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All the linear excitations are calculated in the random-phase approximation around a doped inhomo-
geneous Hartree-Fock state as well as the undoped uniform antiferromagnetic state in the one-
dimensional Hubbard model. Upon doping, shape modes appear, localized around an introduced hole,
as well as some "shake-off" branches related to combinations of local and extended Hartree-Fock orbit-
als. These modes are in addition to spin wave and ultragap branches in the pure antiferromagnetic state.
Some characteristics of the shape modes are similar to bare processes in the t-t'-J model derived from
the Hubbard model at strong coupling. Spectral weights in difterent susceptibility channels are calculat-
ed and shown to have peaks in low-energy regions, arising from specific shape modes.

I. INTRODUCTION

The description of quasiparticle excitations introduced
by doping holes or electrons into broken-symmetry
many-body ground states poses a central challenge for
understanding the thermodynamics and response func-
tions of many materials with strong correlations. Exam-
ples include self-trapped polaron (bag) states in charge-
density-wave (CDW), spin-density-wave (SDW), or super-
conducting backgrounds, arising in models with strong
electron-electron and/or electron-phonon interactions—
models such as the Peierls or Hubbard Hamiltonians and
their various extensions. These ideas are currently ap-
plied to a variety of electronic materials, particularly in
reduced dimension, such as high-temperature supercon-
ductors and synthetic metals.

A number of many-body techniques are being applied
to this issue, including analytic (e.g. , variational, 1/X ex-
pansion, slave boson) and numerical (exact diagonaliza-
tion, quantum Monte Carlo) approaches. The philosophy
that we take here is that a reasonably accurate scheme
maintaining flexibility and physical insight can play an
important role in guiding the search for appropriate Ham-
iltonians in relation to specific materials. Thus, for in-
stance, it is now clear that the doped half-filled 2D Hub-
bard model (much studied in the context of high-
temperature cuprate superconductors') is a highly "frus-
trated" system, which is an intrinsic problem for many
techniques. The important question is how additional
(physically motivated) terms added to the Hubbard mod-
el qualitatively change the doping states and their
interaction —terms coming from a two-band description,
electron-phonon interactions, for instance.

Here, we suggest that this qualitative level of under-
standing can be obtained by using random-phase-
approximation (RPA), approach to adding linear fluctua-
tions around true Hartree Fock (HF) solut-ions This gives.
access to quantization, and to both electronic and phonon
response functions. RPA has been extensively studied in
the context of spatially uniform ground states (e.g., a uni-
form CDW or SDW (Refs. [2—5])) where the fluctuations

spectrum is composed of purely extended modes. Our
main point here, however, is that RPA can be quite suc-
cessful even in doped situations if the true HF state,
which is in general spatially inhomogeneous, is used.
Otherwise the RPA Auctuations must change the false
HF state appropriately, except in weak coupling where
the homogeneous HF state is approximately true. The
same effect can be realized as a "dynamic renormaliza-
tion" of the background . The lesson is a familiar one in
a field-theory context such as the quantization of soli-
tons (or the equivalent formulation of Bethe-Ansatz
solvable models ), and leads to an RPA spectrum con-
taining both spatially extended scattering states and lo-
calized modes. The localized modes carry the predom-
inant ' quasiparticle" information. In this sense the RPA
is not a weak-coupling theory; indeed often improves
with coupling strength and is useful even if strongly local
structures in real space are present. Actually, a similar
philosophy is now appearing in attempts to extend local-
density-approximation (LDA) band structure to incorpo-
rate many-body corrections —perturbative corrections
are added to the (HF level) LDA band structure with
good success in some test cases.

We have begun to apply this approach to several model
Hamiltonians in 1D and 2D, including one-band and
two-band extended Peierls-Hubbard models. In this pa-
per we focus on the method and its application to a "sim-
ple" example, the 1D pure Hubbard model. This is a
convenient test case because it has been studied exten-
sively by many other techniques, and some properties are
known exactly via the Bethe-Ansatz' or equivalent
methods. This model shows that doped inhomogeneous
HF solutions produce spatially localized modes as well as
extended ones, in the linear excitation spectra. The local-
ized modes play important roles in determining quasipar-
ticle properties in appropriate susceptibility channels.

The present method, which has been developed by
Bohm and Pines" in the description of plasma oscilla-
tions and by Thouless' in a nuclear physics context, con-
sists in diagonalization for all particle-hole pair excita-
tions, regarding them as bosons. When Ne electrons exist
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in the ¹itesystem, there are (2N N—e) particle states,
Ne hole states, and therefore (2N N—e)Ne particle-hole
pairs. Considering creation and annihilation of all the
pairs, we have to diagonalize a 2(2N N—e)Ne
X2(2N N—e)Ne matrix. The size of the matrix may be
reduced if the HF solution has some symmetry, which is
not assumed here for arbitrary inhomogeneous HF solu-
tions.

As noted above, the present formulation has been more
familiar in nuclear physics. Its main advantage is that
eigenmodes obtained here do not depend on frequency
because al/ linear excitations are calculated. Thus it is
easy to obtain correlation functions within the RPA at
any frequency after solution of the eigenvalue problem
for particle-hole pair excitations. This is in contrast to
the other methods' '", where "bare correlation func-
tions" or bubble diagrams are summed infinitely by using
a 2iV X 2% matrix for the one-band Hubbard model.
Components of the matrix describe sites and spins. In
these methods, eigenmodes depend on frequency, and
therefore correlation functions are calculated at each fre-
quency. Such methods are powerful for the pure one-
hand Hubbard model because exchange interactions need
not be considered. More generally, the importance of ex-
change interactions depends on the specific model. How-
ever, in our approach they are automatically included on
the same footing as the direct interaction contributions.

When extended Hubbard interactions are studied, for
example coupling with phonons or longer-range interac-
tions, the present method is useful in the sense that these
interactions are taken into account on the same footing.
For example, exchange interactions are treated in the
same way as direct interactions. When electron-phonon
interactions are considered, particle-hole pair excitations
and phonons are treated equally. Some phonons may be
coupled with magnons, for example. The present method
is especially useful when detailed information on eigen-
functions and eigenfunctions are necessary, for example,
in the study of Raman spectra. It also makes sure that
information is not lost by selective frequency searches.

The major disadvantage of the present method is that
the matrix to be diagonalized has much larger dimen-
sions.

The outline of this paper is as follows: the formulation
is presented in Sec. II, and compared with the linear
spin-wave theory for the spin- —,

' antiferromagnetic (AF)
Heisenberg model in Sec. III. In Sec. IV, results are
presented for the one-hole case as well as the half-filled
case and compared with the t-t'-J model. Section V con-
tains a summary and some remaining issues.

stricted Hartree-Fock (HF) Hamiltonian,

Hnz= —tg(c, c;+& +c;+, c; )
l, a

~R~A =
A, &F &p

l
APV7(XP(V7 P APV70XP(V7

A.v& F & pw

AP V7kkP 0V7

where

(4)

Ug„, = U g (pg(E T)p,*(~ 4) —pg(~ l)p,*(iT)

X(P„(iT )P,(i l ) Pp(i l—)P (i T )),
tt ~„„=U g (P~(~ T )P*(i L ) Q~(i l )$*(—~ T ))

x(Pp(i T)P,(i $) P„(i $)P,(iT)—), (6)

and Ez and Pz(ia) are the energy level and orbital ob-
tained from the HF Hamiltonian FI~z. The operator g&„
stands for creation of an unoccupied HF orbital A, and
annihilation of an occupied HF orbital p, g&„=c&c„,and
is regarded as a boson creation operator.

f. 0g„k'..j = & f0~„0..j &~F=&~Pp..

+ —g (q;p, —m,.&; )
——g (q,. —m, ), (2)

l

with the self-consistency conditions

q =&p;&HF m;=&~;&HF

where p;=g c; c, , &,. =g @; o @;&, o stands for
Pauli matrices, and & &n„denotes the expectation value
in the HF state.

Next we go beyond the HF approximation. Creation
of particles and holes are defined by creation of unoccu-
pied HF orbitals and annihilation of occupied ones, re-
spectively. Then H —H~„contains various terms,
representing scatterings of particle-particle (p-p), hole-
hole (h-h), or particle hole (p-h) pairs, creation or annihi-
lation of p-h pairs, and scattering of a particle or hole ac-
companied by creation or annihilation of a p-h pair.
When only those terms are retained which represent
scattering, creation or annihilation of p-h pairs, the boson
Hamiltonian HRpA is obtained. ' . Then we diagonalize
the boson Hamiltonian,

II. HARTRKE-FOCK AND RANDOM PHASE
APPROXIMATIONS

In this paper, we study the one-dimensional, one-band
Hubbard model,

H = —t g (c; c, +, +c,. +, c; )+ U g c, tc; tc;tc;~,
i, a

with periodic boundary condition cz+ i
=ci, where N is

the number of sites. As a first step we solve the unre-

Here the indices A. and v denote unoccupied HF orbitals,
and p and ~ denote occupied ones. Commutation rela-
tions of g&„and g„are approximated by taking their ex-
pectation values in the HF state, thus the operators are
regarded as pure boson operators. The first term of the
boson Hamiltonian H~pA is derived so as to give the
same commutation relations with g&„and g„, as the HF
Hamiltonian Hz„, when Eqs. (7) and (8) are used for the
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former. Equations of motion of p-h pair excitations
around the HF state have thus been linearized by retain-
ing the linear terms with respect to gz„and g, :

~nkn=[HRPA~kn] ~

where

X
A. &F & p

(10)

with n labeling an eigenmode in the linear excitation
spectra.

The two-body Green function is generally written, by
the Lehmann representation, as

112„,(co) = i —j dt e' '(0~7 c„(t)c2(t)c c,lo)

n

(o~c„c2 ~n &(n)c,c,~o&

co (E„——ED)+i g

(0~etc„~n &(n~ctc2 ~0)

co+(E„E0) —i g—

Here, the indices are not restricted to either unoccupied
or occupied HF orbitals. The symbol g denotes an
infinitesimally small positive number. We obtain this
quantity within the RPA by solving Eqs. (9) and (10) and
identifying n ) and (E„—ED) with $„~0) and co„, respec-
tively. Here ~0) is the RPA ground state defined by
$„~0)=0. The matrix element (O~c„c2 n ) is given by

energy 0 (t IU) have been shown, in the large-U limit, to
be the same as those in the linear spin-wave theory of the
1D spin- —,

' AF Heisenberg model.
It has been found, in the 2D half-filled Hubbard model,

that the spin-wave spectrum, staggered magnetization
and ground-state energy obtained in the large-U limit in
the RPA are the same as those obtained in the linear
spin-wave theory ' ' . In analysis of self-energy correc-
tion within the RPA, (Refs. [17] and [18]), the lowest-
energy state for a hole added to the 2D half-filled Hub-
bard model has been shown to be the k =(+sr/2, +m/2)
state, as found in the t-t'-J model. ' . Interaction of holes
via transverse spin fluctuations within the RPA has been
reduced, to O(t IU), to that given for the t-J model. '

These RPA results have been obtained for linear excita-
tions around the uniform AF state. Some linear excita-
tions around inhomogeneous HF solutions have been in-
vestigated recently. ' '

The linear spin-wave theory for the AF Heisenberg
model not only works well in 2D (T =0) and 3D, but also
gives good estimation of the total ground-state energy
even in 1D, even though the 1D model does not have
long-range order. Thus the RPA may give fairly good re-
sults for some quantities for large U, though it is essen-
tially a weak-coupling theory taking only linear fluctua-
tions around HF solutions.

The linear spin-wave theory is known to give a loga-
rithmic divergence for reduction of the staggered magne-
tization and equal-time correlation function of transverse
spins, in 1D at T=O and in 2D at T)0, reflecting the
absence of long-range order. We have calculated the
equal-time correlation function of transverse spins in the
1D finite-U half-filled Hubbard model, in the RPA with
the exclusion of zero-frequency modes. This also shows a
logarithmic divergence with respect to the system size N.
The divergence in the reduction of the long-range order
means that the RPA fluctuations overcompensate the
broken symmetry.

There is another less serious problem related to zero-
frequency modes, which always exist when the continu-
ous symmetry possessed by the Hamiltonian is broken in
the HF solution, as shown later in Sec. IV. These modes
attempt to restore the broken symmetry. They give
divergent results for the two-body Green functions if the
matrix elements between them and the RPA ground state

.].(n) e
&~p if A, )F)p,

(O~ctc2~n &= q„'"„' if p)F) A, ,

0 otherwise .
(12)

Equivalence between this method and the usual diagram-
matic RPA method has been derived in Ref. [12]. It has
also been shown there that the RPA Green function thus
obtained satisfies the sum rule, which relates the frequen-
cy integration of the retarded RPA Green function,
weighted by co, to the expectation value of the double
commutator in the state ~0). Of course, the exact in-
tegrated spectral weight may differ from the RPA esti-
mate, particularly because of additional processes at
co )the HF excitation gap (-U)) t)—this will need to be
assessed for each specific model Hamiltonian.

III. COMPARISON WITH LINEAR SPIN-WAVE
THEORY

The large-U half-filled Hubbard model is reduced, to
O(t /U), to the spin- —,

' antiferromagnetic (AF) Heisen-

berg model with exchange coupling J=4t /U. In the
infinite U hmit, the HF solution is the spin-density-wave
state with saturated staggered magnetization or the clas-
sical Neel state. HF orbitals can be chosen to be local-
ized at a given site because of degeneracy in this case.
Then the operator gz„=czc„ is reduced to c2 ~c2„~,
C2m+iyC&n+i J, CgmgC2n+i$ Or C2m+i~C2n) When

m =( —1)'. On the other hand, in the linear spin-wave
theory' of the Heisenberg model, the spin operators are
described with the use of boson operators a, a, , b;, b as.
C" —~ — ~ A C' +
~2n C2n/C2nt a2n a d 2 +]~=Cn2n+]tc2n+f$ b2n+]
in the antiferromagnetic case with spin —,. In one dimen-

sion, the RPA excitation spectrum has been obtained for
the half-filled Hubbard model ', and the dispersion rela-
tion and the eigenfunctions for the excitations with low-
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are finite, although they may be neglected in the thermo-
dynamic limit. The linearization treatment given in the
RPA is not sufficient for the zero-frequency modes. It
wou1d be necessary for these to be treated differently than
finite frequency modes, as in quantization about classical
nonlinear fields. In the present study, we introduce a
very small positive number (10 '

) into the matrix ele-
ments which are related to the zero-frequency modes in
order to avoid numerical instability. Thus the zero-
frequency modes have very small but finite frequencies
(co„(10 ) and are treated in the same way as the other
modes.

IV. RESULTS

Here we present explicit results for the 1D Hubbard
model. The energy is given in units of t. We have first
obtained HF solutions with different U values. When a
hole is introduced into the half-filled system, a kink ap-
pears for small U ( ~ 5t ) and a kink-antikink bound state
for large U (&8t). Here a kink-antikink bound state
should be distinguished from the spin bag (polaron).
This is because spin density has an opposite sign at the
site where a hole is localized so that a kink and an an-
tikink are considered to be tightly bound around the hole.
There is an additional twist with a uniform pitch if neces-
sitated by the boundary condition. Solutions in the inter-
mediate U regime (5.5t ~ U~7. 5t) interpolate smoothly
between these two kinds of solutions, that is, have phase
jumps intermediate between ~ and 2~ at the defect,
where the phase is defined with respect to the staggered
magnetization. For very large U ( ~12t when N=12,
~ 9t when N = 11), a ferromagnetic core appears around
the hole. This is reminiscent of a Nagaoka ferromagnetic
state in the infinite-U limit with one hole, and indeed
the ferromagnetic" core increases in size with increasing
U. However, the state obtained here is not completely
ferromagnetic. The critical interaction strength for the
appearance of the ferromagnetic core depends strongly
on the system size.

We also calculate the correction to the HF ground-
state energy. It is given by the c-number term produced
in the course of diagonalization of the boson Hamiltonian
HRpA ~

' When the interaction U is absent, the correc-
tion is zero because the HF ground-state energy is of
course correct. In the half-filled case, the RPA overesti-
mates the correction by about twice as much as the exact
one for small U ( ~ 3t). When U is about 4t, where the en-
ergy difference between the HF result and the exact one
is the largest, the RPA overestimates the correction by a
factor of about 1.5. As the interaction strength U be-
comes larger, the RPA gives increasingly better results.
The interaction strength U/t =8, for which we choose to
show results here, is a region where the correction to the
HF ground-state energy is overestimated in the RPA by a
factor of about 1.1. When the interaction strength U is
extremely large (U ~ 20t), the comparison between the re-
sults for the half-filled cases with X =6, 8 obtained in the
RPA and by exact diagonalization shows that the RPA
slightly underestimates the correction by a few percent,
as found in the linear spin-wave theory for the 1D spin- —,

'

AF Heisenberg model in the thermodynamic limit. '

Comparison of our results for the one-hole system (with
X = 16 and Ult =8) with Bethe-Ansatz thermodynamic
results, at the corresponding density, shows that our
RPA underestimates ',he correction to the HF ground-
state energy by approximately 15%.

All the energies of the linear excitations are plotted in
increasing order in Fig. 1, for the half-filled system (a),
and for the one-hole system (b), with interaction strength
Ult =8 and system size X =16. When only the z com-
ponent of the spin densities m,~, p=x, y, z, is nonzero, as
in the cases shown in Fig. 1, the nth excited ~n ) is called
a transverse spin mode if (0~ &", ~n ) or (0~&~~n ) is finite
for some i, a longitudinal spin mode if (0~ &;~n ) is finite,
or a charge mode if (0~p, ~

n ) is finite. In case (b), a longi-
tudinal spin (charge) mode is mixed with charge (longitu-
dinal spin) modes to varying degrees.

A. Character of linear excitations in the half-filled case

In the half-filled case [Fig. 1(a)], low-lying linear excita-
tions are transverse spin modes and called spin-wave
modes. ' The lowest two linear excitations are Gold-
stone modes, which have zero energy and are related to
restoration of the spin rotation symmetry which is bro-
ken in the HF solution. Higher-energy linear excitations
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FIG. 1. Energies of the linear excitations for U/t =8 and
N =16. (a) Half-filled system. (b) One-hole system. The sym-
bols B,C, G, I. denote branch, continuum, Goldstone mode, and
localized mode, respectively.
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N
w "(O,l)= —y i(oiO„„in &i',

i=i
where 0;+1; is one of the following

]p;+1;—2 ~ Ci+1a ia+H. c.

(13)

(14)

& r+&;= —,
' g c;t+& err~;13+H. c. (y=x, y, z),

a, P
—lj i +1 i ci +1acia+ H' c'
2 a

(15)

(17)

The operators pi i and o'~; are the previously defined
charge- and spin-density operators pi i=p;, &~,. =o'~, re-
spectively. The operators p;+&, and &r+&; (l&0) are re-
garded as generalized charge- and spin-density operators,
respectively. For example, p; » i is a bond-charge-
density operator. The operators j, +, i and j;~+, , are pro-
portional to charge and spin current operators, respec-
tively, while j,. +&, and j r+&, (l&1) are regarded as gen-
eralized current operators.

The spin-wave modes have large amplitude only in
w "(&,l=O) and w "(&~,l=O). The dominant process in
the spin-wave modes is, therefore, annihilation of up
(down) spin at a given site and creation of down (up) spin
at the same site, or spin Aip without hopping which is
consistent with the usual picture in the linear spin-wave
theory for the Heisenberg antiferromagnet. The ultragap
modes have their largest amplitude in the process of hop-
ping to the nearest-neighbor sites without spin Aip
w "(j,l= 1), or charge transfer to the nearest-neighbor
sites. The transverse spin modes in the continuum have
large amplitude in w "(O, l) for O=cr, crrj, or j~ and
l=2n (n&0), while the longitudinal spin and charge
modes in the continuum for 0 =o.',p, j ', or j and
l=2n +1. Unlike the spin-wave modes or the ultragap
modes, the continuum mode processes are not limited to
a particular process with respect to the hopping distance
l. If spins are Aipped, they hop to the same sublattice. If
not, they hop to the other sublattice. They are consistent
with the Pauli principle. The cost energy about 2A = U in
the large- U regime.

In order to study total and relative momenta for each
linear excitation, we calculated w "(O,p ) and

are either charge, longitudinal spin or transverse spin
modes. The lowest energy of the latter is 7.51, which is
the same within numerical accuracy as the energy
difference 2A between the lowest unoccupied HF orbital
and the highest occupied one. The highest five linear ex-
citations have energies (8.64~ co„~8.80) larger than the
energy difference between the highest and lowest HF or-
bitals (8.51). These "ultragap" modes all have pure
charge character. We call the modes which are different
from the spin-wave or the ultragap modes the modes in
the continuum.

In order to see what process is important in each linear
excitation, we have calculated

w "(0,p ), respectively, where

w+-"(»~)= —X ~&OIO+k, k+, ~n &I'
k

(18)

and Ok, k+p is pk k+p =g~ck~ck+p~, or &L, k+p

&ck O.ryk+ & (y=x, y, z). Here the operators ck
and ck are Fourier transforms of c; and c;, respective-
ly. The total momentum is a good quantum number if p
and p+m are not distinguished in the half-filled case. Be-
cause of degeneracy between p and —p, each mode has
amplitude only in w +"(0,q ) for q =+@, +p +vr.

Meanwhile, distribution of the relative momentum in
w "(O,q) is not restricted to particular q's, except for
the fact that modes with total momenta 2'(2n)/N or
2m(2n + I)/X are only associated with relative momenta
2'(2m)/X or 2'(2m +1)/X, respectively, due to the
definition of these momenta.

For the spin-wave modes, p-h pairs with different rela-
tive momenta contribute with similar weights. In the
large-U limit, they contribute with equal weights. Pre-
cisely speaking, in this limit the p-h pair (A, , p) s with a
given total momentum (modulo vr) and opposite spins (in
terms of c and c operators) have a constant value for
llj~&"„~ 's and another constant value for y~&"„'*'s, where
diferent Q, ,p)'s correspond to diff'erent relative momen-
ta. The ultragap modes have contributions from p-h
pairs with various relative momenta, too. Meanwhile,
the modes in the continuum have contributions mainly
from p-h pairs with relative momenta +p, +p+m for a
certain value of p. This means that interaction between
p-h pairs with different momenta is weak for the modes in
the continuum. The continuum may be described almost
by the free p-h continuum. Note the "step" structure in
the continuum related to the finite number of sites.

B. Character of linear excitations in the one-hole case

In the one-hole case [Fig. 1(b)], the HF solution is a
kink-antikink bound state with a localized hole at the
16th or 0th site as shown in Fig. 2. The HF energy levels
are plotted in increasing order in Fig. 3. The lowest
fifteen HF orbitals are occupied.

The RPA excitation spectrum [Fig. 1(b)] now contains
both local and extended modes, which we discuss in detail
below. A feature is the appearance of branches of more
extended modes accompanying the localized gap
modes —these are analogous to "shake-off" spectra in
electron-phonon coupled systems, but here built from
spin and charge Auctuations.

The 1st and 16th HF orbitals are local orbitals with
down spin and even parity with respect to the location of
the hole. The 17th, 18th, and 19th HF orbitals are also
local orbitals with up spin and even, odd, and even pari-
ties, respectively. These orbitals can be understood if the
15th(= —1st), 16th(=0th), and 1st sites are considered to
have equal magnitude of charge density q and negative
spin density —I apd. if hopping of electrons between the
14th and 15th sites and the 1st and 2nd sites are neglect-
ed. With this approximation, HF energy levels and HF
orbitals are obtained as shown in Table I. The 1st and



RANDOM-PHASE-APPROXIMATION APPROACH TO. . . 2657

HF state
0 I I ~ ~ ~

TABLE I. HF solution in the three-site approximation.
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FIG. 2. The extra charge density, q; —1 (upper part) and the
z component of the spin density, m (lower part), in the HF state
of the one-hole system for U/t =8 and N = 16.
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Number

FIG. 3. The HF energy levels in the one-hole system for
U/t = 8 and N = 16.

16th to 19th local HF orbitals correspond to the 1st and
3rd to 6th orbitals, respectively, from bottom to top of
Table I. However, the local HF orbital is missing which
corresponds to the second one of Table I with down spin
and odd parity. The 5th, 9th, 13th, and 15th HF orbitals
have down spin and odd parity in the occupied ones, but

they are extended through the whole system.
The lowest fifteen linear excitations (B 1) are transverse

spin modes (spin-wave modes), which are distorted in the
vicinity of the hole. Only the first, G, is a Goldstone
mode. This has zero energy and is related to restoration
of the spin rotation symmetry which is broken in the HF
solution. The i dependence of (OIO,. In & for the Gold-
stone mode (n = 1) is shown in Fig. 4(a), where 0; is &;
(upper part) and &» (lower part). The quantities
(OIO;ln & with 0; being p, or &; are zero. Real and
imaginary parts are represented by solid and dashed lines,
respectively. The mode has even parity with respect to
the location of the hole. The spin-density profile is the
same as in Fig. 2, but appears in the perpendicular direc-
tion to the HF spin density. The dominant process in the
spin-wave modes, which include the Goldstone mode, is
spin fiip without hopping, as in the case of Fig. 1(a). The
spin-wave modes have contributions from various p-h
pairs.

The 16th linear excitation, L1, can be viewed as a
translational shape mode, as shown in Fig. 4(b), a spatial-
ly /ocalized mixed mode of charge and longitudinal spin
with odd parity. This mode has energy 1.14, slightly less
than the energy difference between the lowest unoccupied
HF orbital and the highest occupied one at 1.23. Its
dominant process is annihilation and creation of an elec-
tron without fiip or hopping [w' (p and &'1=0)]. Hop-
ping to the nearest-neighbor sites without spin Aip

[w '
(p, &',j and j', l = 1)] is the next most dominant pro-

cess. Hopping to the next-nearest-neighbor sites [w (j
and j', l=2)] is also comparable. The processes with
l=0, 2 are induced by the reduction of charge density
around the hole. This mode has contributions mainly
from the p-h pairs associated with the 16th local HF or-
bital for a particle state and with the 15th, 13th, 9th, and
5th extended HF orbitals for hole states. Some linear
combination of these extended HF orbitals may be
viewed as the missing local HF orbita1 when the local HF
orbitals are analyzed within the three-site approximation
(Table I).

The thirteen linear excitations, from the 17th mode to
the 30th mode, excluding the 22nd mode, form a branch,
B2. They have contributions mainly from the p-h pair
associated with the 16th local HF orbital and one of the
fourteen extended occupied HF orbitals. Each mode on
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this branch has a main process of hopping to a certain
site, which depends on the mode, with or without spin
Aip. There is no restriction on the hopping distance l, in
contrast to the case of Fig. 1(a), where transverse spin
modes have even numbers I and longitudinal spin and
charge modes have odd numbers l.

The 22nd linear excitation, L2 is a symmetric twist
shape mode, which is a spatially localized transverse spin
mode with even parity. This mode has energy 1.41,
within the region of the branch 82. Its main process is
spin flip without hopping [w (& and &~, l=0)]. This
mode has contributions mainly from the p-h pair associ-
ated with the 17th and 1st local HF orbitals. Thus, it is
distinct from the modes in the branch 82.

The 31st linear excitation, L3, is an amplitude shape
mode, as shown in Fig. 4(c), a spatially localized mixed
mode of charge and longitudinal spin with even parity.
This mode has energy 2.71. Its processes are similar to
those in the translational shape mode. The main process
is annihilation and creation of an electron without spin
flip or hopping [w '(p and &', l =0)]. Hopping to the
nearest-neighbor sites [w '(j and j ', /=1)] is the next
main process. Hopping to the next-nearest-neighbor sites
[w '(P and &', l =2)] is smaller. The mode has contribu-
tions mainly from the p-h pair associated with the 16th
and 1st local HF orbitals.

The thirteen linear excitations from the 32nd to 44th
modes form a branch, 83. They have contributions
mainly from the p-h pair associated with the 17th local
HF orbital and one of the fourteen extended occupied HF
orbitals. Each mode on this branch has a main process of
hopping to a certain site, which depends on the mode,
with or without spin Aip. In contrast to the branch 82,
and contrary to the case of Fig. 1(a), transverse spin
modes have odd numbers l and longitudinal spin and
charge modes have even numbers l. These are due to the
flipped spin density at the location of the hole.

The 45th linear excitation, L4, is an antisymmetric
twist shape mode, as shown in Fig. 4(d), a spatially local-
ized transverse spin mode with odd parity. This mode
has an energy 4.27. Its main process is hopping to the
nearest-neighbor sites with spin flip [w (j" and
j~, I = 1 )], which is due to the flipped spin density at the
location of the hole. This mode has contributions mainly
from the p-h pairs associated with the 17th and 19th local
HF orbitals for particle states and with the 13th and 9th
extended HF orbitals for hole states. This mode is also
considered to be related to the missing local HF orbital.

The thirteen linear excitations from the 46th to 58th
form a branch, 84, of almost extended modes. They have
contributions mainly from the p-h pair associated with
the 18th local HF orbital and one of the fourteen extend-
ed occupied HF orbitals. Their processes are similar to
those in the modes in the continuum mentioned later. If
spins are Aipped, they hop to the same sublattice. If not,
they hop to the other sublattice. Each mode has weight
distributed over all hopping distances l within the even or
odd sublattices, but the weight has a maximum on a cer-
tain l depending on the mode.

The thirteen linear excitations from the 59th to 71st
modes form another branch, 8 5, of almost extended

modes. They have contributions mainly from the p-h
pair associated with the 19th local HF orbital and one of
the fourteen extended occupied HF orbitals. Their pro-
cesses are similar to those in the modes in the continuum
mentioned later. If spins are Ripped, they hop to the
same sublattice. If not, they hop to the other sublattice.
But each mode again has a little preference for the hop-
ping distances l.

The 72nd and 73rd linear excitations, L5 and L6, are
antisymmetric and symmetric twist shape modes, respec-
tively, that is, spatially localized transverse spin modes
with odd and even parities, respectively. They have ener-
gies 7.12 and 7.22. Their main process is hopping to the
next-nearest-neighbor sites with spin flip [w (j" and
j~, l=2) and w (& and &~, l=2)]. These modes have
contributions mainly from the p-h pairs associated with
the 18th and 1st local HF orbitals, and the 19th and 1st
local HF orbitals, respectively.

The 164 linear excitations from the 74th to 237th
modes, form the continuum, C. The p-h pairs, which
contribute to them, are associated with the extended HF
orbitals for both particle and hole states. Their processes
are similar to the modes in the continuum in the case of
Fig. 1(a). If spins are flipped, they hop to the same sub-
lattice. If not, they hop to the other sublattice. Each
mode has weight distributed almost uniformly over all
hopping distances I within the even or odd sublattices.

The five linear excitations, 86, from the 238th to
242nd modes are the ultragap modes, their energies
(8.45~co„~8.78) being similar to those in the case of
Fig. 1(a). But their energies are less than the energy
difference between the highest and lowest HF orbitals.
All of them are extended charge Inodes, slightly mixed
with longitudinal spin modes. The p-h pairs which con-
tribute to them are associated with the extended HF or-
bitals for both particle and hole states. Their dominant
process is charge transfer to the nearest-neighbor sites.

The thirteen linear excitations from the 243rd to 255th
modes form another branch, 87. They have contribu-
tions mainly from the p-h pair associated with one of the
thirteen extended unoccupied HF orbitals and the 1st lo-
cal HF orbital. Each mode on this branch has a main
process of hopping to a certain site, which depends on the
mode, with or without spin Aip. Like the branch 83,
transverse spin modes have odd numbers l and longitudi-
nal spin and charge modes have even numbers l. These
are due to the Ripped spin density at the location of the
hole.

The highest (255th) linear excitation is a mixed mode
of charge and longitudinal spin, which has energy 9.57,
almost the same as the energy difference between the
highest and lowest HF orbitals. This is because this
mode has contributions mainly from the p-h pair associ-
ated with the lowest and highest HF orbitals.

The number of linear excitations in the four branches
82-85 is thirteen in each case. Qn the other hand, the
number of the extended occupied HF orbitals is fourteen.
The discrepancy between these two numbers may be due
to the missing local HF orbital, as indicated when the lo-
cal HF orbitals are analyzed in the three-site problem
(Table I).
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C. Comparison with the t -t'-J model

It is interesting to compare the picture obtained in the
present RPA with that in the t-t'-J model, which is de-
rived from the large-U Hubbard model. In the t-t'-J
model, the process of 0(t5), where 5 is the hole density,
is hopping to the nearest-neighbor sites without spin Aip
only when they are unoccupied. The process of 0 (t IU)
is the antiferromagnetic exchange coupling, which ap-
pears in the spin- —,

' Heisenberg model. The process of
0 (t 5IU) is hopping to the next-nearest-neighbor sites,
with or without spin Rip, only when they are unoccupied.

In our case, the hopping to the nearest-neighbor sites
without spin fiip in the translational shape mode (n = 16)
and the amplitude shape mode (n =31) would corre-
spond to the process of 0(t5) in the t t' J-mo-del. The
hopping to the next-nearest-neighbor sites, with or
without spin fiip, in the twist modes (n =72, 73) or
translational and amplitude shape modes (n = 16,31), re-
spectively, would correspond to the process of 0 (t 5/U)
in the t -t '-J model. However, the hopping to the
nearest-neighbor sites with spin Hip in the antisymmetric
twist mode (n =45) does not correspond to any bare pro-
cess in the t -t'-J model.

There are two main differences between the two pic-
tures. First, the RPA studies linear Auctuations around a
HF solution. These consist of fluctuation in generalized
charge, spin, charge current, and spin current densities.
When an electron with a certain spin is hopped from a
given site, there is no longer an electron with the same
spin left. But, the RPA treats this process only as a
change in the densities. Therefore, if the motion of elec-
trons were too slow to compensate the inhomogeneous
densities, the RPA would not take so much into account
the fact that after hopping there is no electron with the
same spin. On the other hand, this is taken in the t-t'-J
model. When the on-site correlation limits hopping
strongly and the motion of electrons is slow, it would be
most direct to approach from the t-t'-J model. Thus the
dominant process of the translational and amplitude
shape modes, one without spin Hip or hopping, may be
due to a change in the densities, which is not described by
the t -t'-J model.

Second, the elements in the RPA are p-h excitations,
some of which have extended character in one or both of
the particle and hole states. For example, the main pro-
cess of the modes in the branch 82 is hopping to a cer-
tain site. But the hopping distance I is not restricted to
small values like l =0, 1,2 because of extended character
in the hole states. Thus, the modes in the continuum C
have more extended character. Hopping to different sites
within a sublattice occur with almost equal probabilities.
By contrast, all the elements in the t-t'-J model are spins
which are almost localized due to the constraint imposed
on hopping.

The local modes L1-L6 would contribute to coherent
motion of the hole with internal oscillation. However,
the modes in the branches B2-85 are composites of
both local and extended HF orbitals, representing
transfer from local (extended) to extended (local) orbitals.
They would disturb the coherent motion of the hole, i.e.,

contribute to incoherent motion. Thus they may be relat-
ed to the marginality of one-dimensional fermion sys-
tems, which are described by the Luttinger liquid.
Their behavior in higher dimensions will be of particular
interest from this viewpoint.

D. Spectral weights in diferent susceptibility channels

Hereafter we present the frequency dependence of
imaginary parts, vr

' Imp, (q, co) and vr
' Imp, (l, co), of

susceptibilities,

y, (q, ~)=g e'~'g, (l, co),
I

(19)

y, (l, co)=—g J dt e' 'i(0 V'0;(t)O;+&~0),
l

(20)

respectively, for various Hermitian operators 0;, where
0, is p; (charge density), &r (spin density), j, +i, (charge
current), or j;+i,. (spin current). These quantities are
easily derived from Eq. (11) for the two-body Green func-
tion.

The imaginary parts of susceptibilities at q=~ are
plotted for the transverse spin (0, =& "; or & ~), longitudi-
nal spin (0, =&', ), and charge (0, =p;) channels in Figs.
5(a)—5(c), respectively, with the same parameters as in
Fig. 1. Each figure shows results in the one-hole system
(solid line) as well as in the half-filled system (dashed
line). The delta peaks have been broadened with
Lorentzians of width 0.001 in (a) and 0.05 in (b) and (c).

In the transverse spin channel [Fig. 5(a)], the Gold-
stone modes at zero frequency show a large tail in the
half-filled system and a much smaller tail in the one-hole
system. The Goldstone mode in the one-hole system
shows a tail also at other momenta, but that at q =a is
the largest. The one-hole system has intensity in the
low-energy region, whereas the half-filled system does not
(on this scale) if the contribution from the Goldstone
mode is subtracted.

In both the longitudinal spin and charge channels
[Figs. 5(b) and (c)], the half-filled system has intensity
only in high-energy regions (co) 7.5). However, the one-
hole system has a peak at co=2.7 in the intermediate-
energy region, arising from the amplitude shape mode,
and weak intensity in the low-energy region (1 &co(2).
This intensity is bleached from the high-energy region, in
proportion to the hole density.

In the half-filled system, longitudinal spin excitations
and charge excitations are distinguished, and have peaks
at different frequencies in the imaginary parts of the
respective susceptibilities. However, these excitations are
mixed to varying degrees in the one-hole system. In par-
ticular, the amplitude shape mode has strongly mixed
character of charge and longitudinal spin.

The imaginary part of the longitudinal spin susceptibil-
ity at l =0 is plotted in Fig. 6, with the same parameters
as in Fig. 1. This figure shows results in the one-hole sys-
tem (solid line) as well as in the half-filled system (dashed
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line), broadened with a Lorentzian of width 0.05. The
one-hole system has a peak at co=1.1, from the transla-
tional shape mode and a peak at ~=2.7, from the ampli-
tude shape mode.

The imaginary part of the charge current (0, =j, +, , )

susceptibility at q =0 is plotted in Fig. 7(a), with the
same parameters as in Fig. 1. This shows results in the
one-hole system (solid line) as well as in the half-filled sys-
tem (dashed line), broadened with a Lorentzian of width
0.05. The one-hole system has a peak at co=1.1, from
the translational shape mode. This mode would be im-
portant for coherent motion of the quasiparticle.

The imaginary part of the transverse spin current
(0;=j;"+, ; or j;+, ;) susceptibility at q =0 is plotted in
Fig. 7(b), with the same parameters as in Fig. l. This
shows results in the one-hole system (solid line) as well as
in the half-filled system (dashed line), broadened with a
Lorentzian of width 0.05. The one-hole system has a
peak at co=4. 3, from the antisymmetric twist shape
mode.

The susceptibilities suffer the RPA divergence inherent
in the 1D system, as already mentioned. Consequently,
their magnitudes may be misleading. However, the
overall structure of the frequency dependence of the sus-
ceptibilities should give important information on low-
lying excitations and their qualitative origins.

The HF solutions violate the discrete translational in-
variance (defined on the lattice) and the continuous spin
rotational invariance, which are known to be preserved in
the Bethe-Ansatz solution. ' However, in the present
study of linear excitations around inhomogeneous HF
solutions, translational invariance of the system is not re-
stored. It would broaden the positions of the local HF
orbitals to form polaron bands, would broaden some of
the excitation spectra obtained in the imaginary parts of
the susceptibilities, and would make the excitation spec-
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trum of charge modes gapless in the thermodynamic lim-
it.

The restoration of the spin rotational invariance would
make the lowest spin-wave mode (q =n.) or the Goldstone
mode have a finite energy of 0(1/N) F.or the spin-wave
theory, introduction of a chemical potential term for the
bosons restores the sublattice symmetry, avoids the
divergence, and gives good results, close to exact ones,
for finite systems even in one dimension. This modified
spin-wave theory is closely related to the Schwinger bo-
son technique, as shown in Ref. 28. It is not clear at the
present time, however, how this technique can be extend-
ed to the finite-U Hubbard model.
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V. SUMMARY

In this work all linear excitations have been calculated
around HF solutions in the one-dimensional Hubbard
model in the RPA. In the half-filled case, the RPA gave
good results for the correction to the HF ground-state en-
ergy in the large-U regime. The linear excitations consist
of the spin-wave modes, the ultragap modes, and the
modes in the continuum. The spin-wave modes have spin
Aip without hopping as a main process, while the ultra-
gap modes have charge transfer to the nearest-neighbor
sites. Both of them result from interaction between p-h
pairs.

When a hole is introduced into the half-filled system,
various HF solutions are obtained including a kink state
for small U, a kink-antikink bound state for large U, and
a state with a ferromagnetic core around the hole for very
large U. Linear excitations are calculated around the
kink-antikink bound state in detail. There are five addi-
tional branches and six local modes. Each branch has
contributions mainly from one of the five local HF orbit-
als for either particle or hole states. The six local modes
consist of a translational shape mode, an amplitude shape
mode, two symmetric twist modes, and two antisym-
metric twist modes. They have contributions mainly
from local HF orbitals for both particle and hole states.
The main processes occur locally not only in the spin-
wave modes and the ultragap modes but also in the shape
modes. Some processes of the shape modes are similar to
bare processes in the t -t'-J model. We have also calculat-
ed spectral weights in different susceptibility channels
and found peaks in the low-energy region, arising from
appropriate shape modes.

There are several remaining issues. The zero-
frequency modes should be treated differently from finite
frequency modes. Tunneling between the states with
different locations of the hole should be considered to re-
store the translational invariance. The two-body Green
function should satisfy sum rules, including an f-sum
rule, where expectation values are calculated in the ex-
act ground state. Self-energy correction should be calcu-
lated for investigation of single-particle properties, after
the problem of the divergence (in 1D) in the reduction of
the staggered magnetization is solved, which results from
the RPA self-energy correction. The validity of the RPA
should be tested by exact finite chain methods, especially
for m ~ the HF excitation gap where our basic approxi-
mation is most sensitive to other interactions. We also
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note that a self-trapped exciton will be described well in
the present HF plus RPA, but not in the usual homo-
geneous RPA.

In future work, nearest-neighbor repulsion and
electron-phonon interaction will be included —to date
effects have been studied mainly for homogeneous HF
solutions. The present approach will be applied to mul-
tiband extended 1D Hubbard models, which mimic
halogen-bridged transition metal linear chain complexes
and are considered as one-dimensional analogs of models
related to high-temperature superconductors. ' Above
all, application to the two-dimensional Hubbard models
is attractive and under study.
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