
PHYSICAL REVIEW 8 VOLUME 44, NUMBER 6 1 AUGUST 1991-II

Quantum-spin-chain realizations of conformal field theories
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W'e present a series of one-dimensional quantum Hamiltonians that, at certain critical points, realize
the minimal series of conformal field theories with central charge less than one. The models consist of
ferromagnetically coupled SU(2) spins in a transverse magnetic field. The infinite-spin (free-boson) limit
is especially studied after performing the Holstein-Primakoff transformation. The analysis can be gen-
eralized to SU(3) quantum chains. These realize a different series of conformal field theories at criticali-
ty.

I. INTRODUCTION
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These CFT can occur in statistical models where two in-
teger variables sit on each lattice site. ' The states then
correspond to the points in the weight diagrams of vari-
ous representations of SU(3). ' Other coset models
known from statistical mechanics include [SU(N)x.
X SU(N)L ]/SU(N)tc+I, and the parafermion theories
with Ztc symmetry SU(2)x-/U(1) having
c =2(K —1)/(K+2). The CFT SU(2)x with
c =3K/(K+2) are realized by quantum spin chains with
certain isotropic polynomial interactions between
nearest-neighbor spins, with K =2S for the spin-S mod-
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In spite of the impressive success of exactly solvable

Soon after the advent of conformally invariant field
theories (CFT) in two dimensions, statistical-mechanics
models were identified that can realize such theories at
critical points describing second-order phase transi-
tions. By now a very large number of exactly solvable
statistical models are known to provide examples of
CFT.

Many CFT can be obtained by coset constructions
from Lie groups. ' The minimal unitary series with the
central charge c (in the Virasaro algebra) given by

c=l— 6
(K+2)(K+3)

can be written as [SU(2)x. X SU(2)i]/SU(2)++i. Here K is
a positive integer and SU(2)tc denotes a level-K-affine
Kac-Moody algebra based on the classical Lie group
SU(2). ' The theories in (1) are realized by the statistical
models in Refs. 5 and 6 where there is an integer variable
which sits on each site of a square lattice and takes values
from 1 to K +2. Integers on neighboring sites must differ
by one. The states on the lattice links can therefore take
K+1 different values. These states will be identified with
spins in our models.

For the cosets [SU(3)x. X SU(3),]/SU(3)tc+ „the central
charge is

y)2+ y2(K+1)
2 P (3)

Here P is a function of two coordinates t and x. This
theory has a multicritical point where % +1 phases have
merged and become indistinguishable from each other.
[Below the critical temperature, the potential V(P) has
K+1 distinct minima with the same energy. These cor-
respond to that many equilibrium phases with the same
free energy. ] Note that in the limit K~ ~, the multicrit-
ical theory describes a free massless boson since the po-
tential vanishes in the neighborhood of /=0. Such a bo-
son constitutes a CFT with c =1 which is also the
infinite-K limit of (1). The LGZ approach to CFT will
often be used below.

The facts that the series in (1) is given by cosets of the
group SU(2) which has rank one, and that the LGZ
description of the series in (3) contains one scalar field are
related. Further, the LGZ potential V(P)=gg ' +" at
the critical point has the Weyl symmetry of SU(2). '

Denote the three generators of SU(2) by (S+,S,S, )

where S, forms the Cartan subalgebra and S+ are the
ladder operators. The Weyl group has two elements.
The nontrivial element reflects (S+,S,S, ) to
(S+,S,—S, ). We identify the expectation values of S,
in the various phases with the minima of V(P) below the
critical temperature. At the critical temperature, all the
phases coalesce and V(P) has a single minimum at /=0.
Under the Weyl refiection P~ —P, V(P), and (t)„P) in

(3) are both invariant. In Sec. II the kinetic term (t),P)
will be identified with S„=S++S . The sum of the
ladder operators is certainly Weyl symmetric.

For the SU(3)-coset models in (2), the LGZ description
uses two scalar fields Pi and $2. SU(3) has two generators
S1 and S2 in its Cartan subalgebra, and the ladder opera-
tors E, + and their Hermitian conjugates E, , with
a =1, 2, and 3. The expectation values of S, and S2 in

statistical models in providing concrete examples of CFT,
it is instructive to study the subject from other points of
view. Zamolodchikov's Landau-G. inzburg (LGZ) theory
is one example of an alternative approach. ' The
minimal series in (1) is described in terms of the (K+1)-
fold multicritical point of a scalar field theory with an
effective Lagrangian
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the various phases of a statistical model are denoted by Pi
and Pz, respectively. The LGZ Lagrangian is

Ising model with nearest-neighbor ferromagnetic interac-
tions. The Hamiltonian for a chain with X sites is

(4) N

Hg = g [—,'(S;, —S;+, , ) +ps,„] . (6)

The Weyl group now has six elements. The group is gen-
erated by 2m/3 rotations in the (P„Pz) plane, and a
refiection to ( —P„Pz). By Weyl symmetry, the potential
can only be a function of a&=/, +Pz and P&=Pz 3gz—gi.
The term (B„P,) +(8 Pz) is Weyl symmetric. It will be
shown in Sec. III that (B,P, ) +(B,gz) arises from the
generator

3
T= g (E,++E, )

a=1

which is also Weyl symmetric. The first member (K =1)
of the SU(3) series has c=4 and corresponds to the
three-state Potts model. The LGZ Lagrangian for it was
written long ago and it has the required Weyl symme-

16

In this paper we express the two series in (1) and (2) in
terms of quantum-spin-chain models. SU(2) is studied in
detail in Sec. II, while Sec. III analyzes SU(3) more
briefly. The spin chain models arise in the quantum
Hamiltonian limit of the row-to-row transfer matrix T of
appropriate two-dimensional statistical models. ' In this
limit, the couplings between the spins in one row and the
next are taken to infinity while the couplings between
spins in the same row go to zero in proportion to a small
parameter ~. As ~~0, the transfer matrix takes the form
T=exp(&H&) where H& is the Hamiltonian of a quan-
tum chain. The ground state (or states) of this model cor-
responds to the equilibrium phase (or phases) of the sta-
tistical model.

The one-dimensional quantum systems we will study
are not exactly solvable, but they have the virtue of being
amenable to well-known methods of perturbative and nu-
merical analysis. We have the additional motivations
that CFT have not so far been extensively studied from
this point of view, and that the connection to the LGZ
description is more transparent for the quantum chains
than for the exactly solvable statistical models.

A key role in our analysis is played by the Holstein-
Primakoff (HP) transformation from the generators of
SU(N) to bosonic creation and annihilation operators.
This is well known and widely used for SU(2) spins. ' '
We generalize HP to the symmetric representations of
SU(3) in Sec. III. HP is particularly useful for studying
the infinite-E (free boson) limit of the SU(N) cosets in
Eqs. (1) and (2).

II. SU(2) QUANTUM SPIN CHAINS

At a second-order critical point, quantum models have
a vanishing energy gap. On considering the spectra of
low-momentum excitations (with wavelengths much
larger than the lattice spacing), we find one or more rela-
tivistic massless dispersion relations ai(k) =vk, where v is
the "velocity of light" and k is the momentum. In this
way, a CFT is recovered. Consider, for example, the
quantum model which is related to the two-dimensional

A spin- —,
' object sits at each site. The operators S;, are

given by the three Pauli matrices o.;, /2. The transverse
magnetic field y plays the role of temperature in the cor-
responding statistical model. For small fields 0~y (y*
(where y*= —,'), the ground state is doubly degenerate in

the thermodynamic limit X~~. Both states are or-
dered and have nonzero expectation values

(The values in the two states have opposite signs by Weyl
symmetry. ) For y) y*, there is a unique disordered
ground state with (S, ) =0. In both these regimes, the
low momentum spectrum has a gap and correlation func-
tions decay exponentially at large distances. As a relativ-
istic field theory, one has a free massive Majorana fer-
mion. Exactly at the critical point y, the energy gap
vanishes and the long-distance correlations decay alge-
braically. We then get a massless Majorana fermion
which constitutes a CFT with c=—,'. This is the first
number (K = 1) of the SU(2) coset series.

We will generalize (6) to higher spins and argue that
these models have a multicritical point realizing a CFT
with c given in (1). The integer K is related to the spin by
K =2S. Our models are the simplest possible ones which
are Weyl symmetric and have a critical point where
%+1 phases simultaneously become indistinguishable.
In addition to the terms in (6), the models contain an on-
site interaction given by a finite polynomial in S;,. The
degree of the polynomial is [S], the largest integer less
than or equal to S. The Hamiltonian is

—(S;,—S;+, , ) +ps, + g az„S,,"
n=1

Consider the phase diagram of (7) in the ([S]+1)-
dimensional parameter space (y, az„). At the origin
(0,0), the ground state is (K+ I)-fold degenerate. In
each state, the spins at all sites have the same value of
S,=m where m = —S, —S+1, . . . , S distinguishes be-
tween the various phases. [We will use the notation
(S, ) =m (y ) and m =m (0) below. ] As y is increased
from zero, the coefficients a2„must be correspondingly
tuned in order to maintain the same degree of degeneracy
for the ground state. In any state m, the spins at some
sites start fluctuating to values of S, different from m and
(S, ) begins to approach zero. When y reaches a critical
value y*, and the a2„'s correspondingly go to a2„, the
K + 1 states become indistinguishable and one has a
unique disordered ground state with (S, ) =0. [We will
not investigate what happens beyond y . The S & —,

' mod-
els do not enjoy the duality symmetry of Eq. (6) whereby
y and I /(4y) are related. ] The number [S]of the az„'s is
exactly sufficient so as to be able to tune %+1 states to
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the same energy. We therefore have a line
parametrized by y which runs from the origin (0,0) to
the multicritical point P = ( y*,az„).

At the point P, one expects a CFT with c given by (1).
This is because our models have the same (Weyl) symme-
try as the ones solved exactly in Refs. 5 and 6, and have
the same degree of multicriticality %+1. By universali-
ty, they must both describe the same CFT at that critical
point. (For S=—,

' and 1 we know from earlier works that
CFT with c =

—,
' and —,', are obtained. ' ' ')

Our calculations will proceed as follows. First, we find
an equation for the line A by a perturbative expansion in
small y. (This is analogous to a low temperature expan-
sion in statistical mechanics. ) Along that line in the
phase diagram we study how the expectation value m(y)
in a given phase I approaches zero. By applying a sim-
ple ratio test we estimate the location of the critical point
P. (For illustrative purposes we will present the complete
phase diagrams for spin 1 and spin —', .) Finally, we argue
that it is consistent for the S~~ limit to reduce to a free
massless boson at criticality. We give heuristic argu-
ments to show that the infinite S limit can fit into the
LGZ approach.

At the beginning of the line A where @=0, all the
K + 1 states have zero energy. In any state m, excitations
consist of one or more spins differing from m. Using
Rayleigh-Schrodinger perturbation theory we determine
how the ground-state energies E(m, y, a2„) change with
increasing y, and how the a2„'s must be adjusted so that
E(m, y, az„) may continue to remain independent of m.
The perturbative expansion parameter turns out to be y
rather than y, essentially because all representations of
SU(2) are real rather than complex [namely, the symme-
try (S„,S~,S, )~ ( —S,S,—S, ) can be implemented uni-

tarily]. We take S to be arbitrary and keep all the az„'s
from n =1 to ~ for our calculations. For any particular
S, one can then truncate keeping only the first [S] of the
az„'s by using the fact that S," for n ) [S] can be ex-
pressed in terms of the first [S]powers of S, and the unit
matrix I.

To order y we discover that only a& and a4 need to be
changed from zero, that is,

a2= —
—,'y +[—,', S(S+1)——")y

a4= —
—,', y4 .

It can be shown in general that the series expansion for
az„begins at order y ". This will prove to be important
later.

The line A =(y, a2„(y)) is actually a first-order transi-
tion line on which K+1 different phases coexist. Take
S=1, for example. The Hamiltonian in (7} is a particular
case of the Blume-Emery-Gri5ths model, ' which is
known to have a tricritical point (realizing a CFT with
c =

—,', }. Figure 1 exhibits the phase diagram. In the or-
dered region 0 lying below the line A, the phases m =1
and —1 coexist with (S, ) )0 and (S, ) (0, respectively.
Above A, the disordered ground state D has (S, ) =0.
As A approaches the tricritical point P, the values of
(S, ) in the phases m =+1 go to zero. The solid line B in

FIG. 1. Phase diagram of the spin-1 model. The dashed and
solid lines A and B indicate lines of first-order and second-order
transitions, respectively. 0 and D denote ordered and disor-
dered regimes. P is a tricritical point.

the figure is a line of second-order-phase-transition points
of the usual Ising type (a CFT with c =

—,'). In Ref. 21 the
numerical estimate of the coordinates of P is
(0.416, —0.090) which is consistent with Eq. (8).

As another example, the S=
—,
' phase diagram is shown

in Fig. 2. This has two ordered phases 0& and Oz. In
0„the phases m =+—', coexist while in Oz, I=+—,

' coex-
ist. At point P, all four phases coalesce to produce a
CFT with c = 4. (The arrangements of first- and second-
order transition lines shown in Figs. 1 and 2 are the sim-
plest examples of the configurations allowed by Landau's

FIG. 2. Phase diagram for spin 2. There are two ordered re-

gimes 0& and 02, and two second-order transition lines B& and

B2. P is a multicritical point.
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general theory of phase transitions. )

The phase diagrams become increasingly complicated
as S increases. The multicritical point I' always lies at an
intersection of the first-order line 2 and several second-
order surfaces. Although the complete phase diagram is
hard to visualize as S~~, we will see that the model be-
comes quite simple exactly at P.

We now consider the expectation value (S, ). One
could study this in any one of the %+1 phases dis-
tinguished by m. Following Ref. 17 we begin with the
Hamiltonian

Hg(0) =Hg+ 0 g S.. . (9)

where H& is given in (7) and 0 denotes a longitudinal
magnetic field. Let E(m, y, 0) be the expectation value of
H&(0) in the state m(y, 0) at some point on the line A.
We calculate E(m, y, 0) perturbatively in y but exactly in
0. The expectation value (S, ) is given by

1 BE(m, y, 0)
N B0

(10)

We now apply a ratio test to determine the critical point
y* and an exponent P. We assume that m(y) fits the for-
mula (1—y /y* )~ and expand the latter to order y . A
comparison with (11) yields two equations for y* and 13.
These give

, = —", [S(S+1)—m ]+—",

'V
(12)

and P=y* /2. (Note that for S=—,
' and m =+—,', these

values of y* and g agree with the exact results. '
) Unfor-

tunately, the estimate for y* in (12) depends on the vari-
able m. Since we are eventually interested in the infinite
S limit and want results which are independent of S in
that limit, we should consider values of m much smaller
than S. We thus get y* ——„S . However, this value
should not be taken too seriously because we only used
two terms (the minimum number necessary) to apply the
ratio test. The only information we can extract with
some confidence from the above is that y* —1/S as
S~~. Since a2„starts with y ", it is reasonable to sup-
pose that az„-S

Now we do a spin-wave analysis at large S.' ' At
S~~, the configuration of spins can be viewed classical-
ly to lowest order in 1/S. Since S, is absent in (7), the
ground state must have all the spins lying in the (x,z)
plane. At y=0, the spins all point in the same direction
and the ground-state energy is zero regardless of that
direction. As the magnetic field y increases, the spins
start tilting toward the negative x direction. At y*, they
all have the classical values (S,S,S, ) = ( —S,O, O).

To the next order in 1/S, the operators S and S, un-

From the expansion in (8) we can calculate m (y) to order
y . We fin

m( ) =1— —y [ —"S(S+1)——"m + —"] . (11)
m(0) 2 16 32

dergo quantum fluctuations about zero. To quantify this
we perform the HP transformation at each site:

Sy+iS, =a (2S N)—'

Sy iS =(2S N) ~ a

S„=—S+N,
(13)

where [a,a ]= 1 and N is the number operator a ta.
[One can verify from (13) that S, +S~+S,=S(S+1).]
We expand (13) for large S and keep only the lowest-
order terms. On defining the canonically conjugate vari-
ables q=i/&2(a —a ) and p=1/&2(a+a ), we find
that

siz Siy
ql QS & Pl QS (14)

Hg= —,
' g P, +S(q; ——

q, +, )
I

(16)

where higher-order terms in 1/S and a constant have
been dropped. On Fourier transforming we obtain the
spin-wave spectrum

1/2co(k) =2a' sin—
2

(17)

where the momentum k lies in the range [ vr, ~]. In th—e
continuum limit k~O, this is the relativistic dispersion
for a free massless boson with "velocity" U =a'

We end this section by looking at the infinite S limit
from the point of view of the LGZ Hamiltonian

H =-,'(B,y)'+-,'(B„y)'+ V(y) .

We identify P(t, x ) with S;,=q,.VS so that (S;,—S;+i, )

in (7) becomes (B„P) in the continuum limit. The kinetic
term (B,P) =ap; S ' comes from the magnetic field

operator yS; . We now argue that it is possible for the
potential V(P) to vanish as S~ 0D. Classically, V(P) can
be obtained from (18) by setting all the S; equal to zero
so that B,/=0, and all the S;, equal to each other so that
B„P=0. Then the potential

V(P) = —yS„+ g a2„S,"

from Eq. (7). We eliminate S in favor of S, through
S =[S(S+1)—S, ]'~, and express (19) in terms of
Q=S, .

According to Zamolodchikov, ' the potential must be-
come independent of P as S~~. If we substitute
y=aS, ' and az„=a2„S, " (the difference between
$, =[S(S+I)]'~ and S can be ignored for large S), we
find that

satisfy [q, ,p ]=i5; From. Eqs. (13) and (14), we get the
exact expression

S;, = —S—
—,'+ —,'(q; +p; ) .

For S~~ let us take y'=aS ' where a is a positive
constant and a2„=a2„S ". Then (7) reduces to
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2 1/2
Z

S,
S, 2n

+ ga, „
n C

(20)

is required to be independent of S,. Suppose that the
coefficient PzS, of S, =P in (20) is not zero. Then the
LGZ action is

On rescaling the coordinates (t,x)~(S,t, S,x) we find
an action which does not describe a free massless boson.
So we must have P2=0. Similarly, one can successively
show that the coefficient of each power S, in (20) must
vanish if one wants to obtain a CFT with c = 1.

This implies certain relations between the numbers a
and a2„. For example, 0.'2= —

—,'cx, a4= —
—,'e, and so on.

The main point in all this is that there exists a unique
point P in the space of couplings (y, az„) where we get
the Hamiltonian of a free massless boson in the infinite S
limit.

III. SU(3) QUANTUM CHAINS

The obvious generalization of Sec. II is to consider a
chain with a spin lying in the (K,O) representation of
SU(3) sitting at each site. As pointed out in Sec. I, the
operators T in (5), a, =S, +S2 and I3+=Sz —3S2S, are
all Weyl invariant. So a candidate quantum Hamiltonian
ls

Hg = g L
—(S,, —S, +i i) + —,'(S 2

—S;+, 2)

yT; +P(a;„13;,)],— (23)

where P(a„13,) is a polynomial in a, and /3, of finite de-
gree for any given value of K. As before, we can argue on

We now extend the above analysis to the case of SU(3).
However, instead of discussing the magnetic-field pertur-
bation theory as in Sec. II, we will proceed directly to the
infinite K limit. We use the HP transformation to show
that two free massless bosons emerge in that limit thereby
giving a CFT with c =2.

We first review some group theory. We will consider
the symmetric representations of SU(3) since the HP
transformation is only known for these at the moment.
Such a representation is denoted by (K,O) where K is an
integer. As a Young tableaux, it is shown by a single row
of K boxes. The dimensionality of the representation is
d(K)= —,'(K+1)(K+2). In the weight diagram, these
d(K) points form an equilateral triangle of side 2K. The
vertices of the triangle have the eigenvalues of (S„S2)
equal to ( —K,K/i/3), (K,K/+3), and (0, —2K/v'3).
In Fig. 3 we show the K =2 representation for illustra-
tion. The double-headed arrows marked 1, 2, and 3
denote the directions along which the ladder operators
E,+, E2+, and E3+ move the six points. The quadratic
Casimir invariant is given by

C~=S, +S2+2+ IE, +,E, ]
= ', K(K+3) . (2—2)

FIG. 3. The 6 representation of SU(3). S& and S2 generate
the Cartan subalgebra. The arrows marked 1, 2, and 3 indicate
the directions along which the three pairs of ladder operators
E,+ act.

grounds of symmetry and universality that a CFT with c
given in (2) will emerge at the d(K)-fold multicritical
point of the above mode1.

For K = 1 (the fundamental representation denoted by
3), a, has the same value for each of the three possible
states, as does P~. Hence the polynomial P(a„P, ) can be
dropped [we ignored a polynomial in S, in (6) for spin —,

'

for the same reason]. The remaining pieces in H& pre-
cisely give the quantum Hamiltonian of the three-state
Potts model. At y =0, this has three phases denoted by
three points in a plane (P„P2). As y increases to a criti-
cal value y* =—', , these points converge to the origin (0,0)
where a c = 4 CFT resides.

We now consider the infinite K limit. Guided by the
results for SU(2) we simply assume that the coefficients of
the operator y T and of the terms in P(a„P, ) scale in the
right way as E~ ~ so as to produce a theory of two
massless bosons. We will examine how the LGZ Hamil-
tonian

(24)

can arise from H&. It is immediately clear that the last
two terms in (24) may be identified with the first two
terms in (23) since P, = (S;, ) and $2= (S;2). We must
now show that the operators T; can produce the kinetic
terms (B,P, ) +(8,$2) .

Before doing that, it is convenient to rotate the genera-
tors S„S2,and E,+ to different ones S', , S2, and E,'+ by
a unitary transformation of FI&. The reason for doing
this is that at the critical point y, all the spins line up (in
a classical sense as K ~ oo) in the direction of the eigen-
vector of T with the largest eigenvalue 2K. [This is en-
tirely similar to the way in which the SU(2) spins in Sec.
II line up in the direction of the eigenvector of S„with
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the largest eigenvalue ( —S) as S goes to ~.] We note
that in any representation K, the set of eigenvalues of T
and —&3S2 are identical. Further, just as in Sec. II, S&
and S2 should go over (as K~ae) to the operators
q, -E,++E, and q, -E,++E2, as E+ and E be-
come the creation and annihilation operators a~ and a.
From these considerations we can show that the rotation
which must be performed at each site of the chain is of
the form

r= —&3S,',
5, =(—,

')' (E', + +E', )+(—,
' )'/ (E3+ +E3 ),

—
(

2 )1/2(E& +E~ )+( 1 )1/2gi

S2 = — —+&3N,2

IE3+ =a,a2,
IE3 =aza&,

E', + =a, (K —N)'

E', =(K N)'"a—, ,

E,'+ a,'(K N)'", —— —

E~ = (K —N )'/~g, ,

(26)

where X is the total number operator a&a, +aza2. One
can check that (26) satisfies all the commutation relations
of SU(3), as well as giving the correct value of the
Casimir in (22). Note that the generators E3+ and S',
which are purely quadratic in the bosonic operators form
an SU(2) algebra. '

The operators a and a describe quantum fluctuations
about the ground state in which S 2 has the expectation
value —2K/&3. On transforming from a and a to the
conjugate operators q and p, and assuming that the poly-
nomial interaction P(a&,Ps) becomes negligible as

The five other relations needed to describe completely the
passage from the unprimed generators to the primed ones
will not be displayed here (they are lengthy and also ir-
relevant for studying the infinite K limit).

We now present the Holstein-Primakoff transformation
from the primed generators to two independent sets of
bosonic operators a, (a, ) and az(az ):

S) =a~)a) —a2~a2,

K ~~, Eq. (23) reduces to

2K 2 2E
Hg = X («i —@+i i) + (e;z —e;+i z)

+'~ (p,', +p,2) (27)

IV. OUTLOOK

The analysis in this paper can be generalized in several
directions. One can study the symmetric representations
of higher SU(N) almost immediately since the HP trans-
formation can be easily extended to these. HP transfor-
mations for other representations of either SU(3) or the
higher SU(N) are not known to me.

One may ask whether coset models of the form
( Gz X G& ) /Gz+ i can be studied in a similar way for oth-
er Lie groups 6. Suppose that we are only interested in
the infinite K limit (which may correspond to representa-
tions of G which grow large in a particular manner).
Then the central charge tends to c(G&). If a LGZ
description in terms of rank-(G) free massless scalar fields
is to be valid in that limit, one must have

c(G, )=rank(G) . (28)

This equality holds only for the groups A&=SU(N+1),
D&=SO(2N), and Ez(N=6, 7, and 8). We may there-
fore consider generalizing our analysis to various repre-
sentations of these groups. For this purpose, it would be
useful to construct appropriate HP transformations.
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Here terms of higher order in 1/E and a constant have
been dropped. In the continuum limit, relativistic disper-
sion relations for two massless bosons follow with the
"velocity" U = [4Ky

*
]
'

To complete the story for SU(3) in the same way as for
SU(2), the above discussion needs to be supplemented by
a perturbative analysis in y (which will identify the value
of y* and the relative magnitudes of the various terms in
H in orders of 1/K), and by an analysis of the LGZ po-
tential V(a&, 13&). We will not pursue this here.
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