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The physics of the one-dimensional t-J model may be determined at J/t ~0 (i.e., the U/t ~ ~ limit of
the repulsive Hubbard model) and at J/t =2 with the use of the Bethe ansatz. To get a full understand-
ing of the charge and spin correlation functions for all values of J/t, one has to resort to numerical
methods. We have used two numerical methods (the world-line quantum Monte Carlo algorithm and
the quantum transfer-matrix algorithm) to get information on charge and spin static structure factors,
pairing correlations, and critical exponents. The (1+1)-dimensional classical system corresponding to
the one-dimensional t-J model, on which the Monte Carlo technique is used, is identified to a fifteen-
vertex model. We show that the t-J model undergoes phase separation at large values of J/t. Before
phase separation, both critical exponents and pairing correlations in the extended s-wave channel favor
the onset of superconductivity. For low values of J/t, the model shows a U/t~ ~ Hubbard-like char-
acter.

I. INTRODUCTION

The t-J model provides one of the most interesting and
simplest models to study the physics of doped antifer-
romagnets. The interest in this model was stimulated by
Anderson's' suggestion that it contains the relevant phys-
ics of the copper oxide planes in high-T, superconducting
materials. Furthermore, Zhang and Rice derived the t-J
model from a multiband Hubbard model describing the
copper oxide planes. The t-J model that we have con-
sidered reads

H= —t g [(1—n, )c, c (l —n, )+Hc j
(l,j),~

+J g (S; S,. ——,'n, n, ) . (l)
(, )''

Here (i,j ) denotes the sum over next neighbors, c,
creates an electron on site i with z component of spin o. ,

n, =c; c;, and S, is the spin operator at site I.. Elec-
trons on the lattice are thus submitted to a next-nearest
Heisenberg interaction (which favors antiferromagnetic
alignment of spins) and are allowed to hop between adja-
cent sites. Since double occupancy is prohibited, the
model reduces to the Heisenberg Hamiltonian in the spe-
cial case of one electron per site (i.e., half band filling).
Furthermore, at J =4t IU, the t Jmodel is an ap-proxi-
mate effective Hamiltonian for the large-(Ult) limit of
the Hubbard model. Clearly, the key question in two di-
mensions is to establish if the t-J model may explain the
unusual normal state as well as superconducting state
properties of the copper oxide planes in high-T, materi-
als.

Besides the interest of modeling the two-dimensional
copper oxide planes, the one-dimensional counterpart of
the t-J model has fascinated many researchers since it
shows a very rich phase diagram. In one dimension, the
Hubbard model may be solved exactly by means of the

Bethe ansatz. It has been shown numerically, and re-
cently analytically, that the repulsive Hubbard model
scales to the Tomonaga-Luttinger model. The pro-
vides information on the t-J model in the limit J/t~O.
In the supersymmetric case J/t =2, the t-J model may
equally be solved with a Bethe ansatz. " From the
Bethe ansatz solution, the critical exponents can be calcu-
lated. ' This calculation shows that the t-J model at
J/t =2 belongs to the same universality class as that of
the repulsive Hubbard model. J/t =2 and J/t~O are
the two points in parameter space where analytical re-
sults are available. In order to get a complete picture of
the phase diagram, one has to make use of numerical
methods. Our numerical investigation is based on two
methods: the quantum Monte Carlo world-line algo-
rithm' ' (WLA) and the quantum transfer-matrix algo-
rithm (TMA). ' ' Both methods provide thermo-
dynamic quantities in the canonical ensemble. The TMA
produces exact results but is restricted to small lattices,
whereas the WLA may deal with large lattices but yields
results with statistical uncertainty. Some preliminary nu-
merical work on the t-J model has already been carried
out by Imada. ' His results point out a very strong
enhancement of the extended s-wave pairing susceptibili-
ty at low temperatures and for relatively large values of
J/t. The aim of this work is to provide further under-
standing of the electronic structure of the t-J model as a
function of the coupling J/t and the band filling p. The
questions we wish to answer include the following: (a) At
which value of J/t does the t-J model lose its large-U
Hubbard character and what is the nature of the result-
ing ground state? (b) For which values of Jit and p does
phase separation occur, and how does it occur? (c) What
is the nature of the ground state before phase separation?

The text is organized as follows. In Sec. II, we review
brieAy the foundations of the WLA and TMA. Both
methods rely on Suzuki's' generalization of the Trotter
formula to demonstrate that the partition function of a
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d-dimensional quantum-mechanical system is equivalent
to that of a (4+1)-dimensional classical system. We
identify the (1+1)-dimensional classical system corre-
sponding to the one-dimensional t-J model to a fifteen-
vertex model. As in all quantum Monte Carlo pro-
cedures, there is a set of controllable approximations that
one has to carry out in order to render the simulation
possible. We have found it important to include a brief
section on this topic.

In Sec. III, we discuss our numerical results. In order
to answer the above questions, we have measured the
static charge and spin structure factors as well as pairing
correlations in the extended s-wave channel. We have
carried out a finite-size scaling analysis of the charge and
spin critical structure factors at J/t =2.2 and at quarter
band filling so as to determine the 2kf charge and spin
exponents. In order to get more insight into the nature of
the transition to the phase separated state, we have
looked into the spinless electron model ( t Vma-del)
defined by

R', 1,
= —tg(c;+,c;+H.c. ) —Vgn; +n; .

Here V )0 so that there is an attractive density-density
interaction between next neighbors. Through a Jordan-
Wigner transformation, the t-V model produces the same
physics as the spin model

Hxxxz = —~x&(~+~ +1+~ ~;++1)—~zX~X'+»

(3)

t V-model. ] The t V model shows a first-order phase
transition to a phase separated state at V/t =2 and for
all band fillings.

Finally, in Sec. IV, we summarize our results and give
a qualitative phase diagram of the one-dimensional t-J
model. Preliminary results of this work were already
given in Ref. 24.

II. PATH-INTEGRAL FORMULATION
OF THE PARTITION FUNCTION

Both the WLA and TMA (Ref. 25) rely on a path-
integral formulation of the partition function. The prin-
ciple advantage of those algorithms is that they allow one
to simulate easily any one-dimensional quantum-
mechanical model on a lattice with arbitrary next-
neighbor interactions. This is not the case for deter-
minant methods' ' ' since they require the ability of
decomposing the many-body interaction into one-body
operators interacting with Hubbard-Stratonovic fields.
The details of both methods are well known so that we
will only sketch the main ideas for the special case of the
t-J model.

Following Barma and Shastry, we write the t-J Ham-
iltonian as

2~ii+ 1 ,~odd +~even

where

H;;+, = —tg[(1 n, +, )c—;+, c, (1 n, )+—H. c. ]

which has been solved by means of a Bethe ansatz by
Yang and Yang. ' Furthermore, the t-V model is a Lut-
tinger liquid. [The equivalence follows by identifying
down spins to holes. The Hamiltonian (3) may then be
expressed by hard-core bosons submitted to a nearest-
neighbor hopping term and a density-density interaction
of magnitude —Jz between adjacent sites. On a one-
dimensional lattice, this produces the same physics as the

I

Z —Tr( C tiH) —Tr[( C
ndd even )M]

—A~(H +H )

=Tr[(e "'e '"'") ]+0((b,r) )

+J(S(~t S; ,'n;+, n; ), ——

odd X ii+ 1& H, even g Hii+ 1,
1 Qdd i even

Since there are only next-neighbor interactions, the terms
in the sum forming H, dd commute. The same holds for
H,„,„. However, H, dd and H,„,„do not commute. The
canonical partition function may then be written as

l
l &12, . . . , 1 2M

Here P is the inverse temperature (or imaginary time)
b,r =P/M,

and

—hwH —A~H
U =e odd U —+ even

0(id even

The states lik ) are in real space.
The state

l
i i ) thus evolves in complex time according

to the imaginary-time-evolution operators U„,„and

U,dd. Each element of the above sum may be represented
graphically on a checkerboard [see Fig. 1(a)] in terms of
two kinds of world lines (black and gray) which follow
the imaginary time evolution of the up and down spins.
Due to the breakup of the Hamiltonian in an odd and
even part, the particles may move or interact only within
the shaded squares. The t-J model conserves the particle
number as well as the total magnetization, so that the
number of world lines of each type is conserved
throughout the imaginary time propagation.

Since H„,„[,„d& is a sum of commuting terms, the eval-
uation of the matrix element &il U„,„i,dd1li') reduces to
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x direction

Trotter direction

FIG. 1. (a) An example of a world-line configuration. The imaginary time (Trotter direction) runs along the vertical axis, and the
real-space (x direction) along the horizontal axis. The black (gray) world line represents up (down) spi.ns. The world lines may only
move or interact within a shaded square. (b) The world-line configuration shown in (a) is drawn in terms of the 15-vertex model.

solving a two site problem. For the t-J model, the matrix
elements of the two site problem follow from

e
' ' 'lo, o&=lo, o&,

e "+'lo.,o) =cosh(hr t)llr, o)+sinh(Art)lo, cr ),

where

P ( l
1 ~ 1 ~2. . . ~ l 2M )

'2M

& l, I U,„,„ll, &

A~H, . , +1e ' '+ ' o. , o &
=

l

o. , o. &,

e "+'lo.,
—o. ) =e ' [cosh(hrJ/2)lo. ,

—o. )
—sinh(b, rJ/2)

l

—o. , o. ) ] .

Here the ket l, ) describes the state on sites i and i + l.
Note that only 15 of the 81 possible matrix elements take
nonzero values. They are shown in Fig. 2.

When measuring observables, one has to distinguish
between observables that locally conserve charge and
spin (spin and charge structure factors) and observables
that globally conserve charge and spin (Green functions
and pairing correlations). The energy follows its own rule
since it may be decomposed in an odd and even part. It is
evaluated with

The spin-spin (charge-charge) correlations are estimated
through

= sinh h,~ t

= cosh(d~ t)

exp(A~ J/2) cosh(A~ J/2)

1~2» 2M

~(11712& ' ' '
& l2M )

& 1
I U.„„II„,„ll' &

= — exp(A~ J/2) sinh(A~ J/2)
I

+O((hr) ),

& l 3 l UoddHodd l1 2 &+
& l3l Uoddl12 & FIG. 2. The 15 matrix elements for given plaquette

configurations. All other plaquette configurations have vanish-
ing weights.
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( SzSz )1 J
1~ 2I'' '' 2M

P(ll, l2»' ' 2M)

(i, ~( v„,„s,'s;+s;s;v, „,„)~l, )
X

2(i2~ U„,„~i, )

+O((hr) ) .

The above procedure may not be applied for equal-time
Green functions since the quotients in Eqs. (7) and (8)
would not be well defined. This difficulty may be circum-
vented by the use of

P (' I, ' ,l. . . , i 2M)( i ', li, )

+O(hr),
where

P(l l, l 1, .
& 2M)

&lllV. ddl 2M &

I & l l I V.dd I l2M ) (l21V„,.Iil & I

For equal-time Green functions a single break in the
world lines is allowed. In general, the type of break a1-
lowed depends on the observable.

We may now evaluate observables by creating a set of
world-line configurations according to the probability
distributions ~P(i„i2, . . . , i2M)~ or ~P(iI,i„.. . , i2M)
with the Monte Carlo method (WLA) or by explicitly
carrying out the sum over all world-line configurations
(TMA).

have restricted our sampling to the subspace of zero-
winding number.

We have used the moves shown in Fig. 3 to upgrade a
world-line configuration. The charge move [Fig. 3(a)] on
its own is used to simulate the t V-(2) model or the hop-
ping term in the t Jm-odel. The spin move [Fig. 3(b)] on
its own will simulate a Heisenberg model. Simulating the
t-J model is somewhat more complicated since combining
the charge and spin moves will not yield ergodicity
within a subspace of constant tota1 magnetization. For
this reason, one has to include the move shown in Fig.
3(c). The charge and spin moves [Figs. 3(a) and 3(b)] are
local in the sense that they only involve the four shaded
squares surrounding the unshaded square where the move
is carried out. This allows one to upgrade one-quarter of
the unshaded squares in parallel. Clearly, the above
moves conserve the winding number. Restricting the
sampling to the subspace of zero-winding configurations
introduces an approximation to periodic boundary condi-
tions. However, on a finite-size lattice, one is free to
choose arbitrary boundary conditions since they will have
no effect on the thermodynamic limit. In this sense, re-
stricting the sampling to the subspace of zero-winding
number may not be considered as a source of systematic
errors since it just modifies the boundary conditions. Fig-
ure 4 compares the finite-size scaling of the energy of a
free spinless electron gas [I Vmode-l (2) at Vjt =0] at
finite temperature for periodic, antiperiodic, and zero-
minding boundary conditions. Although the approach to
the thermodynamic value depends on the choice of the
boundary conditions, the thermodynamic value itself is

A. The &LA and sources of systematic errors

The Monte Carlo procedure requires the quantity
P(i„i2, . . . , i2M) to be positive since it interprets it as a
probability distribution. Assuming fixed boundary condi-
tions, one may show that although the matrix element
that interchanges two spins (6) is negative,
P(i, , i2, . . . , i2M) is always positive. On the other hand,

P (i I,i l, . . . , i2M) may be negative, but the combined
quantity P(i', ,i„.. . , i2M )(i', ~c; c~ ~i, ) is positive.
The same holds for pairing correlations. Fixed boundary
conditions thus yield no minus-sign problems. The situa-
tion becomes more complicated when one uses periodic
boundary conditions. In this case, a world line acquires a
factor ( —1) ' when it crosses the boundary. Here N
stands for the number of particles on the lattice. This has
as a consequence that in the subspace of world-line
configurations with nonzero-winding number, one may
generate configurations with negative weights. However,
in the subspace of zero-winding number, all
configurations have positive weights. It should be em-
phasized that the above minus-sign problem originates
from a boundary effect and is thus of different nature
than the one present in the two-dimensional Hubbard
model ' for example. As will be discussed below, we

(b)

FICx. 3. Local moves used to upgrade a world-line
configuration (black and gray lines may be interchanged). Only
the move (a) is required to simulate free electrons or the t-V
model (2). The move (b) on its own will simulate the Heisenberg
chain. In order to achieve ergodicity when simulated the t-J
model, one has to include move (c).
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independent of the boundary conditions. Another conse-
quence of different choices of boundary conditions is the
scaling of the energy as a function of the temperature
(Fig. 5). Figure 5 equally gives a measure of the effect of
the winding number on small lattices as a function of the
temperature. For antiperiodic boundary conditions and
an even number of particles, all world-line configurations
have positive weights. Thus the difference between the
TMA and the WLA data consists of the sum over all
nonzero-winding number world-line configurations which
are omitted in the WLA.

In order to achieve ergodicity within the subspace of
zero-winding world-line configurations, one has to intro-
duce a global move which changes the color of a world
line. This allows one to sample regions of different total
magnetization. This move is very expensive in CPU time
since it inhibits vectorization. It is thus important to del-
imit the parameter range where this move may be omit-
ted without introducing systematic errors. The t-J model
has an SU(2) spin symmetry so that the expectation value
of the total magnetization vanishes. At temperatures
where the ground-state properties dominate, the expecta-
tion value of the square of the total magnetization will
also vanish provided that the ground state is a spin sing-
let. In those circumstances, omitting the above global
move yields no source of systematic errors. Ogata and

i

Periodic boundary (exact).
N: Antiperiodic boundary (exact).
0: M C data. Zero winding boundar

Shiba have shown for the U/t ~ ~ Hubbard model that
the ground state of a system with 4n (where n is an in-
teger) electrons and periodic boundary conditions is a
spin triplet. Imposing antiperiodic boundary conditions
yields a spin singlet. On the other hand, systems with
4n +2 electrons and periodic boundary conditions have a
singlet ground state. This situation is present in the t-J
model for values of Jjt &2. For values of J/t ~2 both
periodic and antiperiodic boundary conditions yield a
singlet ground state. As mentioned above, in the WLA
one does not have true periodic or antiperiodic boundary
conditions since the sampling is restricted to the subspace
of zero-winding number. We have thus carried out a set
of simulations at low temperatures (i.e., f3t 15) including
the above global move. Our results show that the accep-
tance rate of the global move vanishes for values of
J/t ~ 2 so that in this parameter range one may omit the
global move without introducing systematic errors. For
J/t (2, omitting the global move introduces small sys-
tematic errors but does not change the qualitative results.
Clearly, at high temperatures it is crucial to include the
global move (see Fig. 5). Unless mentioned otherwise, we
have restricted the sampling to the subspace of zero total
magnetization.

The path-integral formulation of the partition function
introduces systematic errors of the order of P(b, r) t"J,
where p and v are positive (or zero) integers which satisfy
v+ p =3. This source of systematic errors is controllable
since one can extrapolate to 6~~0 while keeping P and
J/t constant. We have carried out simulations at

—0.75~ —0.630

t
CI

g —0.635

—0.80—

L=8, 6~=0.125, J/t. =2, p=0.5
o; T M A, &M', &~0

—O. 640
1x10 4 px10-4 5x10 1x10 2x10 5x10

i/L

—0.90—
X

() &Isa H -a

FIG. 4. Comparison between periodic, antiperiodic, and
zero-ending boundary conditions for free spinless electron gas
at quarter band filling [t Vmodel (2) at -V/t =0]. The data for
both periodic and antiperiodic boundary conditions were calcu-
lated exactly within the canonical ensemble whereas the data
for zero-minding boundary conditions was calculated with the
Monte Carlo (MCj method. In order to extrapolate to 6~~0
we have carried out simulations on the 80-site lattice at
5&=0.125, 0.25, and 0.5. The energy scaled to the form
E(A~, L =80)= —0.6344(3)—0. 107(4)6~ . For the other lat-
tice sizes, the simulations were carried out at 5~=0.125. The
systematic error produced by the finite value of A~ was taken
into account by using the same scaling form as for the L =80
lattice [i.e., we assumed the 6r i —0. 107+0.004) coefficient to
be size independent].

0 95 I I I i I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5
1/P t

FIG. 5. Temperature dependence of the energy per site for
periodic, antiperiodic and zero-minding boundary conditions for
the t-J model. One may see that at low temperatures and at the
considered value of J/t, restricting the sampling to the subspace
of zero total magnetization yields no source of systematic er-
rors. The two data points at zero temperature come from the
exact diagonalization code of Ogata et al. " Comparing the
WLA data and the TMA data for antiperiodic boundary condi-
tions yields a measure of the contribution to the energy of
nonzero-winding number configurations as a function of tern-
perature (see text).
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J/t =2, Pt =15 on a 16-site lattice and at quarter band
filling for 6&=0.0625, 0.125, 0.25, 0.375, and 0.5. We
found the energy per site to scale to the form
E(b,r) = —0.9055(3)—[0.067(1)](b,r) . The b,r effects
on the spin and charge structure factors were too small in
comparison to our error bars so as to obtain reliable re-
sults. Unless mentioned otherwise, we have carried out
our simulations at 6~=0.125. This introduces a sys-
tematic error of the order of 0.2%%uo on the energy.

pared in Fig. 6 to the exact solution. " The agreement is
good.

A. Charge and spin structure factors

The static structure factors refIect the presence and na-
ture of long-range spin and charge correlations. They are
defined by the Fourier transform of the real-space corre-
lations and may be written as

B. The transfer-matrix method
charge, spin ( k ) ( charge, spin ( k ) charge, spin (

where

(10)

The TMA sums up all allowed world-line
configurations by going through the checkerboard lattice
along the imaginary time or Trotter direction. Spin
configurations along the real-space direction were coded
into a Cray word reserving two bits for a site and two ad-
ditional bits for the boundary conditions. Periodic as
well as antiperiodic boundary conditions were imple-
mented. All symmetries including spin rotation, transla-
tion, and inAection were considered to keep the number
of different configurations small. Observables were calcu-
lated through the use of Eqs. (7) and (8). It is worth not-
ing that the energy as well as the spin and charge struc-
ture factors were measured numerically by bit manipula-
tions, thus leading to a very efficient algorithm. The only
source of systematic errors in the TMA comes from the
path-integral formulation of the partition function.

(l h= M ~ +charge qpIII'' ' g
—~ Cq yCq+k ) Cq )Cq+&

q

In the above equation, charge (spin) is associated with the
+ ( —

) sign. Translation invariance was imposed while
measuring the above observables. The static structure
factors are related to the dynamical structure factors
through

charge, spin( ) 2 I d~Xcharge, spin(k&~)

where the dynamical structure factors are defined by

Xcharge, spin(

gl(q, s,„„„,„,„(k)lq, &
I'

i,j
C. Formulation in terms of a vertex model —PE,. —PE .

X(e '+e ')5(ni —(E E, )) . —(12)
Figure l(a) shows how the one-dimensional t Jmodel-

may be mapped on the alternative two-dimensional
checkerboard lattice. We introduce a new lattice formed
by the diagonals going through the shaded squares and
rotate it by 45 . We now label the bonds of the new lat-
tice according to the following rules: if on a horizontal
bond of the new lattice an up (down) spin is present, we
label the bond with a 1 (2) and a zero otherwise. The
same holds for the vertical bonds. These rules lead to a
description of the one-dimensional t-J model in terms of a
fifteen-vertex model [Fig. 1(b)j. The equivalent observa-
tion for the XFZ model was first made by Barma and
Shastry yielding the well-known eight-vertex model.
From Baxter's results on the eight-vertex model, one
can then recover physical quantities such as the ground-
state energy. However, less work has been done on
fifteen-vertex models. Very recently, Golzer ' studied a
novel fifteen-vertex solution to the Sutherland equations.
It is interesting to note that in the special case J =2t, our
vertex weights fulfill Sutherland's equations derived in
Ref. 31. Further work in this direction is under progress.

In the above equation, g; ) denotes an eigenstate of the
Hamiltonian with eigenvalue E, .

As mentioned in the Introduction, the long-range be-
havior of the repulsive Hubbard model and of the t-J

M C J/t=3. 25
+: Exact result L=~, P=~. J/t=2

III. RESULTS AND DISCUSSION 0.0 0.2 0.4 1.0

We have carried out simulations for lattice sizes rang-
ing from I. =16 to 32, and at three different band fillings:
p=0. 75, 0.5, and 0.25 (p=—number of particles/I). The
temperatures were chosen low enough (Pt =15—30) so as
to get a good idea of the ground-state energy, spin struc-
ture, and charge structure. Our estimated ground-state
energy as a function of the filling and at J/t =2 is com-

FIG. 6. Energy per site as a function of the band filling for
the t-J model. J/t ranges from 1 to 3.25 and the inverse tem-
perature is set to P=15/t At J!t=2, o. nr estimated energy
(squares) is compared with the exact results of Ref. 11 (pluses).
As emphasized in the plot, the energy scales almost linearly
with band filling at J/t =3 and 3.25
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model at J/t =2 belong to the same universality class. '
The real-space correlations show a power-law decay. All
critical exponents are determined by a dimensionless
quantity K:
( n(r) n(0)) —Aor + A Ic os(2k Fr)r

+ Azcos(4kFr)r

(S,(r)S,(0))-Bor +BIcos(2kFr)r
—(1+1/k ) —(K +1/K )I' +CI cos(2kF r )r

(13)

(b (r)b(0))-Car

where r ))1 and b (r) =(1/&2)(c„~c„+I J
—c„Jc„+It).

In the above equations, we have omitted logarithmic
corrections. For the U/t ~ ~ repulsive Hubbard model,
K =0.5 independently of the band filling. Note that in
the repulsive Hubbard model, the spin-spin correlations
dominate due to the logarithmic corrections. In the t-J
model, J/t =2, K increases from K =0.5 to 1 as the
band filling increases from p=0 to 1. From the above
equations one may see that the pairing correlations dom-

inate the long-range order provided that K ) 1. This sit-
P

uation never occurs in the repulsive Hubbard model and
in the t-J model at J/t =2.

1. Quarter band fiiling (p= 0.5)

In the I,-J model, the hopping term and the Heisenberg
interaction term compete against each other. The hop-
ping term alone shows a 4kF (kF=pvr/2) charge den-
sity wave with power-law decay (non„) =p +(1/
2m )[cos(4kFr) —1 jr for r ) 1. On the other hand, the
Heisenberg term favors an antiferromagnetic alignment
of spins on adjacent sites. The ground state at J/t =0 is
degenerate in the spin degrees of freedom. This degen-
eracy is lifted by a small value of J/t and produces a 2kF
spin density wave. Since the t-J model reduces to the
large-U limit of the Hubbard model for J/t &(1, the
same charge structure and spin structure are expected. '

As J/t is enhanced, one expects S,h„,(4k~) to decrease
in magnitude and S,h„s, (2k~) to increase since charges
will gradually favor being on adjacent sites [Figs. 7(a) and

0.5

0.4—

I I I

/

I I I I

/

I I I I

1.0—

I I I

)

I I I I

I

I I I

L=32, Pt=20, bed=0. 125, @=0.5
J/t=3. 3, L=24, Pt=30

0.8

bO4
C$

CJ

0.4

0.1—
0.2

0.0
0

I I I I I I I I I 0.0 -".

0

0.5

1.0

O. B

0.6

0.4

0.2

0.0
0 1 2 3

0.0

FICx. 7. (a) —{d) Spin and charge structure factors of the t-J model at quarter band filling, and values of J/t ranging from J/t =1 to
3.5. For each value of J/t, the temperature was chosen low enough so as to get a good approximation of the ground-state spin and
charge structure. The x axis (wave vectors) covers half the Brillouin zone and for p=0. 5, one has 2kF =m/2 and 4kF =m. .
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7(c)]. The first clear cusp at 2k~ in the charge structure
factor may be seen at J/r =2 [Fig. 7(a)] and one may
guess it at J/r = 1.5 [Fig. 7(c)]. As a consequence of this
pairing, the 2k+ spin peak is reduced in magnitude as J/t
is enhanced [Figs. 7(b) and 7(d)]. As mentioned above,
for values of J/t +2 the pairing correlations, however,
never dominate the long-range order. As in the repulsive
Hubbard model, the spin-spin correlations for values of
J/t (2 seem to dominate the long ran-ge order.

The 2kF cusp in the charge structure factor survives
when J/t is enhanced from J!t=2.0 to 3.0 [Figs. 7(a)
and 7(c)]. The 4k~ charge cusp is, however, not apparent
any more. As mentioned above, it is the pairing of
charges on adjacent sites which destroys the 4kF charge
cusp and creates a 2kF one. The enhancement of the
charge structure factor at low values of the wave vector
may equally be explained by this pairing. As J/t is
enhanced in the above range, the 2kF cusp in the spin
structure factor is smeared out and a maximum develops
at k =sr [Figs. 7(b) and 7(d)]. This maximum at k =7r
rejects short-range antiferromagnetic correlations. At
J/t =3.1 [Figs. 7(a) and 7(b)], both the spin and charge
structure factors are relatively smooth functions of k and
thus only short-range charge and spin correlations are to
be expected. For this value of J/t, the spin structure fac-
tor may be compared to that of a gas of bound pairs (i.e. ,
a pair of electrons on adjacent sites in a singlet spin state)
which takes the form S,„;„(k)=0.5[1—cos(k)], where the
lattice constant is set to 1. This form qualitatively repro-
duces the Monte Carlo (MC) data.

Finally, at J/t ~ 3.3, a peak in the charge structure
factor develops at the longest wavelength (k =2m/L).
This instability towards long-wavelength charge fluctua-
tions corresponds to the onset of phase separation. As a
caricature of the phase separated state, one may consider
the limit J/t ~ ~, where the ground state consists of an
island of antiferromagnetically ordered spins. As a
consequence of this caricature, the ground-state energy
per site is expected to be equal to —pJ ln(2) up to correc-
tions of order t /(JL) and finite-size effects. The onset of
the linear scaling of the energy with the density may be
seen in Fig. 6. Note that in contrast to J/t =3.5 [Fig.
7(d)], J/t =3.3 [Fig. 7(b)] does not show a distinct peak
in the spin structure at k =~ corresponding to the forma-
tion of island of antiferromagnetically ordered spin, al-
though phase separation is present.

In summary, Figs. 8(a) —8(f) plot the real-space spin
and charge correlations at J/t = 1, 3.1, and 3.8. At
J/t = 1 the spin-spin correlations dominate the long-
range order, and one may see a distinct 2k+ spin density
wave [Fig. 8(a)]. On the scale of Fig. 8(a), the 4kF charge
density wave is, however, not apparent. At J/t =3.8 the
ground state is fully phase separated. The spin correla-
tions show antiferromagnetic order [Fig. 8(e)]. The
charge correlations are compared to those predicted by
the caricature [Fig. 8(f)]. The agreement is good. At
J/t =3.1 [Figs. 8(c) and 8(d)], only short-range spin and
charge correlations may be seen. In contrast to J/t =1,
the next-neighbor charge-charge correlation is greater
than the nearest next-neighbor one. The spin-spin corre-
lations show strong next-neighbor antiferro magnetic

correlations and no long-range order. They are com-
pared to those of a gas of bound pairs. At J/t =3.1,
both spin and charge correlations thus favor the existence
of bound pairs.

2. p=0. 75 and 0.25

Before phase separation, the charge and spin structure
factors for both the low-density data, p=0. 25 [Figs.
9(a)—9(d)], and the high-density data, p =0.75 [Figs.
10(a)—10(d)], show qualitatively the same behavior as for
p =0.5 [Figs. 7(a) —7(d)]. In both cases, as J /t is
enhanced the 2kF spin cusp is smeared out and a max-
imum is formed at k =~. Again, for values of J/t (2,
the charge structure factor shows a 4kF as well as a 2k~
cusp. For values of J/t )2, the 4kF charge cusp is not
apparent any more.

It is now interesting to compare the charge structure
factors of the t V[Fig. 11-(a)] and t Jmodels -[Figs. 7(a)
and 7(c)]. For small values of V/t (V/t=0. 5), the r V-
model shows a 4kF charge cusp. This is comparable to
the t Jmode-l at J/t =1 [Fig. 7(a)]. As V/t is enhanced
to V/t =1.9, the 4kF charge cusp is smeared out, but no
2kF cusp or further structure is formed as in the t-J mod-
el. In real space [Fig. 11(b)], and in contrast to the tJ-
model [Fig. 8(d)], one may see that in the t Vmodel the-
next-neighbor charge-charge correlation is always smaller
than the next nearest-neighbor one. The discrepancy of
the charge structure factors between the t-J and t- V mod-
els may be explained by the lack of mechanism in the t-V
model of forming energetically favorable bound pairs.

B. Phase separation

When comparing the MC data for the three considered
densities (Figs. 7 —10), one may see that in contrast to the
t Vmodel (2) m-odel, the onset of phase separation in the
t-J model is density dependent. At p=0. 25, J/t =3. 1

[Fig. 9(a)] the MC data favors a phase separated state.
However at J/t =3.1, p=0. 5 [Fig. 7(a)] phase separation
is not present. For the latter filling, J/t =3.3 shows
phase separation [Fig. 7(a)], however, p =0.75, J /t =3.3
[Fig. 10(c)] shows no phase separation. Thus, as the cou-
pling J/t is lowered, the breakdown of the phase-
separated state first occurs at high densities. As men-
tioned above, the onset of phase separation and the for-
mation of an antiferromagnetic island of spins do not
necessarily occur simultaneously. This feature is espe-
cially fIagrant at low densities. At p=0. 25, J/t =3.1

and 3.4 [Figs. 9(c) and 9(d)] the charge structure factors
show phase separation, but the spin structure factors
show no peak at k =~. The real-space charge and spin
correlations for p=0. 25, J/t =3.4 are plotted in Figs.
12(a) and 12(b). The spin-spin correlations compare very
well to those of a gas of bound pairs and the charge-
charge correlations show phase separation. Thus, when
phase separation first occurs at low densities, the
particle-rich phase is not a Heisenberg chain but a gas of
bound pairs. At p=0. 25, the formations of the antifer-
romagnetically ordered island of spins occurs at
J/t —3.5. In contrast, at p =0.75, phase separation and
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the formation of an antiferromagnetic island of spins
occur simultaneously at J/t -3.5.

In order to get more precise information on the values
of J, /t at which phase separation occurs, we have carried
out a finite-size scaling study of the quantity

S,h„s, ( 2~/L )X(L)=
S;h„,(2~/L )

(14)

In the above equation, S,'h„, denotes the charge struc-
ture factor of the fully phase separated state in which the
hole-rich phase consists of all holes. X(L) is thus a nor-
malized measure of the long-wavelength charge Auctua-
tions. X = 1 denotes the fully phase separated state
0 & X & 1, a phase separated state where the particle-rich
phase has p & 1, and X =0 a uniform charge distribution

(i.e., no phase separation). Here X=X(L—+ oo). Figs.
13(a) and 13(b) plot X(L) for the t V-model (2) as a func-
tion of V/t; L =16,24,32, and p=0. 5,0.2S. Note that
the t-V model has particle-hole symmetry so that the
values of X(L) for p=0. 25 and 0.75 are identical. As
mentioned in the Introduction, the t-V model shows a
first-order phase transition to a phase separated state at
V/t =2 and for all values of the band filling. In the ther-
modynamic limit and at zero temperature, one thus ex-
pects X to show a discontinuity at Vjt =2 (X =0 for
Vjt (2 and X=1 for Vjt )2). The onset of this singu-
larity may be seen in the Monte Carlo data since X(L)
scales to zero with the lattice size for V/t &2 and scales
to one for Vjt )2 [Figs. 13(a) and 13(b)j.

Figures 14(a) and 14(b) show the finite-size scaling of
X(L) for the t Jmodel a-t p=0. 25 and 0.75. In contrast
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to the t Vm-odel, the finite-size scaling of X(L) for the t J-
model shows a large density dependency. Our interpreta-
tion of the Monte Carlo results for the t-V model relies on
the fact that in the thermodynamic limit and at zero tem-
perature, the model shows a uniform charge distribution
(X =0) for V/t & 2 and a totally phase separated state for
(X = 1) V/t )2. This picture, however, does not hold for
the t-J model, since as mentioned above at low densities
one may find phase-separated states where the particle-
rich phase is a gas of bound pairs. Provided that those
states survive in the thermodynamic limit, the quantity X
may take intermediate values between zero and one and
the MC data merely provides an upper bound to J, /t At.
high density (p =0.75), X(L) shows qualitatively the
same behavior for both the t-J and t-V models. This
reAects the fact that at this filling phase separation and
the formation of an antiferromagnetic island of spins
occur simultaneously. The MC data thus yields
J, /t &3.5+0. 1 for p=0. 75 and J, /t &3.25+0. 15 for
p=0. 25. This upper bound compares well with the exact
diagonalization results of Ogata et al. They find that
the compressibility diverges at J, -3.5 for p =0.75 and at
J, /t —3.0 at p =0.25.

There are a number of mechanisms in which the fully
phase separated state may break down. Let us denote the
value of J/t at which this happens by J,"'/t. From our
Monte Carlo data, one may give a lower bound for J,"'/t:
J,"'/t )3.5+0. 1. Let us first estimate J,'"/t by using an
argument proposed by Emery, Kivelson, and Lin for
phase separation in the two-dimensional t-J model. The
cost in energy to remove one spin from the antiferromag-
netic phase is of —J ln(2), and the gain when inserting it
in the hole phase is —2t. The fully phase separated state
will thus be unstable to the transfer of one electron if

J/t &2.88. Let us now remove a pair of spins from the
antiferromagnetic phase. In the hole phase, the pair of
electrons may form a singlet state on adjacent sites (i.e., a
bound pair), thus minimizing the Heisenberg energy to—J. Taking into account the hopping term within
second-order perturbation theory yields an instability of
the fully phase separated state at J/t =3.22. As J/t is
decreased, there will thus be an instability to bound pairs
before single particles. Provided that the instability to-
wards three (or more) particle clusters occurs at values of
J/t &3.22, the Emery argument predicts Ji'i/t =3.22,
which stands in contradiction to the above lower bound.

Another mechanism that destroys the fully phase
separated state consists of holes penetrating into the
particle-rich phase. Putting a pair of holes in the antifer-
romagnetic state destroys two antiferromagnetic bonds.
This loss in energy may be compensated by a gain in ki-
netic energy for the holes. The value of J,'"/t corre-
sponding to this mechanism has been evaluated numeri-
cally by Ogata et al. and yields J,'"/t-3. 5, which is
consistent with the preced. ing lower bound. Furthermore,
the above value of J,'"/t coincides with the breakdown of
the antiferromagnetic island of spins for the three con-
sidered band fillings.

C. Critical exponents and pairing correlations

—S,„„,,p,„(k 2'/L ) . —(15)

From the static charge and spin structure factors, one
may calculate the charge and spin exponents and thus K

P
(13). Consider the quantity

b,„„s,,p,„(k,L/2) . =2S,h„, , ;„(k)

J t=2.2, b7.=
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FIG. l p. Finite-size scaling of the quantity (a) bohaz'ge(2k+ L/2) and (b) b,~;„(2k+,L/2) as defined in Eq. (15), at quarter band filling
aud at J/r =2.2. ~e have considered two temperatures pt =30 and 20 and lattice sizes ranging from L = 8 to 32. For lattices up «
L = 24 pt =20 is high enough so to get the ground-state properties. This may be seen by comparing the pr = 30 and 20 data fo«he
attice size L =24. Qn the other hand, the lattice size L =28 requires a lower temperature. In order to extract the critical exponent,

we have considered the pr =20 data for lattices up to L = 16 and the pt =30 data for the lattice sizes L =24 and 28. At L =32 we
were not ab].e to reach su+ciently low temperatures with the required accuracy. The least-squares fit to the form (17) is plotted and
yields + =O.93+O.2 and ~,'l"" =O. 84+0. 15. As mentioned in the text, the critical exponent are very sensitive to temperature.
Considering only the pt =20 data for the charge exponent yields K'""g' =1.32+0.2.
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The spin and charge correlations between the two
farthest points on the lattice may then be written as

( (nQ t+nQ $ )(ni /2 t+ni /2 $ ) )

4L bcharge spin(

Assuming that the quantity b (k, L/2) scales as (L /2) ",
the long-range correlations will be dominated by the k
value for which yk is maximal. The k values that come
into consideration are those for which the structure fac-
tor shows a cusp (i.e., a nonanalytical point). We have
tested the above procedure on free spinless electrons
[ V =0 in the t Vm-odel (2)] at quarter band filling and at
Pt =10. (Note that for free spinless electrons, the above
temperature is low enough so as to see the ground-state
properties of lattices up to 32 sites. ) From our finite-size
analysis, we obtained —2.03+0.04 for the 4k+ charge ex-
ponent and the exact result is —2.

%'e have measured the 2kF charge and spin critical ex-
ponents for the t-J model at J/t =2.2 and at quarter

band filling [Figs. 15(a) and 15(b)]. Applying the above
method to the t-J model is more diScult than for free
spinless fermions since one has to take into account the
logarithmic corrections to the correlation functions (13).
This may be done by fitting b,h„, , ;„(2kF,L/2) to the
form

b,h„, , ;„(2k~,L /2)

=a —K' ""'"ln(L/2)+ y ln[ln(L /2) ] .

Practically, the last term on the right-hand side of (17)
has as a consequence the blowing up the error bars on
EC'"" ""'"and rendering the critical exponents extremely
sensitive to temperature. In order to deal with the tem-
perature effects, we have adjusted the temperature to the
lattice size so as to get the ground-state properties for
each lattice size. Fitting the so obtained data to the form
(17) yields the following for the 2kF charge and spin ex-
ponents: %charge 0 93+0.2 and K'P'" =0.84+0. 15
(J/t =2.2, p=0. 5). If the t Jmodel at -J/t =2.2 belongs
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FICs. 16. (a) Equal-time pairing correlations in the extended s-wave channel as a function of J/t and at quarter band filling. (b)
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(squares) as described in the text. As may be seen, it is the off'-diagonal contribution that is responsible for the drop of pairing corre-
lations as one enters the phase separated state. (c) Temperature dependence of the pairing correlations.
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to the same universality class as that for J/t =2 (see ar-
guments in Ref. 32), Eq. (13) requires K' '"=K'"" '
=K, which (within the error bars) is consistent with the
MC data.

Within the Luttinger liquid theory, E is related to the
compressibility K through

both P"+ and P'+ grow with increasing values of J/t. As
one enters the phase-separated state, the number of
bound pairs (P +) still increases, while P ~ is drastically
suppressed. Finally, as the temperature is lowered, P +

S

increases [Fig. 16(c)j.

1

p K 2 K
IV. CONCLUSIONS

where U, is the charge velocity. Using the above equa-
tion, Ogata et al. have derived K . Their results com-
pare favorably with the MC data. They equally find a re-
gion before phase separation where E & 1, so that the
pairing correlations are expected to dominate the long-
range order (13).

We have measured equal-time pairing correlations in
the extended s-wave channel

(19)

where

b, g=v'2/L icos(k)cI, tc
k

Figure 16(a) plots P, at quarter band filling as a function
of the coupling J/t, f3t = 15, L = 16 and 24. For both lat-
tice sizes, and before phase separation, P + is very much

enhanced by growing values of J/t and shows a max-
imum at approximately J/t =3. In the phase-separated
state P + drops. It is interesting to note that the interac-

S

tion term of the t-J model may be written as

Jg(S; S;+,——,'n;n;+, )= Jgb; b; . — (20)

P"+ =—g(b; b; )
1

and into an off-diagonal term

The diagonal term merely counts the number of bound
pairs, while the off-diagonal term is a measure of the
correlation between pairs. Figure 16(b) plots both terms
separately for the 24-site lattice. Before phase separation,

Due to the minus sign appearing on the right-hand side
of the above equation, one may see that for growing
values of J/t bound pairs become energetically increas-
ingly favorable. In order to see this one may split P +

into a diagonal term

In conclusion, let us draw a qualitative phase diagram
of the one-dimensional t-J model. The charge and spin
structure factors before phase separation show qualita-
tively the same structure for the three considered densi-
ties (p=0.25, 0.5, and 0.75). At small values of J/t, the
model shows a U/t ~ ~ Hubbard-like character, namely
a 4kF charge cusp, a 2kF spin cusp, and the domination
of the spin-spin correlations at large distances. As J/t is
enhanced in the range 0 (J/t (J, /r, the 2kF spin cusp is
smeared out and the spin structure factor develops a
maximum at k =~. As for the charge structure factor,
when J/t is enhanced in the range 0&J/t &2, the 4kF
charge cusp is smeared out and one at 2kF is formed.
For values of J/t ~2 only the 2kF cusp in the charge
structure factor is apparent. Those changes in the spin
and charge structure factors as a function of the coupling
J/t may be seen as a consequence of the gradual pairing
of charges on adjacent sites as J/t is enhanced. Further
information on the formation of pairing correlations was
obtained by measuring the pairing correlations in the ex-
tended s-wave channel. The MC data show that they are
very much enhanced by growing values of J/t and before
phase separation. In contrast, the r Vmodel (2)-shows no
such pairing mechanism.

We have measured the 2kF charge (K'"" ') and spin
(K'~'") critical exponents at J/t =2.2 and at quarter
band filling. Provided that the model scales to the same
fix point as for J/t =2 (see arguments in Ref. 32), one ex-
pects K'"'" '=K'"'" —=K (13), which is compatible with
our error bars. In terms of K, the MC data thus support
that K is enhanced by growing values of J/t. One
equally expects K to take values greater than 1 (i.e.,

pairing correlation functions dominate the long-range or-
der) within a region 2(J/t (J, /t. Those expectations
are in agreement with the exact diagonalization results of
Ogata et aI.

Phase separation in the t-J model occurs in a very sub-
tle way. In contrast to the t-V model, J, /t is density
dependent: as J/t is reduced, the phase-separated state
first breaks down at large densities. Furthermore, the na-
ture of the particle-rich phase for low densities (e.g. ,
p=0. 25) is not restricted to a Heisenberg chain, since for
values of J/t within the range J, /t &J/t ~3.5 it takes
the form of a gas of bound pairs. The MC data provide
an upper bound to J, /t and yields J, /t & 3.5+0. 1 for
p=0. 75 and J, /t &3.25+0. 15 for p=0. 25, which com-
pare well with the results of Ogata et aI. In contrast to
the two-dimensional t-J model, the fully phase-separated
state does not break down through the diffusion of pairs
of particles in the hole-rich phase, but through the
diffusion of pairs of holes in the particle-rich phase.
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