

(3.21)

(3.22)

(3.23)

The function g& reads up to two-loop order, "
g„(w, F, y, u)=4y Fy —2F yG—, (3.24)

was employed instead of (2.18). The corresponding Pf
function is given by

6 =D xy —+L +ln1

2
1+w

1+W

Pf =2Fw 'PF —fw 'ReIP

=f( —a+0 —4—w' 'Re[wan„]

(3.28)

(3.29)

+D* (1+w*) ' —+L +ln

+2D D*y(l+L), (3.25)

The last term in (3.29) corrects the last term in (3.20) of
Ref. 11. Equations (3.14)—(3.23) constitute the main re-
sult of this paper.

C. Dynamic RG functions of models A, C, E
w+w*+ww*
(1+w)(1+ w*)

(3.26)

F2
w

(3.27)

In the early work on models E and F ' ' the dynam-
ic coupling

In order to check the correctness of our results
(3.14)—(3.26) we have performed separate calculations of
gr and gz for models A and C (for a two-component or-
der parameter) as well as for model E which are special
cases of model F (Ref. 1). Within the minimal renormal-
ization scheme the results in two-loop order are as fol-
lows:

Model A: gz"=32u ( —1+61n~4), g& =0 .

Model C: gr =4y wx —32u +48(2u +y ) ln 4 —96(2u +y )y x ln 4 —64u y xw —Sy x 3w

+4y"x [(10+w)ln —', —2w x(1+2w)ln(x (1+2w))],

with x =(1+w) ', and

gq=4y B(u) .

Model E: fr= fx+32u ( —1—+61n—', )+ —,'f x (2wx —6+271n~4) —
—,'f x (1+2w)ln[x (1+2w)],

gz= —,'f —
—,'f x Il+2w +2w (2+w)ln[wx (2+w)][,

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

compare Eqs. (6)—(10) of Ref. 45 for n =2. If one takes
the appropriate limits of the model-F results (3.14)—(3.26)
one indeed finds agreement with (3.30)—(3.34). The cor-
responding limiting cases are y=F=0 and w"=0 for
model A, F =0 and w"=0 for model C, and @=0 and
w"=0 for model E. This guarantees the correctness at
least of the terms of O(F,y, F,y, y u, u ) for w"=0 in
(3.14)—(3.26). We have of course checked the whole cal-
culation several times also with respect to all other terms.

D. Fixed point

In the early analysis ' of the possible instability of
the dynamic-scaling fixed point the static fixed-point
value u* was taken into account only in the one-loop
form u*=e/40 which is rather inaccurate at a= 1. In
this subsection we update this analysis on the basis of the
more accurate knowledge of u according to the Borel
resummation result (3.10). The justification of using this
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I'5,'i

L J
16,1

I', 8',
&

0FIG. 1. Topology of one- and two-loop diagrams that contribute to the vertex function I ~ and determine the function gr, (2.23),
(3.14). The solid and dashed internal lines indicate propagators of the order parameters $0 and of the entropy variable mo, respec-
tively, without distinguishing between correlation and response propagators. The analytic expressions at k =0 are given in Appendix
A.
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value within our two-loop calculation will be given at the
end of this subsection. In Fig. 2 we have plotted u *(e) as
obtained from (3.8) and (3.10), eu *=p„(u *).

In the following we first consider model E (with y =0,
w" =0). The borderline dimension d ' =4 —e* below
which the dynamic-scaling fixed point is unstable is deter-
mined by the three conditions

(3.42)

Equation (3.42) follows from (3.9) since a/v= 1 —2(„(u *)
is negative in three dimensions. From Pf =0 we calcu-42

late the fixed-point value off in three dimensions

(w')*=0,

0=e*+gi +gi- .

(3.35)

(3.36)

(3.37)

Eliminating gr' from (3.36) and (3.37) and using the two-
loop result (3.34) yields

f '=0.834,

where we have used '

0*=0.0362 .

Equations (3.35) and (3.43) imply

[f+(w )+ ]1/2=0

(3.43)

(3.44)

(3.45)

f + 2[(1+ 4)i/2 1) (3.38)

at the borderline dimension. Equations (3.33), (3.34),
(3.36), and (3.38) lead to the following relation between e*
and u *(e*):

In summary, the stable fixed point of model F at d =3 in
two-loop order (with the Borel-resummed static fixed-
point value u*) is described by Eqs. (3.35), (3.41)—(3.45).
For the transient exponent co =pi- —

g& we find in three
dimensions

32( —1+61n—', )u*(e*) co =0.008 . (3.46)

=(1+@*)' —1 —( ——", +27 1n—')[(1+@")' —1]

(3.39)

Together with the known function u*(e), Fig. 2, this
determines e as

Finally we comment on our use of the Borel sum value of
u * in the expression for gi which is only of order-two
loops. The effect of u* on the dynamic-fixed point enters
through the second term of Eq. (3.33) which is identical
with the model A part, Eq. (3.30),

e*=0.986, d* =3.014 . (3.40) g„"(u*)= 32u *
( —1+6 ln —', ) . (3.47)

Thus we conclude that, within the present approxima-
tion, the dynamic-scaling fixed point is unstable for
d (3.014 and the weak-scaling fixed point with
(w')*=0 is stable in three dimensions. This statement
remains valid also for model F which has the same
(stable) fixed point as model E in three dimensions be-
cause of

It is known' that Eq. (3.47) gives the two-loop approxi-
mation for the dynamic critical exponent z~ of model 3,

z„—2=(r (u*)=ci), (3.48)

where il is the well-known static critical exponent (for
n =2)

i) =32u * +O(u *
) . (3.49)(w")*=0

0.04

0.03

0.02

0.0t

(3.41)

0.04

0.03

0.02

0.0)

If (in the spirit of the e expansion) the value u *=@/40 is
used in the two-loop result (3.49) one obtains rl =0.020 at
a=1, in clear disagreement with the Borel sum value
g=0.038 in three dimensions. By contrast, if we use the
Borel sum value u *=0.0362 in the two-loop result (3.49)
we obtain g=0.0419 in close agreement with the correct
value of q. For this reason we believe that the use of
u'=0. 0362 is also justified in (3.47) and in gi-(u*).
Clearly our results do not yet definitely establish the in-
stability of the dynamic-scaling fixed point at d =3 be-
cause the dynamic higher-loop contributions may change
the value of d*. For further discussions see Refs. 2, 3,
44-47.

IV. EFFECTIVE RENORMALIZED
PARAMETERS FOR THE A, TRANSITION

0.2 0.4 0.6 0.8

FIG. 2. Fixed point value u * as a function of a=4 —d as ob-
tained from au*=/„(u*) with P„(u) given by (3.10). At @=1,
u *=0.0362.

In this section we describe the procedure how to deter-
mine the nonuniversal effective renormalized parameters
u (l), y(l), w(l), F(1) for the A, transition of He at several
pressures. The present model-F analysis differs from the
previous ones ' in that here we employ the more accu-
rate Borel-resummation results for p„(u), g„(u), and for
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the amplitude function' ' F+(u) of the specific heat.
We choose the fiow parameter l =l(t) above T& by re-
quiring

this subsection). For the experimental specific heat
C =ktiC(t) we employ the representation (3a)—(3f) of
Tam and Ahlers~~

r (1)
v=4 '

where'

r(l)=r(1)exp J g„(u(l'))r, dl'
1 I'

(4.1)

(4.2)

k~C(t) = 2 [(1/a)(t —1)+Dt ~ +B ) . (4.11)

The parameters A, D, and 8 depend on t and on the pres-
sure. ' In order to ensure precise consistency of the
theoretical expressions (4.7)—(4.9) with the experimental
values for a and v one should use 2 —g„and 2g„—1 in
the forms

arid

T —Ti (P)r(1)=at, t = )0,
Ti (P)

„+g„(u*)—g„(u')
a =g g*exp I"

(4.3)

(4.4)

and

2 —g„(u) =v '+g„(u*)—g„(u)

2(„(u)—1 = ——+2[(„(u) —g„(u *)],

(4.12)

(4.13)

with Q*=Q(l, u*,3)=0.939 in three dimensions. The
nonuniversal constant (4.4) will not enter the following
analysis since we shall need only'

= [2—g„(u (l (t}) ) ]
t dl(t)
l dt

(4.5)

A. Effective static couplings

We wish to identify the effective static couplings

u [t]—=u(l (t) ), y[t] —=y(l (t)), (4.6)

as a function of the reduced temperature t )0. Accord-
ing to (3.3), (3.4), and (4.5) the RG fiow equations for
u [t] and y [t] read

P„(u [t])
2 —g„(u [t])

dy[t) l3 (y[t] [tl)
dt 2 —g„(u [t])

(4.7)

(4.8)

dC(t)
C(t) dt

(2g„—1 )F 4+ l3„dF /Bu-
=(y[tl)

(2 —g„)[1+y[t]F ]
(4.9)

where the functions F+, g„, and P„on the right-hand
side (RHS) have the arguments F+(u [t]), g„(u [t]), and
13„(u [t]). Equation (4.9) is an approximation in the sense
that finite-cutoff effects are neglected. Furthermore we
have used B =1, see (3.13). The function F+(u) is given

49

F+(u)= —2 —16u(1+7.59u) (4.10)

(a comment on this function will be given at the end of

The information on the nonuniversal initial values u [to]
and y[to] at some convenient to can be extracted from
the logarithmic derivative of the measured specific heat
C(t) above T&. In terms of the minimally renormalized
theory in three dimensions the logarithmic derivative of
the specific heat is represented as'

with o, = —0.016 and v =0.672. Thus the Borel-
resummation result (3.11) for g„(u) will be used in
(4.7)—(4.9) only in the form of the difference
g„(u) —g„(u*), with u*=0.0362. This procedure can be
easily applied also to the specific heat data of Chui and
Lipa ' with slightly different values for a and v. For P„
and 13 in (4.7)—(4.9) we used (3.8) —(3.13) with e= l. In
(3.9) the substitution (4.13) is to be made as well.

The final step is to determine the appropriate solutions
u [t] and y[t) of (4.7) and (4.8) by adjusting the initial
values u [to] and y [to] at some convenient to such that
the RHS of (4.9) agrees with the (experimentally deter-
mined) LHS of (4.9) over some range of t, i.e., one has to
perform a least-squares fit with two adjustable parame-
ters. We have chosen to=10 . The initial values are
given in Table I for several pressures. The corresponding
effective parameters u [t] and y [t] as obtained by numeri-
cal integration of (4.7) and (4.8) are plotted in Fig. 3 for
SVP and P =28 bars. They are very close to those plot-
ted in Fig. 2 of Ref. 52 but differ from those of Refs. 24
and 29 by about 10%. This difference is mainly due to
the approximations with regard to P„, g„, and F+ that
have been employed in Ref. 19 on which the analysis of
Refs. 24 and 29 was based. For the range t ) 10 the
parameter y [t] should be replaced by the phenomenolog-
ical parameter y[t]'"~', see Appendix D. This parameter
is also plotted in Fig. 3.

The procedure described above is only one possible
way among several equivalent procedures of determining
u [t] and y[t]. A general discussion of determining the
nonuniversal parameters of the theory including finite-
cutoff effects will be given elsewhere. Here we only note
that the cutoff effects may be non-negligible in determin-
ing the sign and magnitude of the leading correction am-
plitudes and in determining the asymptotic value of C at
Ti. In a theory that neglects finite-cutoff effects (in par-
ticular in our minimally renormalized theory) some ap-
parently unusual features may arise such as formally neg-
ative values of y[t] for large t and positive values of
u [t]—u *. This will be of relevance in a reexamination of
the analysis of the specific heat of He performed by Bag-
nuls and Bervillier and in a field-theoretic description of
the results found by Liu and Fisher for the sign of the
correction amplitudes of the three-dimensional Ising
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TABLE I. Initial values u [to], y[to], w [to], F [to] at to =10 of the RCx liow equations (4.7), (4.8),
(4.17), and (4.18) of model F. The static parameters u [to] and y [to] are determined from fits to the ex-
perimental specific heat (Refs. 24 and 50) according to (4.9) and (4.11), the dynamic parameters are de-
rived from fits of R q""'(t), (4.25), to the data of Ref. 50 in the range 10 & t ~ 10 . The corresponding
effective parameters w'[t], w" [t], and f [t] as well as 8 '""' are plotted in Fig. 4 for SVP (0.05 bars) and
28 bars. See also Ref. 56 for numerical values and for intermediate pressures.

P (bars)

SVP
6.85

14.73
22.30
28.00

u [to=10 ']
0.035 77
0.035 47
0.034 89
0.033 69
0.033 07

y[t0=10 ']

0.2395
0.2476
0.2589
0.2657
0.2844

w'[to=10 i]

0.5962
0.7040
0.8106
0.9549
1.0431

w"[to=10 ']
0.5681
0.5317
1.0452
0.8909
0.6819

F[to=10 ']
0.7949
0.8242
0.8352
0.8310
0.7998

F+ [u, Q(l, u, 3)]=F+(l,u, 3), (4.14)

where Q(l, u, 3) is the amplitude function of the correla-

model.
Finally we comment on the function (4.10). In the con-

text of Eq. (4.1) and (4.9) this function is identical with
F+ [u, 1] defined in (4.6) of Ref. 19 and should, in princi-
ple, be distinguished from F+(l, u, 3) of Refs. 9 and 49
where the flow parameter was chosen di6'erently. The
connection between these functions is

tion length. It is this function (4.14) that has been com-
puted in Ref. 49 by means of Borel resummation rather
than F+ [u, 1 ]. The latter is not Borel resummable due to
lnu terms. One can verify, however, that the di6'erence
between F+ [u, 1] and F+ [u, Q(l, u, 3)] is less than 0.1%
in the range 0 ~ u ~ u * and that therefore the representa-
tion (4.10), with the same coefficient bF=7. 59 as com-
puted for F+(l, u, 3), is justified within the present error
bars. This comment applies in particular to the fixed-
point value F+ [u *,1] since

0.04
I

SV

F+ [u*,1],=Q(l, u*, 3) F+(l, u *,3)

=F+(l, u*, 3) . (4.15)

0.03 B. Eft'ective dynamic parameters

In this subsection we describe how to determine the
e6'ective dynamic parameters

0.02
w [t]=w(l (t)), F [t]=F(l(t)), (4.16)

—0.1

000 ' l

-4.

log(o(t)

0.0

FICs. 3. Effective static parameters u [r], y[t], and (y[&])'" '

for SVP and 28 bar. u [t] is obtained by integrating Eq. (4.7)
with the initial values of u [10 '] given in Table I. (y[t])'"~'
(solid lines) is obtained from Eq. (D2). For t ~10 ', (y[t])'"i' is
essentially identical with the solution y[t] of the RCx flow equa-
tion (4.8) with the initial values y[10 ] given in Table I. For
t )10, y[t] (dashed lines) difFers significantly from (y[t])'"~'
(solid lines). For intermediate pressures and for numerical
values of u [t], y [t], and (y[t])'" ' see Table II and Ref. 56.

on the basis of the two-loop model-F RG flow equations
for the A, transition of He. The resulting w [t] and F f t]
are more accurate than those of the earlier model-F anal-
yses" ' in that we take into account the Borel resum-
mation results for the static functions P„(u), g„(u), and
F+(u). The parameters (4.16) satisfy the RG liow equa-
tions

dw [t] P ( w [ r) F [r) y [r) " [ r) )

dt 2 —g„(u [r])
(4.17)

dF [r] py(w [t],F [t],y[t), u [t])
dr 2 —g„(u [r])

(4.18)

where the known effective static couplings y[t] and u [t]
of Sec. IV A and Appendix 0 have to be inserted. For
the denominator 2 —

g„ the substitution (4.12) should be
made. The nonuniversal initial values w [to] and F [to] of
(4.17) and (4.18) can be determined from a least-squares
fit to the thermal conductivity data.
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x,=c, rp (k, 0)
k=0

(4.19)

where C =k C (bare) constp
—g is the ant-pressure

rewr'rite the RHS of (4.1

me. 'eglectin
specific

r o .19) in terms ofo renormalized quan-

AT=k Z~Z (y, u)y, A, [1+fP w FP(w, F, y, u, r jlj, )] (4.20)

k~Z ( uy, u)y OA, (l)[1 +f (l)P
dl'

(w (l),F(l) , y( ), u(l), 1)]

X exp l' (4.21)

—
g ( l )

—e/2k f/2( i/2R eftRi (w(l), F(l),y(l), u(l 422

Within model I, the
thermal
vert

conductivity k
e, the theoretical

T can be
expression fo h
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(4.23)

1.0—

0.8—

t

P=SVP

f14+fM—3(w, F,y)
2~' F[1+y F+(u

(4.24)
0.6

P.l,

with I' u+(u) given by (4.10) an dwithM ( F, y given b

or ti 1 t'n ity to be compared with twit the experimen-
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(4.25)

R exPt

(t)

R f
f' (t) =A, T(t)R ' = T t g, [g(t)k~CP(t)] (4.26)
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F [tl

0.6699
0.5955
0.4751
0.3168
0.2021

0.6306
0.7954
0.7241
0.5648
0.4351

0.8325
0.6320
0.3263
0.0808
0.0129

0.4294
0.2624
0.2637
0.3373
0.4442

TABLE II. Representative values of the effective parameters u [t], (y[t])'""', w [t], and F [t] as well as R1""'(t}for SVP (0.05 bars)
and 28 bars. u [t] is obtained by integrating Eq. (4.7) with the initial values u[to=10 3] given in Table I. (y[t]}'"1"is determined
from Eq. (D2). The dynamic parameters w'[t], w" [t], and F [t] are the solutions of (4.17) and (4.18) with initial values that are deter-
mined from fits of R z""'(t), (4.25), to the data of Ref. 50 in the range 10 & t 10 . The effective parameters and R z"""are plotted
in Figs. 3 and 5. See also Ref. 56 for additional numerical values and for intermediate pressures.

P (bars) —log»t u [t] w'[t] w "[t] g theor(t)

SVP 1.0 0.031 81 0.2070
SVP 2.0 0.034 78 0.2887
SVP 3.0 0.035 77 0.2393
SVP 4.0 0.036 07 0.2034
SVP 6.0 0.036 19 0.1606
SVP 9.0 0.036 20 0.1261

28
28
28
28
28
28

1.0
2.0
3.0
4.0
6.0
9.0

0.01800
0.027 52
0.033 07
0.035 22
0.036 11
0.036 19

0.2535
0.3378
0.2842
0.2361
0.1784
0.1354

0.8938
1.0452
0.9290
0.5331
0.2830

0.4024
0.7590
0.6638
0.1640
0.0156

0.3798
0.7999
0.9895
0.7605
0.5242

0.8464
0.3324
0.2109
0.2460
0.3646

where

w'(l) =a g +0 (g ), g-(ot (4.28)

arbitrary frequency co. In this Appendix we shall present
the two-loop expression for I -+(co) at k =0 and arbi-

trary co:
with a nonuniversal (pressure-dependent) amplitude a
and with co„given by (3.46). Thus Ri is predicted to
diverge (weakly) if the weak-scaling fixed point (w'}' =0
is stable. Because of co„«1, however, the pure power-

vco /2
law behavior -ct " of R& is unobservable, as dis-
cussed in Refs. 47 and 58.

Finally we present the results for the effective dynamic
parameters on the basis of fits with tp =10 which in-
clude the thermal conductivity data in the range t + 10
In this range y [t] is replaced by (y[t])'""', as described in
Appendix D. The resulting dynamic parameters as well
as Rz""'(t) are shown in Fig. 5. We consider these pa-
rameters, together with u [t] and (y[t]}'"' of Fig. 3, as
the "standard parameters" of model F. For numerical
values see Table II and Ref. 56. These parameters can be
applied to other critical phenomena above and below the
A, line provided that the flow parameter (1.3) is employed
appropriately.

Note added in proof Measurem. ents of the thermal
conductivity at SVP in the range 10 ~t ~10 have
been reported recently by J. A. Lipa (unpublished). The
data show a monotonic increase of R& as Tz is ap-
proached, in agreement with the predictions of this paper
[Figs. 4(a) and 5(a)].
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APPENDIX A: DYNAMIC PERTURBATION
CALCULATION

The perturbation calculation is based on the dynamic
functional ' given in (A2) —(A9) of Ref. 11. The un-
renormalized vertex functions of interest are I and
0 ~ 0 mm

I &+. The two-loop expression for I has already been

given in Refs. 11 and 61 at arbitrary wave number k and

11
I" -~(co)= —,'( ico+—I o~o+igoho) —g X„(co) .

v=1
(Al)

f = (2~) —'f d"-p,

J~(~o)= f (p +ro), N = 1,2,
a3 ~oX0 yo+-,'igoXO

b3 I p7p 2 ~gpXp

b4 =2rpQp —lgppp,

m„=p„+ro, n =1,2, 1r,2=(p, +p2) +ro,
K„=Io~„+A,OXO 'p„, n =1,2,
I.n =yorn 2«ogoXO

'

+12 ~0~12+~OXO (p 1 p 2 }

L» —yof i2 ,'i rogoXo—

G» ——ro(~, +~2)+ ro ~»,
12 yo OXO P 1 2 igoXO (~12 ~2)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A 10)

(Al 1)

(A12)

(A13)

The analytic expressions for the sum of the N diagrams
of the type v read

The one- and two-loop contributions X (co) come from
the diagrams of the type v=1,2, . . . , 11 shown in Fig. 1.
To obtain the analytic expressions of these diagrams one
must consider time-ordered vertices and distinguish be-
tween correlation and response propagators. The number
N of different time-ordered diagrams of each type v
shown in Fig. 1 is as follows. One-loop diagrams: N, =1,
N2 =2. Two-loop diagrams: N3 =2, N4 = 5, N~ =2,
N6=3 N7 =5 N8 =5 N9 =7 N1p =7 N11 =8.

We shall use the notations
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X) = —4b4J((&p),

L1
P) 11 )(K(+ lgphp lcp)

X3 =64upb4J&(Tp)J2(Tp),

X4 = —16ypgpb4J, (Tp)Jz(rp),
2b4~1+b4 +12

X5 =16b4
P) Pz 1T)1T21T)2(G12 &cp)

16b3+0 2 b4L
& m1

X6 2 2upa3p1 +» 1T,1rz(K, i CP)—

X7=
—16b4yo L)(b31rz+b3 1r)2)

b3ypm1+
P) Pz 1T)1T21T32(G)2 icp) K1 l 6)

X8=
—16b3yp A, z [b4(1r, +a 2)+ b 4 1r,z]

b4y 0~1 +
I' 2 1T( 1r21T(2 ( K 1 E Cp ) 61' l CO

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

8b3ypX9=
PI P2 ~1&12 E1

ldll

L

2 2
yoa3p Ob 3~1 b3L b3~,+ ~ 3 0+

K12 l CO K1 l 6) K 12 l 6)
(A22)

8b3xo~ 12
X10=

u2 ~2m&& K1 —lCO

8b3xo

P2 &12 K1 l6)

(A23)

A, 2L2(b31T&+b 3 1r,z)

1r&1rz(Kz —icp)(G, z i co)—
(A24)

b3yp b3yp L~( b31rz+b3 1T}2)+ +
'pz G, z icp —1T,(K, —icp)(G, 2 icp)—

2
Ypb3a3p2 Yob3 ~12+ - + +b3L2(L» —

C23p2 )

1rz(K, z i co)—1T,(G,z res ) —1rz(Kz —
~ cp )(K&2 i co)—

According to (A2) of Ref. 19 we consider hp in (Al) and
(A15) as a function of Tp. Up to two-loop order we &nd

[compare (A6) of Ref. 19]

hp(1p) yp[2J, (Tp)+ 8(yp —4up )J) (1p)J2(Tp) ] (A25)

which is to be substituted into the zeroth-order term of
(Al). In the propagator of (A15) it suffices, within a two-
loop calculation, to substitute only hp =ZypJ&(Tp). In the
two-loop expressions (A16)—(A24) we have set hp =0.

Equations (A25) and (2.7) can be used to calculate 'Tp ln
terms of ro up to two-loop order which can be substituted
into the zeroth-order term of (Al). In the one-loop terms
(A14) and (A15) it suffices to substitute (A7) of Ref. 19,
and in the two-loop expressions we may replace io simply
by ro. Finally I —+ is to be rewritten in terms of ro —ro,
with ro, being defined in the usual way. For the purpose
of determining only the pole terms of I —,in d =4 (see
Appendix C), however, we may set rp, =0 at the outset

and work with ~0 instead of rp provided that ~0 is renor-
malized appropriately, see (C4).

APPENDIX B: DYNAMIC TWO-I.OOP INTKGRALS

We shall consider all integrals at infinite cutoff and use
dimensional regularization. For the purpose of calculat-
ing gr we need the derivatives of the integrals
(A14) —(A24) with resPect to co and Tp, see (C10) and
(C14). Within the minimal subtraction scheme it suffices
to determine their simple poles -e . The one-loop in-
tegrals are standard. Some of the dynamic two-loop in-
tegrals are more complicated than the model-E type
two-loop integrals. In the following we present the pole
terms of some generic integrals. We shall keep the factor
Ad, (2.16), unexpanded (with respect to E) since it will be
absorbed when turning to the renormalized couplings.
We shall use the abbreviation

P3 —= (Pi+Pz)'

By means of Feynman parametrization we have obtained

f f [ (P 1 +T1)(P 2 +Tz )(P 3 +T3 )(pp 1 +vp 2 +~P 3 + 4) ]
~2

= Ad(4e) 'jp 'in[1)(p+v)(p+A, )]+v 'in[1)(v+A, )(v+p)]+A, 'ln[T)(A, +p)(k+v)]+O(e)] (B2)

with Ti= (pv+ v A, + A p )
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f [(p, +r, )(p2+r2)(p3+r3)] '= —Ad(4e) '(rI '+r~ '+r3 ')[2& '+ 1+0(&)],
&2

(83)

f f [(pi+re)(p" +r2)(W f+vS»'+p3+r3)'] '=~d'(4&) ' »
iz

1 +v+P +vP +O(V+P+ vP
(84)

P 1 +i 1 P P +i 2 PP 1 +VP 2 +P 3 +7 3Pl P2

Adr) '
2e ' —I+gin +ln +O(e)1+v

4e 1+v 1+ 1+p (85)

with g=v+p+vp. Many more integrals are needed in
the complete two-loop calculation. Some of these in-
tegrals can be obtained from (Bl)—(85) by difFerentiation
and/or by algebraic transformations of the integrands.

APPENDIX C: Z FACTORS IN
TWO-I.OOP ORDER

The main task is to determine the poles —e
of Z~ up to two-loop order, i.e., up to
O(F, yF, y F,yF, y, y u, yFu, F u, u ). This re-
quires, in addition, the knowledge of the poles -e of
the Z factors Z or Z &=(Z&)' which renormalize the
response fields"

where X (co) is expressed in terms of renormalized pa-
rameters. The v=2 term yields the one-loop result

SyD
(1+w)e

(Cl 1)

SyD 16u
(1+w)e e

8yD (1+2w) 1+2w
ln

e'w (1+w) (1+w)

with D given by (3.15). Here we have corrected a mis-
print in Eq. (83) of Ref. 11. From a calculation of the co

dependent two-loop terms (v=5, . . . , 11) we have found

~=z —rx2y q
e =(z *)—»2y ~

0
The renormalized counterpart of I

&
+(co) is

(Cl)
4o. 1

ln
w +2m*

2(w+w')

r„.(~)=(z,z p'"r„.(~), (C2)

where the unrenormalized parameters u p, yp 'Tp kp,0
I p, gp in I -+ are expressed in terms of renormalized
ones according to (2.12)—(2.14) and'

Q p Z ZItr+dQp Z + Z ~ +
(C3)

4 2 w(w +2w*)
(w +w') (C12)

apart from pole terms —e . The quantities 5, a„u2,
and Q, are given by (3.16), (3.18), (3.20), and (3.22).

Z„can now be determined from the requirement that

~=z. '~p, z,=z z, . (C4) I ~,(0)=(Z~Z ~)' Z„ I — (0)
d'7 1 0

(C13)

Z&=1 —16u /e,
Z '=1—4y /e —64y u/e

Z„=1+16u /e+ 16(28—Se )u /e

Z„=1+40u le+64(25 8e)u /e—
(C5)

(C7)

(C8)

From statics' ' we know, for a two-component order
parameter, has no pole terms. According to (Al) this implies

z-'(z z )'"z —1

=poles of 2I '(Z Z ')'~~Z — ig—
BX (0)+

Z 1 Z —1Z —1

=1—4(y +4u)/e —16(12—5e)u /e

v=1 'Tp

(C14)

The requirement that Br —+(co)/Bco has no poles implies,

according to (Al) and (C2),

where the RHS is to be expressed in terms of renormal-
ized parameters after the differentiation with respect to ~p
has been performed. The v= 1 and v=2 terms and the
one-loop part of ho(1p) yield the one-loop result

BX (co)
(Z Z ')' —1=poles of 2(Z Z ')' . , a( —i~) ' 4D2Z~=1-

w (1+w)e (C15)

(C10) From a calculation of the two-loop terms we have found
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Z (Z e )1/2+
ew (1+w)

88u Qz

26
2iFD (1+2w) 1+2w

ln
ew (1+w) (1+w)

2'9& w +2w *
ln

2(w+w*)

——(g2 —
—,'iF D5)ln

w(w+2w*)
(w+w*)

(C16)

apart from the pole terms -e . The quantities 6, g&,

q2, and Q2 are given by (3.16), (3.19), (3.21), and (3.23).
Equations (C16) and (C12) lead to the expression for gr,
(3.14)—(3.23).

APPENDIX D: EFFECTIVE PARAMETERS

In this appendix more detailed information is given re-
garding the effective static and dynamic parameters
which were computed by Sutter (statics) and by Moser
(dynamics) according to the procedure described in Sec.
IV.

1. Static parameters for the range t ~ 10

We shall abbreviate the RHS and LHS of (4.9) by—at" '(r) and —a'"~'(t), respectively. The ffow equa-
tions (4.7) and (4.8) were integrated numerically and a
least-squares fit was carried out by adjusting the initial
values u [to] and y[to] at to=10 so as to minimize the
squared deviations

N
2 — g [ exp'(r ) thcof(r )]2 (D 1)

N, .

where N is the number of points t,. taken in the range of
the fit. We have chosen this range as 10 & t & 10
and N=450. The results are quite insensitive to the pre-
cise value of N and to the choice of the range of the fit
provided that t & 10 '. After the determination of
u [10 ] and y[10 ] the values u [t] and y[t] were ob-
tained for 10 ~ t & 10 by numerical integration of the
Aow equations. This procedure was carried out at several
pressures. The initial values u [10 ] and y[10 ] are
listed in Table I, and u [t] and y[t] are shown in Fig. 3
for SVP (0.05 bars) and 28 bars, compare also the original
Fig. 1 of Ref. 65 and Fig. 2 of Ref. 53. For numerical
values and for intermediate pressures see Ref. 56.

2. Static parameters for the range t ) 10

In the range t & 10 the procedure suggested in Ref.
19 should be employed which yields "experimentally
determined" values (y [t])'" ', i.e., (y [t] ) should be
determined from (4.24) of Ref. 19,

(2 —g„)a'"~'(r )
[(y[t))

4 —[2g„—1+(2—g„)a'"I"(t))F+—/3„BF+ IBu
(D2)

where the functions g„, P„, and F+ on the RHS have the
argument u [t] [compare (6.8) of Ref. 19]. In (D2) the
substitutions (4.12) and (4.13) should be made. For
t &10 the resulting (y[t])'" ' agrees essentially with
y[t] obtained by integrating the RG fiow equations (4.7)
and (4.8). More precisely, ~y[t) —(y[t])'" '~ ly[t] is less
than 0.1% for t & 10, compare Tables I and II of Ref.
56. For t )10, Eq. (D2) yields an effective (y[t])'"~'
that provides an effective parametrization of the specific
heat even beyond the range of applicability of the RG
ffow equation (4.8). For t ) 10 this "experimentally
determined" (y[t])'" ' differs significantly from the solu-
tion y [t] of the ffow equations as is illustrated in Fig. 2 of
Ref. 53 and in our Fig. 3. These departures are presum-
ably due to finite-cutoff effects which are neglected in the
RG Aow equations of the minimally renormalized theory.

We have used (D2) in the following way. First we com-
puted u [t] by numerically integrating the RG ffow equa-
tion (4.7) toward t & 10 with the initial values u [10 ]
given in Table I. For a'" '(t) we employed the experi-
mental values according to (4.11). Then it is straightfor-
ward to calculate t(y[t])'" '] from (D2). In Fig. 3 the

resulting values for u [t] and (y[t])'" ' are shown in the
range 10 &t &10 ' for SVP (0.05 bars) and 28 bars.
For comparison the solution y[t] of the RG ffow equa-
tion (4.8) is also shown in Fig. 3 for t 10 (dashed
lines). For numerical values see Table II and Ref. 56

3. Dynamic parameters

With the static parameters u [t] and y[t] or (y[t])'" '
determined above it is now possible to determine the dy-
namic parameters w [t] and F [t] by means of a fit of
RP"'(t), (4.25), to R&"I", (4.26), as described in Sec. IV.
The fitting procedure is that used in Ref. 24. First we
have confined ourselves to the range t ~to=10 . Full-
range fits were performed using the cell-F data for
t to=10 with the weights used by Tam and Ahlers.
The resulting parameters are plotted for SVP and 28 bar
in Fig. 4. The qualitative features of w'(l) and f (l) agree
with those found originally in Fig. 7 of Ref. 47, Fig. 1 of
Ref. 58, and Fig. 2 of Ref. 66.
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We have extended this procedure to the range
t ~to=10 by performing full-range fits to the cell-F
data for t &to=10 . Here we used (y[t])'"~' instead of
y[t] For t & 10 the resulting effective dynamic param-
eters w' and f agree closely with those determined from
the fits with to =10 . In Fig. 5 the dynamic parameters
are plotted for several pressures, and a few representative
numerical values are listed in Table II. For additional
values, also at intermediate pressures, see Ref. 56.

We consider these values, together with u [t] and
(y [t])'""', as the "standard parameters" of model F in the
range t ~ 10 . The differences with the parameters of
Tam and Ahlers ' are due to our more accurate static
parameters. The conclusions by Tam and Ahlers about
the agreement between the RG theory predictions and
experiment are not affected by these differences.

4. Application to T & Tq

Finally we briefly indicate how to employ the effective
parameters shown in Figs. 3—5 to critical bulk phenome-
na below Tz (at k =co=0). Instead of (4.1) the Row pa-
rameter l =l (t) below Tz, t &0, is most conveniently

chosen as'

r(l )

p21 2

1
p ko (D3)

l (t)=l( —2t), (D4)

where I is the flow parameter above T& as defined by
(4.1)—(4.4). Hence, at t &0, we can identify the effective
parameters u (I ), y(l ), w(l ), and F(l ) explicitly in
terms of the functions (4.6) and (4.16) taken at 2t )—0,

u(l (t))=u [ —2t], y(l (t))=y[ —2t],
w(l (t))=w[ —2t], F(l (t))=F[—2t] .

(D5)

Thus Figs. 3 —5 can be directly employed below T& after a
simple shift of the temperature scale, compare also Fig. 1

of Ref. 65 and Fig. 1 of Ref. 67.

This leads to effective parameters u(l ), y(l ), w(l ),
and F(l ) in the expressions of renormalized correlation
functions below Tz (for example, in the amplitude of
second-sound damping). From (4.1)—(4.3) and (D3) we
obtain the relation, at given t & 0,
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