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Effect of Auctuations on the transport properties of type-II superconductors in a magnetic field

Salman Ullah and Alan T. Dorsey
Department of Physics, Uniuersity of Virginia, McCormick Road, Charlottesuille, Virginia 2290I

(Received 17 January 1991;revised manuscript received 18 March 1991)

The time-dependent Ginzburg-Landau theory is used to study both transverse and longitudinal trans-

port properties of a layered superconductor in a magnetic field near the mean-field transition tempera-

ture T,2(H). We evaluate the transport coefficients in the self-consistent Hartree approximation which

interpolates smoothly between the high-temperature regime, dominated by Gaussian fluctuations, and

the low-temperature Aux-flow regime, with no intervening divergence. This behavior is in agreement
with the experimental results for the Ettingshausen coefficient, Nernst coefficient, longitudinal conduc-

tivity, and Hall conductivity in high-temperature superconductors.

I. INTRODUCTION

The discovery of the high-temperature superconduc-
tors has revived interest in Auctuation effects in supercon-
ductors, both in thermodynamic properties and in trans-
port properties. ' In this paper we shall be concerned
with the effect of Auctuations on the transport properties
of a superconductor in a magnetic field in the vicinity of
the transition from the normal state to the Abrikosov
Aux-lattice state. Here we extend our previous work on
the behavior of one particular transport property, the Et-
tingshausen effect, to the calculation of other transport
coefricients.

The study of Auctuation effects in superconductors has
a long history, and we refer the reader to the article by
Skocpol and Tinkham for a review of earlier work.
Much of the early literature focused on Auctuation effects
in zero magnetic field, in the vicinity of the transition
from the normal state to the Meissner state. For in-
stance, Aslamazov and Larkin showed that supercon-
ducting Auctuations in the normal phase cause the elec-
trica1 conductivity to diverge at the critical temperature.
These Auctuations also manifest themselves as
nonanalyticities in thermodynamic properties such as the
specific heat and susceptibility. Implicit in most of the
early work is the assumption that the Auctuations do not
interact; that is, only Gaussian Auctuations are con-
sidered. Although this assumption breaks down in the
critical region (typically quite small in the conventional
superconductors), it at least captures the qualitative as-
pects of the Auctuations in zero magnetic field. If the
Gaussian approximation is used to calculate the proper-
ties of a type-II superconductor near the mean-field Aux-
lattice phase boundary T,2(H), one would predict similar
nonanalytic behavior in the thermodynamic and trans-
port properties. However, in this circumstance the
Gaussian approximation drastically underestimates the
effects of Auctuations, since Auctuations which are trans-
verse to the applied field are stiff [they have a length scale
which is determined by the magnetic length
lH=(ficle*H)'~ ]; hence, the fluctuations of a bulk su-
perconductor in a magnetic field become effectively one

dimensional, as noted by Lee and Shenoy. Fluctuations
become more important in systems with reduced dimen-
sionality; for example, Auctuations destroy the ordered
phase in one-dimensional systems with short-range in-
teractions. Therefore, one expects that interactions be-
tween the fluctuations are important near T,z(H), and
that these interactions remove the nonanalyticities
present in zero magnetic field. Calculations of the
specific heat of a superconductor in a magnetic field
which treat the interaction terms within the Hartree ap-
proximation, ' and extensions thereof, ' find that the
specific heat is smooth through the mean-field transition
temperature, in accordance with the above expectations.
The transport properties are also expected to be smooth
in the vicinity of T,z(H). We recently considered the Et-
tingshausen coefficient (a transverse thermo magnetic
effect) within the Hartree approximation, and showed
that it varied smoothly from the Auctuation regime in the
normal state to the mean-field regime [T(T,2(H)], in
quantitative agreement with the recent measurements on
Y-Ba-Cu-0 by Palstra et al. ' In this paper we extend
our results to calculate the Nernst effect, the thermo-
power, the longitudinal electrical conductivity, and the
Hall conductivity. We would like to stress that our cal-
culations are based on the time-dependent Ginzburg-
Landau theory which omit certain microscopic contribu-
tions to the transport coefFicients, for example, the Maki-
Thompson terms. ' The Maki-Thompson terms become
less important as the magnetic field is increased due to
the enhancement of pair breaking and we therefore do
not expect them to qualitatively change our conclusions.
This consideration notwithstanding, the spirit of our ap-
proach is semiphenomenological in the sense that the pa-
rameters appearing in the Ginzburg-Landau theory are to
be determined experimentally.

The plan of the paper is as follows. In Sec. II we devel-
op the linear-response formalism required for the compu-
tation of the transport coefficients, and discuss the nature
of the Hartree approximation. In Sec. III we evaluate the
various thermoelectric transport coefficients, while in
Sec. IV we compute diagonal components of the electri-
cal conductivity tensor as well as the Hall coefficient. As
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many of the results are numerically cumbersome, the im-
portant results are summarized in Figs. 1—3, where we
plot the various transport coeKcients as functions of
T T—,z(H) for one set af typical parameter values. Ap-
pendix A summarizes the definitions of transport
coe%cients within linear response, Appendix 8 provides
the details of the expansion of the correlation and
response functions to linear order in the external electric
field, and Appendix C summarizes the behavior of the en-
tropy and the magnetization within the Hartree approxi-
mation.

II. LINEAR RESPONSE

A. Equations of motion

In this section we shall set up the formalism necessary
to compute the transport coe%cients in linear-response
theory. We describe the layered structure of Y-Ba-Cu-0
using the Lawrence-Doniach model which consists of su-
perconducting planes separated by a distance s, with a
Josephson coupling between the planes. ' The Hamil-
tonian is

Vi —i A
Ac

Q2+,I@„—@„+ll'+a)@„/'
2m s

+ 'i ~q I'+ -(V&& A)' (2.1)

where e* is twice the electron charge and m =—m, b and
m, are e6'ective Cooper pair masses in the a-b plane and
along the c axis, respectively, a =ao(T/To —1), with To
the bare transition temperature, V~ is the derivative in
the a-b plane and the applied field is assumed perpendicu-
lar to the a-b plane. The sum over n is a sum over the su-
perconducting planes. Since we are interested in trans-
port phenomena, it is necessary to introduce some kind of
dynamics for the order parameter; the simplest is a
gauge-invariant version of relaxational dynamics,

[I o '+iso '] +i 0& tP„(x, t)

6 +j„(x, t ), (2.2)
5$„*(x,t)

where 4& is the scalar potential. The noise term g is
chosen to have Gaussian white-noise correlations:

B. Linear-response equations

The definitions of the transport coefficients in linear
response are summarized in Appendix A. In order to
determine the transport coefficients we have to evaluate
the heat current and the electric current to linear order in
the applied electric field. In terms of the full, nonequili-
brium correlation function

C„(x,t;x', t')=(t/r„(x, t)g* (x', t')), (2.4)

the heat current (which is obtained from energy conser-
vation) is given by

(g„*(x, t )g (x', t') ) =2k' TI o '5(x —x')5(t t'—)5„

(2.3)

where the ( . ) denotes a noise average. ' We have as-
sumed that the relaxation rate has an imaginary part A,o

'

in order to break the particle-hole symmetry which exists
for ko '=0. By particle-hole symmetry we mean that,
under the transformation of complex conjugation and
H~ —H, the equation of motion for f", Eq. (2.2), is the
same as that for P, provided A,~ '=0. This result would,
in turn, imply that cr (H) =o' ~(

—H); however, we
know that, on general grounds, a„~(H)= —a (

—H), so
that o„(H)=0 if A,o

'=0. Therefore, Xo '%0 is neces-
sary in order that the Hall conductivity be nonzero. The
thermopower also vanishes (even in zero magnetic field)
for particle-hole symmetric systems. Such an imaginary
relaxation rate can arise from microscopic considera-
tions' or might be generated by coupling the order pa-
rameter to conserved densities, as in the critical dynamics
of neutral superfiuids (model F ). ' The equation of
motion for the order parameter should be supplemented
by an equation of motion for the vector potential of the
farm a„BA/"r)t= —5&/5A, with o.„ the normal-state
conductivity (ignoring Auctuations of the electromagnetic
field).

One of the essential simplifications which we shall
make is to consider the magnetic field to be given by the
external magnetic field: this simplification precludes the
Abrikosov Aux-lattice solution and determination of the
nature of the transition. However, we must include the
contribution of the supercurrent to the magnetic field
since this gives rise to a term of the same order as

~ g . If
we restrict ourselves to the lowest Landau level then the
supercurrent is included by introducing a renormalized
coupling, b, =b(1 —2/a ), where a is the Ginzburg-
Landau parameter. '

( Jh)
2m

V —i A(x)
Ac

. e
i N(x') + V'+i —A(x')Bt' Ac AC

. e
a~

+i 4(x) C„(x,t;x', t') ~„nn» & x=x;t =t, n =—n

(2.5)

while the electric current is given by

( J') = . (V —V')—Ae*

2m cl
A(x) C„„(x,t; x', t ')

~ „mc
(2.6)
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(Note that, for the z component of the currents, the mass
m is replaced by the effective mass m, ). In order to
determine the Iinear response transport coefficients, we
have to compute the correlation function C to linear or-
der in the electric field; this expansion for the linearized
equation of motion (see Sec. II C below) is carried out in
Appendix B. Once the correlation function is deter-
mined, the transport coefficients follow by evaluating the
currents; for example, the electric conductivity oyy is
given by (J') =a ~E~ while the Ettingshausen coefficient
a is given by (J ) =a „E„.

C. The Hartree approximation

In order to calculate the transport coeScients it is
necessary to employ some approximation to deal with the
cubic term in the equation of motion. The Gaussian ap-
proximation neglects this term entirely; however, as dis-
cussed in the Introduction, the Gaussian approximation
is inadequate. A simple approximation which captures
the interesting Auctuation eftects is the Hartree approxi-
rnation, in which the cubic term in the equation of
motion b, g~g~ is replaced by b, (~g~ )g (which is
equivalent to replacing the quartic term ~g~ in the Ham-
iltonian by 2( P„~ ) ~i)'j„~ ). Whence, the new renormal-
ized coeKcient of the linear term in the equation of
motion a is given by

(2' 1 )s i ~2 1
Eg =8+

24y dA&

2

similar expressions for e and eH), with h =H/H;~ (0) a
dimensionless magnetic field, H;z (0)=go/2ng, b(0) is the
zero-temperature critical field, go=2~A'c/e* is the fiux
quantum, Ar =Po/16m kz T is a thermal length,
d =s/2$, (0) is a dimensionless interplanar spacing, the
zero-temperature coherence length in the a-b plane is
g, i, (0)= (R /2mao )', while that along the c axis is

g, (0)=(A' /2m, ao)', and the anisotropy parameter is

y =g, (0)/g, b(0). Notice that the sum in Eq. (2.8) has a
physical cutoff X=lH/g, i, (0), where l H=( iiic /e*H)'~2
is the magnetic length. The cutoA rejects the fact that
the Ginzburg-Landau theory is not valid on length scales
less than the zero-temperature coherence length g,b(0).
This ultraviolet cutoff prevents the sum in Eq. (2.8) from
diverging. Finally, we have used the mean-field expres-
sion for the coefficient of the quartic term
b=2iri~ /(A'e/mc) . We shall now discuss the solu-
tions of Eq. (2.8) in both the low-field and high-field lim-
its, in order to clarify the main features of the Hartree
approximation.

In the limit of low magnetic fields (eH »2h ), the sum
in Eq. (2.8) may be evaluated using the Euler-Maclaurin
summation formula. ' In the three-dimensional limit
(d eH «1) we obtain

a=a+b„( g„) . (2.7)
(2.9)

&H =&H
(2~ —1) s

h
4y'd

X

„=o(eH+2hn)'

x
[I+2 (e~+2hn )]'i (2.8)

where @=a /ao is a reduced temperature, eH =e+ Ii (with

The quantity ( P„(x,t) ) =C(x, t;x, t), in general, de-
pends upon the electric field to linear order. We shall
neglect this electric-field dependence in the self-consistent
equation, and evaluate ( ~1(r„(x,t ~ ) in equilibrium, which
is equivalent to neglecting vertex corrections when calcu-
lating the transport coefficients. %'ith this approxima-
tion, we calculate a self-consistently from Eq. (2.7).
Thus, the time-dependent Ginzburg-Landau theory in the
Hartree approximation is defined by Eqs. (2.1)—(2.3) and
(2.7). The Hartree approximation applied to the time-
dependent Ginzburg-Landau equation has been used by
several authors to study the zero-field conductivity,
and recently more sophisticated approximation methods
have been developed by Ikeda et aI. to calculate the
longitudinal conductivity in a magnetic field. Our pur-
pose here is to use the simple Hartree approximation to
understand some of the qualitative features of transport
in a magnetic field.

We shall first study the solutions of the self-consistent
equation, Eq. (2.7). The evaluation of ( ~g„( t)x~ ) in
equilibrium [see Appendix B, Eqs. (B7)—(B9), for the ap-
propriate expressions] gives

(21~ —1)s
Cg =(E+

8yd Az

h
in@— —+0

E
(2.10)

where e~ is the shifted temperature variable. In this
case, even for zero field there is no solution to Eq. (2.10)
with e=O. The lack of a transition to a state with con-
ventional long-range order in two-dimensional systems
with continuous symmetry is in accordance with the
Mermin-Wagner theorem. However, if the magnetic
field is not zero, then Eqs. (2.9) and (2.10) do not have
solutions with e=O. Therefore, in the Hartree approxi-
mation even a small magnetic field prevents the order-
parameter susceptibility from diverging, thereby prevent-
ing a transition to a phase with conventional long-range
order.

Next, we consider the high-field limit of the self-
consistent equation, such that e~ ((2h. In this limit the
sum in Eq. (2.8) is dominated by the contribution from
the lowest Landau level (n =0), so we have

where ez =—@+A is the shifted temperature variable with
A ~ (hX)' a cutoff. For zero field h =0, as ez ~0 the
second term in (2.9) dominates so that e-ei, , signaling a
phase transition at eii =0 (the order-parameter suscepti-
bility diverges as e~O). Thus, in zero field the Hartree
approximation leads to a shift in the mean-field transition
temperature To and a change in the correlation length ex-
ponent, defined by g —eii, from v= —,

' in the Gaussian
case to v= 1, which is the familiar zero-field Hartree re-
sult. Next, consider the two-dimensional (d e'H »1),
low-field limit of (2.8),

2
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(2x. —1) s
~

1 1 (211)
4 2d ~ —1/2 (1+d2- )1/2

There are no solutions of this equation with e~ =0 and,
hence, there is no phase transition at any nonzero tem-
perature in this approximation. The lack of a phase tran-
sition at any temperature may be understood in terms of
the reduction of the dimensionality of the system by the
magnetic field: since the order-parameter correlations
transverse to the magnetic field have length scale set by
the magnetic length lH=(chicle*H)', which is always
finite, the magnetic field reduces the effective dimension
of the system by two. Hence, the Auctuations in three-
dimensional systems are effectively one dimensional a
one-dimensional system with short-range interactions will
not undergo a transition to an ordered phase at any
nonzero temperature. It follows that the transport
coefficients in a magnetic should be smooth functions of
the temperature, in contradistinction to the results based
on the Gaussian approximation.

We note that our discussion is restricted to the case of
a transition to a phase with a spatially uniform order pa-
rameter. Our assumption that ( ~P(x, t)~ ) is indepen-
dent of x is clearly incorrect for an Abrikosov fIux lattice.
This approximation precludes discussion of the existence
and nature of the transition to the Aux-lattice state within
our Hartree approximation. A more careful calculation
would include the spatial variation of the magnetic field
(recall our assumption that the induction field is the same
as the externally applied field, which should be reason-
able for high-Ir superconductors), and would allow the or-
der parameter to be spatially inhomogeneous.

In the remainder of the paper we shall use the results
of this section to compute, in turn, the Ettingshausen and
Nernst coefficients, the thermopower and finally some of
the components of the electrical conductivity tensor. The
calculations are straightforward but rather tedious. In an
effort to spare the reader a ceremony of unenlightening

algebra, we have omitted most of the intermediate ex-
pressions but have indicated the steps required to obtain
the various results.

III. THERMOELECTRIC TRANSPORT COEFFICIENTS

In this section we shall use the formalism introduced in
the previous section to compute the Ettingshausen
coeffieient and the thermopower. The Nernst coefFicient
is obtained from the Ettingshausen coefficient using the
linear-response transport equations —see Appendix A.
We shall mention once more that the Ettingshausen
coefficient, Nernst coefficient, and the electrical conduc-
tivity are nonzero to zeroth order in A, o ', whereas the
thermopower and Hall conductivity are nonzero to first
order in A,o

'. We shall find that the thermoelectric trans-
port coefficients increase with magnetic field. This result
is easy to understand given that the vortices transport en-
tropy, or heat (the entropy of the normal vortex core is
higher than that of the superconducting state) so that the
magnitude of the heat current increases with the density
of vortices. Finally, the density of vortices increases with
the applied magnetic field so that the thermoelectric
transport coefficien are indeed expected to increase with
magnetic field.

A. Kttingshausen effect

The Ettingshausen effect is a transverse thermomagnet-
ic effect in which a magnetic field is applied in the z direc-
tion, a constant current is supplied in the x direction, and
the temperature gradient is measured in the y direction.
The temperature gradient in the y direction is a result of
the transverse motion of the vortices due to the Lorentz
force. In order to determine the Ettingshausen
coefficient, we need to compute the y component of the
heat current to first order in the electric field E . (We set
Ao

' to zero. ) The heat current follows from Eqs. (2.5),
(86), (87), and (89).

(e*)'
, z„r~k, T

P7l C

1 1 n/s dq ~ dpiX
2nn! 2mm! —n/s 2ir —~ 2ir

XH„(g—
g )H„(g, —g )H (g —

g )H (g, —g ),

1 1

(~'+r,'E'„, ) (~'+r,'E', )

X f dc. f dr1&1(c—c.)expI —(c—c.)' —(&1—c.)']
(3.1)

n+ —,
'

I:V.(1+d'S. )]'" (3.2)

where e„ is given by Eq. (88). The integrals are best
done in the following order: the g integrals first, then the
co integral, and finally the q integral. Whence, the Et-
tingshausen coefficient a = ( J» ) /E is

4o d„ n

8' AZ. S n=O (Pn —1/2(1+d Pn —1/2)]

where

p„=eH+2hn, (3.3)

and eH=—e+h. The three-dimensional limit is obtained
by taking d p„~0, and the two-dimensional limit is
d p„))1. [Note that the sum in (3.2) is written in a
slightly more useful manner than the corresponding ex-
pression in Ref. 2.]

The results for the Ettingshausen coefficient given by
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(2.8) and (3.2) were extensively discussed in Ref. 2. The
main conclusion of that paper was that the Ettingshausen
coefficient n is a smooth function of the reduced tem-
perature eH. The Ettingshausen coefficient does not
diverge because the denominator in (3.2) is always
nonzero for all values of the reduced temperature eH.
We reiterate that eH is nonzero simply because there is
no value of the temperature eH for which the self-
consistent equation (2.8) has solution with eH =0.

In Ref. 2 we compared the lowest-Landau-level expres-
sion for a with the experimental results of Palstra
et al. ' and found good agreement. There we fit the
lowest-Landau-level results to the data in the mean-field
region far below eH =0. Inclusion of the higher Landau
levels merely changes the mean field T,z(H) and the
overall magnitude of the Ettingshausen coefficient. In
Ref. 2 we pointed out that the experimental results show
a pronounced magnetic field dependence of the mean-
field slopes of the Ettingshausen coefficient plotted as a
function of eH (By mean-field slopes we refer to the tem-
perature region for which the Ettingshausen coefficient is
a linear function of eH. ) It is possible that this discrepan-
cy is removed by including vertex corrections in the same
manner as in Ref. 13.

The self-consistent equations predict that the transport
coefficients should exhibit scaling behavior as a function
of magnetic field and reduced temperature. We expect
this scaling behavior to hold even in a higher-order ap-
proximation ' thereby making it useful in analyzing
data with regard to the Auctuation theory. The scaling
functions are valid only in either the two- or three-
dimensional limits (not for the general Lawrence-
Doniach model) and are easily obtained in the case of the
lowest Landau level (high field). However, the scaling
forms are not restricted to the high-field case since, as we
have discussed above, the inclusion of higher Landau lev-
els in the Hartree approximation simply renormalizes the
critical temperature and the magnitude of the transport
coefficient, but not its functional form.

For n =0, the Ettingshausen coefficient given by (3.2)
reduces to

4o d
+yx 16~ AT s [eH(1+d eH)]'~

(3.4)

while the self-consistency equation is given by Eq. (2.11).
There is a dimensional crossover implicit in Eqs. (2.11)
and (3.4). For temperatures well above the mean field
T,z(H) the correlation length is small compared to the
interplanar separation: d eH ))1, hence, ny
characteristic of two dimensional (2D) Gaussian fiuctua-
tions. As the temperature is lowered, the correlation
length grows and eventually becomes comparable to the
interplanar separation: d eH (&1, so that ay E'H

characteristic of three-dimensional Gaussian Auctuations.
Similar considerations apply to the other transport
coefficients (see below).

We may write Eq. (3.4) in a scaling form: in two di-
mensions

k, T sAT

rt os (2rr —1 )g, i, (0)h

sAT
XF20

(2rr —1)g,b(0)h

1/2

1/2

&H (3.5)

while in three dimensions

a = dh

2 1/3
4y dAT

(2rr —1)sh

XF3D
4y dAT

(2rr —1)sh

2/3

&H, - (3.6)

When the reduced temperature eH is large and negative,
the self-consistent equation is easily solved by noting that
the first term on the right-hand side of Eq. (2.11) is much
smaller than the second term, and therefore the first term
may be dropped. Substituting the resulting expression
for eH into our expression for the Ettingshausen
coefficient in the lowest Landau level, Eq. (3.4), we obtairi
the mean-field (MF) result,

MPH

8' (2rr —1)
(3.7)

which is correct in either two or three dimensions. This
expression differs slightly from Maki's result obtained
from the mean-field Abrikosov solution:

(H, 2
—H)

4rrP g ( 2rr2 —1 )
(3.8)

where p~ = ( p ) /( ~rj'j ) (the overbar denotes a spatial
average), which for a triangular fiux lattice Pz =1.16.
Thus, although the functional form of (3.7) and (3.8) is
identical, the coefficients differ slightly:
a „ /a =Pz /2. This discrepancy is expected since inMFH MF

the Hartree approximation, P„=2. From this calcula-
tion, we see that the scaling functions have the asymptot-
ic forms F~D(x), F3D(x) ——x for large negative values of
x. When eH is large and positive, the first term on the
right-hand side of Eq. (2.11) dominates and we have
eH =eH, corresponding to Gaussian fluctuations. There-
fore, the scaling functions have the limiting forms
F2D(x)-x ' and F30(x)—x ' for large positive
values of x. In the intermediate regime (eH=0), the
coherence length is much larger than the interplanar sep-
aration g))d, so that three-dimensional Gaussian fiuc-
tuations dominate. The Ettingshausen coefficient for the
full range of reduced temperatures and for several mag-
netic fields is plotted in Fig. 1. In Ref. 2 we compared
the experimental results with the two- and three-
dimensional scaling forms and concluded that the two-
dimensional form gave a better fit. Of course, the scaling
functions did not collapse the data onto a single curve in
the mean-field region due to the field dependence of the
slopes.

Finally, we note that, in the limit of high magnetic
fields, the Ettingshausen coefficient is closely related to
the equilibrium entropy S(T,H), which is calculated in
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C. Thermopower

The thermopower is the longitudinal version of the Et-
tingshausen coefficient: one measures the induced tern-
perature gradient in the y direction due to an electric
current flowing in the y direction. Unlike the Et-
tingshausen effect, there is a substantial contribution to
the thermopower from the normal electrons. The ther-
mopower perpendicular to the magnetic field is defined
by

(J,') =a„E, (3.11)

0.2

0.0 &
-0.2

I

-0.1 0.0 0.1 0.2

and we may compute the superconducting contribution
following the method outlined in Sec. II. We find for the
thermopower perpendicular to the magnetic field

I 0A0 'h
32m. A g, (0)

FIG. 1. The dimensionless high-field Ettingshausen
coefficient a~„ in units of kii T/P&p vs the reduced temperature
eH=[1/H;2 (0)]( dH, /2dT)[ T T2(H)] for —different magnetic
fields. The slope of the 7.5-T curve in the mean-field region
eH & —0. 1 is set equal to the experimental value of Ref. 14.
Furthermore, H 2(0)=400 T, s =12 A, and g, (0)=2 A. This
procedure gives &=20. Notice that the fluctuation effect in-
creases with the magnetic field {in agreement with experiment
results) while the slopes in the mean-field region are indepen-
dent of the magnetic field contrary to the experimental results
{see Sec. III A).

( n + 1 )( 1 +2d 1Ltn + 1/2 )

3/2
n =0 I n +1/2( P +n1/2)

(3.12)

j. 01,0
' h

32ir AT(, (0)

[1—2dp, „'/ (1+d p„)' +2d p„]xg 1/2( 1 +d2 )1/2
(3.13)

where p„ is given by (3.3). In a similar fashion we find,
for the thermopower along the field direction,

Appendix C [see Eq. (C4)],
—1

dH,
a „=— S(T,H),

d T ()gH
(3.9)

B. Nernst eAect

The Nernst effect is the inverse of the Ettingshausen
effect. Here, one applies a temperature gradient in the x
direction which, in turn, drives the vortices in the x
direction. Faraday's law implies that the longitudinal
motion of the vortices in a magnetic field in the z direc-
tion will induce an electric field in the y direction. This
induced voltage is called the Nernst voltage. The On-
sager transport equations give the precise relationship be-
tween the Nernst and Ettingshausen coefficients. One
finds (see Appendix A)

H ( c)T /i)x )

1 xy

HT o. (3.10)

Here, the longitudinal resistivity is simply p„„=1/o.„
because the Hall conductivity is negligible; the o. „ is the
measured conductivity, which includes the contribution
from the normal electrons. The relation (3.10) between
the Nernst coefficient and the Ettingshausen coefficient
has been verified experimentallly by Hagen et al.

where (t)eH/BeH) is given by Eq. (C3). This result is in
accordance with the notion that the Ettingshausen effect
is simply due to the transport of entropy by the vortices.

The zero-field Gaussian result has been previously ob-
tained by Maki and may be derived from either Eq.
(3.12) or (3.13) by using the Euler-Maclaurin formula, in
the limit h ~0, and by replacing e~ by e. Thus, in three
dimensions (de~0), the thermopower is a cusplike func-
tion of e:

a3D(h 0)— (A i/2 e 1/2)0oro~o '

32ir AT/, (0)
(3.14)

where A is a cutoff; and a„(h =0)=y a (h =0). In
two dimensions the thermopower has a logarithmic
divergence at e =0:

orozco
'

a (h =0)= (lnA —lne ),
64ir AT(', (0)d

(3.15)

and a„(h =0)=y a (h =0). The results in the Har-
tree approximation in three dimensions are obtained by
replacing e by e-ez in Eq. (3.14). However, measure-
ments of the thermopower of Y-Ba-Cu-0 in zero magnet-
ic field suggest that the thermopower diverges as

~

T —T, ~

' . Recently, Lu and Patton ' have computed
the zero-field thermopower from a microscopic theory
and found that there is indeed a power-law divergence of
this form in the normal-state thermopower due to the in-
teraction with the superconducting Auctuations. There-
fore, our result for the thermopower in zero field based
on the Ginzburg-Landau theory may be of marginal
relevance for understanding the data.

For nonzero field, Howson et al. find that the peak in
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the thermopower rapidly vanishes with increasing field.
This result is clearly in agreement with our general ex-
pectations: there is no divergence in the thermopower,
(3.12) and (3.13), in nonzero magnetic field. It would be
interesting to generalize the microscopic calculation of
Lu and Patton to a nonzero magnetic field, in order to
study the evolution of the thermopower from zero field to
high fields.

IV. ELECTRICAL CONDUCTIVITY
IN A MAGNETIC FIELD
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The original studies of the Gaussian fIuctuation con-
ductivity in a magnetic field predicted a divergence at
T,z(H). This predicted divergence is not observed. The
absence of a divergent contribution to the Auctuation
conductivity in a magnetic field is easy to understand on
physical grounds: the motion of vortices in a supercon-
ductor provides a dissipation mechanism and, hence, a
finite Aux-Aow conductivity. The theoretical resolution
of this problem has been provided by Ikeda et al. who
have shown that the divergence is eliminated by treating
the problem in the Hartree approximation. Therefore,
just as in the case of the Ettingshausen effect, the Hartree
approximation gives a qualitatively different prediction
for the electrical conductivity (in a magnetic field) than
does the Gaussian theory. We emphasize that we calcu-
late only the contribution of the superconducting order
parameter to the conductivity so that comparison with
experiment necessitates the addition of the normal-state
contribution to our results. The high-field results for (7yy,
0 yx and o-„are summarized in Figs. 2 and 3

100

0 L
-0.2 -0.1 0.0 0,1 0.2

FIG. 3. The dimensionless high-field conductivity parallel to
the magnetic field o„ in units of I ~ 'm, g, (0)/(8rrfi'Az. ) vs the
reduced temperature eH. The same set of parameters are used
in Fig. 1. In the mean-field region the conductivity o.„-eH /h .

A. Longitudinal conductivity

For completeness, we shall state the results for the
electrical conductivity in the a -b plane in the presence of
a magnetic field applied perpendicular to the a-b plane.
In the Hartree approximation

, m, g, (0)
O' =I o g (lt + 1)(A + A&+i 2A +i/2)

8~% AT „0
(4.1)

100 -''.

80—

—10 T
-"".- 7.5T
---- 50T

where A„=[p„(1+4p„)]'/ and p„ is given by Eq.
(3.3). In the high-field limit we only keep the most diver-
gent term in the sum in Eq. (4.1), which is

60

, m, g, (0)

8~4 AT [eH(1+d~eH )]
(4.2)

40

When eH is large and positive, Eq. (4.2) reproduces the
results of the Gaussian fluctuation calculations. On the
other hand, in the mean-field regime, when eH is large
and negative, we obtain from the solution of the self-
consistent equation, Eq. (2.11),

MFH

4'(2lr 1)—H, —H
(4.3)

-0.2 -0.1 0.1
I

0.2 The Aux-Aow resistivity calculated by Schmid for the
mean-field Abrikosov Aux-lattice solution is

FIG. 2. The dimensionless high-field conductivity perpendic-
ular to the magnetic field rr» in units of I o 'm, g, (0) /(8vrR Ar )

vs the reduced temperature eH. The same set of parameters are
used as in Fig. 1. Notice the substantial dependence of the mag-
netic field of the mean-field slopes which is expected
from the mean-field Aux-How result: o» —eH/h. The dimen-
sionless high-field Hall conductivity is closely related:
~,„——(a /r )~„.

r, 'm H, 2
—H

fi 27rp (2' —1)
(4.4)

which again difFers from the corresponding expression in
the Hartree approximation Eq. (4.3) by the factor p~ /2.
The high-Geld conductivity has a scaling form in either
two or three dimensions: in two dimensions,
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I o 'm, g, (0) A 1/2
S

(2~ —1)g,b(0)h

XF2D
sAT

(2~ —1)g,i, (0)h

1/2

2 1/3
4y dAT

(2~ —1)sh

while in three dimensions

(4.5)

e*
2mkc

2qrkii TAO '(A'co~ )

effect is more tedious because we have to keep terms of
order ko '. We compute the electric current in the y
direction due to an electric field in the x direction. The
general expressions are very cumbersome so we shall re-
strict ourselves to the high- and low-field results. For
reference, however, we shall state a general, intermediate
expression for the Hall coefficient:

2

XF3D
4y dAT

(2~ —1)sh

2/3

(4.6)

where the scaling functions F2D(x) and F3D(x) are the
same as those obtained for the Ettingshausen coefficient
(see Sec. III A).

In order to compute the conductivity parallel to the
magnetic field we have to calculate the electric current in
the z direction which involves taking derivatives with
respect to the discretized coordinate z. We note that, for
example,

, m, g, (0) 1
0y~ =Ao

8qrA Ar [eH(1+0 eH)]'~
(4.11)

with eH given by Eq. (2.11). The scaling functions for the
high field 0. „are the same as those for 0. , apart from
the replacement of K'o ' by A,o

'. In the mean-field re-
gime, eH ((0, the high-field result (4.11) reduces to

n =0 snqEn+I, q(snq+en+1, q )

where E„ is given by Eq. (B8) and AH =e*H/mc. In the
high-field limit, Eq. (4.10) reduces to

Bg„ /c)z —= itj„[exp(isq ) exp(—isq —) j /2s .

Thus,

o
'm I a„—H

0yx
fi 4'(2~ 1)— (4.12)

, m, g, (0)

32qrfi A = ' (1+2 )'
(4.7)

The high-field limit of the conductivity in the z direction
in two dimensions has the scaling form

ro 'm, g, (0)l h

32~a A,d

sAT

(2~ —1)g,b (0)h
1/2

SAT

(2~ —1)g,b (0)h
X 62D

3/2

(4.8)

where G2D(x)-x for large positive x, and

GzD(x) ——x for large negative x. In three dimensions
2/3

ro 'm,

16qrA' (2~ —1)

4y dAT

(2~ —1)sh
3D
ZZ eH, (4.9)

B. Hall conductivity

The fluctuation Hall conductivity in the Gaussian ap-
proximation was first discussed by Fukuyama et al. and
in the Aux-Aow regime by Maki and by Ebisawa.
Here we extend their results to the Hartree case for the
Lawrence-Doniach model. The calculation of the Hall

where G3D(x)-x for large positive x, and

G3D(x) -—x for large negative x.
In the zero-field limit, the conductivities in Eqs. (4.1)

and (4.7) may be evaluated by applying the Euler-
Maclaurin formula to the sums. The Aslamazov-Larkin
Auctuation conductivity" in the Hartree approximation
is then obtained: in sPatial dimension d, 0.yy-ez '

where v= 1/(d —2) (e~ is the renormalized temperature;
see Sec. III).

As in the case of the Ettingshausen coefficient and the
longitudinal conductivity, this result differs by a factor
P~ /2 from the mean-field result computed by Maki using
the mean-field Abrikosov solution.

In the low-field limit, Eq. (4.10) gives

1+3d e+2d e
96m%' AT Z (1+4 e)

(4.13)

If we replace e by the reduced temperature e in Eq.
(4.13), then we obtain the Gaussian results of Fukuyama
et al. " in the two- and three-dimensional limits:
0 yz h e in two dimensions and 0. —h e in three
dimensions. However, in the Hartree approximation,
8-e~ in three dimensions, with e~ the renormalized
temperature (see Sec. II C), so that cr, —h @it in three di-

mensions in low fields. Thus, the low-field Hall conduc-
tivity is more singular than the zero-field longitudinal
conductivity.

Recently, Hagen et al. have measured the Hall resis-
tivity in Y-Ba-Cu-0 thin films near the mean field H, 2.
They found pronounced fluctuation effects above H, 2

which reduced the Hall resistance from its normal-state
value, and also found that the Hall resistance changes
sign below H, 2. These results may have the following ex-
planation. The Hall conductivity may be written in
terms of the resistivities p using cr, = —

p „/(p +p, )

(assuming p „=p ). Given that, experimentally,

pyy )+pyz 7 it fol lows that 0.„„=—p /pyy Hence, a sign
change in p will be accompanied by a corresponding
sign change in 0. . Now, the total Hall conductivity is
the sum of the normal-state Hall conductivity 0.„"„and
the superconducting contribution which is given by Eq.
(4.11):
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m, g, (0) 1tot n (4.14)
8~8 A [e (1+d e )]'i

Consequently, a sign change in o. may result if the
normal-state Hall conductivity and the superconducting
(vortex) conductivity have opposite signs. Whether such
a sign change is possible will depend upon the sign of the
particle-hole asymmetry parameter A,o . This sign is not
determined from any fundamental considerations but
rather depends on the details of the microscopic mecha-
nism. This observation also accounts for the suppres-
sion of the Hall resistance due to fluctuations above the
mean field H, 2. The importance of fluctuations far above
the mean field H, 2 is consistent with the Ettingshausen-
effect data of Palstra et al. ' who found large fluctuations
5—10 K above T,2(H).

APPENDIX A:
DEFINITION OF TRANSPORT COEFFICIENTS

J"=a„E +n„E +K BT +K BT
By

BT +K
By

BT
Bx

In this appendix we derive the relation between the Et-
tingshausen coefficient and the three experimentally mea-
sured quantities: the transverse temperature gradient,
the applied voltage, and the thermal conductivity. We
shall also obtain an expression for the Nernst coefficient
in terms of the Ettingshausen coefficient. We begin with
the linear-response equations for the electric and heat
currents, J' and J", respectively,

V. CONCLUSIONS

We have solved the time-dependent Ginzburg-Landau
equation in the Hartree approximation and have comput-
ed various transport coefficients in a magnetic field near
the mean-field transition temperature T,2(H). We have
emphasized the absence of any divergence in the trans-
port coefficients at T,z(H) in nonzero magnetic field.
Moreover, the lack of a divergence at T,2(H) is not re-
stricted to the transport coefficients but is also reAected
in equilibrium quantities such as the specific heat and
the magnetization. We mention one crucial advantage of
the Ettingshausen effect: the theoretical value of the Et-
tingshausen coefficient is easier to compare with experi-
mental results since the normal-state contribution is
negligible and, hence, no subtraction procedure is re-
quired. This is in sharp contrast to the specific heat, con-
ductivity, and thermopower. Much work remains to be
done especially on the two outstanding problems that we
have not considered: the effect of pinning on these re-
sults' and the nature of the transition (if any) from the
normal state to the Abrikosov Aux-lattice state. Final-
ly, a microscopic calculation is clearly necessary in order
to understand the interplay between Maki-Thompson
contributions to the transport coefficients, and the order-
parameter Auctuations in a magnetic field.

(A2)

Xy

BT & y BT
Bx T

(A3)

BT O'yx

T
BT
Bx

(A4)

K BT a„
yx ~ B ~ y (A5)

where A =
cxyy, 0 =0 yy, K =K and the off-

diagonal transport coefficients are antisymmetric in their
indices due to the applied magnetic field:
a ~(H)= —a „(H) and similarly for K and cr. [We have
used the Onsager reciprocity relations which give
a„~(H ) =a~„(—H) and the fact that transverse transport
coefficients are odd in the magnetic field; that is,
a (

—H)= —a (H), due to the JXH form of the
Lorentz force. ]

Now, the boundary conditions for the Ettingshausen
experiment are zero transverse currents and zero longitu-
dinal temperature gradient. Thus, for J'=0, Jy =0, and
r)T/r)x =0, Eq. (A2) gives
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while Eq. (A4) gives

1

~xx

O'XX BT
T y

—o.„E (A6)

K„
Xy

2
+XX BT ~xy+ ~xx-o. „E„TBy o „

(A7)

Empirically, the thermopower cx is small enough to
render the second and third terms in Eq. (A7) negligible

We can eliminate E from these two equations, (A5) and
(A6), to give an expression for the Ettingshausen
coefficient in terms of the measured quantities
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o'yx 1 BT
cr T Bx

(A8)

compared to the first term. " Therefore, the Et-
tingshausen coefficient is indeed equal to the first term in
Eq. (A7) as stated in Sec. II B.

The Nernst effect is measured under the following
boundary conditions: BT/By =0, J =0, and J'=0.
Then (A4) gives

1&= H~o'yx (A10)

APPENDIX B: CORRELATION
AND RESPONSE FUNCTIONS

IN LINEAR RESPONSE

Therefore, from (A8) and (A9) we find a relation between
the Ettingshausen coefficient and the Nernst coefficient

H (r}T/dx )
(A9)

where we have omitted a term proportional to Gay We
shaH define the Nernst coefficient v as in Ref. 38,

In this appendix we outline the method for obtaining
the correlation function to linear order in the electric
field for the linearized equation of motion. We start with
the equation of motion for the order parameter in the
Hartree approximation,

(iA,o '+I o
') +i Vi i A—— ~ [1—cos(qs)] —a g +gms' q q

where the response function R is the Careen s function for Eq. (Bl). From the definition of the correlation function, Eq.
(2.4), and the noise averages, Eq. (2.3), it follows that

C(x, t;x', t')=2I o 'k~T f dx, f dt, R(x, t;x„t, )R*(x', t', x„t, ) . (B3}

where a =a+6„(~g~ ), and where we have introduced Bloch wave states along the z direction with wave vector q. The
solution of this equation is (we omit the wave vector-index q and note that all position vectors x lie in the xy plane)

g( xt)= f dx' f dt'R(x, t;x', t')g{x', t'), (82)

To find the response function to linear order in the electric field we write R =Ro+R &, where Ro is the equilibrium

response function and R, is first order in the electric field. Substituting this expansion into the equation of motion, Eq.
(B1},we find, for R i,

R, (x, t;x', t')= i (—iso '+1 o
') fdx, f dt, @(x,)Ro(x, t;x„t, )Ro(x„t,;x', t'),

Ac
(B4)

(B&)

where the equilibrium response function R o satisfies
2

$2 2

(ig '+I'o ')—— Vi i A —+ ~ [1—cos(qs)]+a Ro(x, t;x', t')=5(x —x')5(t t') . —
at Zm

' Ac ms

Finally, we may express the correlation function C in terms of the response function Ro using Eqs. (B3) and (B4),

C(x, t;x', t')=C (x, t;x', t') i I" ' —dx, fdt, @(x,)[R (x, t;x„t,)C'(x', t';x„t, ) R" (x', t';x„t,—)C (x, t;x„t, )]
Ac

+ Ao f dxi f dti4 (xi )[Ro(x t xi ti )Co (x t 'xi ti )+R ( otx'xi ti )Co(x t'xi ti )] (B6)

where Co is the equilibrium correlation function which
does not contribute to the currents. The problem is now
reduced to finding the equilibrium response function R o,
which is most easily accomplished by expanding Ro in

terms of the Landau eigenfunctions in the x-y plane,
and Bloch waves along the z direction. Working in the
Landau gauge, A=( —Hy, 0, 0), we find

Ro(k 4' ~,e,k) =
1/2

X exp [ —( g
—g'o)~ /2 —( g' —go) 2/2]

H. (k —ko)H. (k' —ko)

"n! (il o ~ Ao ~+a
(B7)
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where the arguments of Ao are the x coordinates in di-
mensionless units g=(mcoH/ih')' x with roH=e*H/mc,
and

go= —p /(mcoH/A)'

with p the y component of the momentum, co is the fre-
quency variable, c„ is the energy eigenvalue

f2 2

e„=firoH(n + —,
' )+a+ [1—cos(qs)], (88)

ms

and the functions H„(x) are the Hermite polynomials.
We also note that the fluctuation-dissipation theorem
gives

2k~ T
C, (g, g', ~,q, g, ) = '

&mal, (g, g', ~, g, ),
which may be verified by using (83) and (87).

follows from the determination of the temperature at
which the order-parameter susceptibility diverges. ) Us-
ing the self-consistent equation in the lowest Landau lev-
el, Eq. (2.11), we obtain

deH (2tc —1) 1+2d=1+ g, (0)h
ae 4y'A [e (1+d ~ )] ~

(C3)

sorbed into the normal-state free energy and by shifting
the bare transition temperature To. ' Thus, we find, for
the magnetization,

(ae„/ah )2h&z in32rr Arg, (0) „o[iM„(1+d p„)]'
The derivative (r)eH /r)h ) =(r)eH/c)eH )(r)eH/r)h ), where
(r)eH/t)h )=1. (Note that

eH=[1/H;2 (0)](dH, 2/dT)[T —T,2(H)]

APPENDIX C: THERMODYNAMIC PROPERTIES

In this Appendix we shall extend the well-known cal-
culation of the low-field Gaussian fluctuation magnetiza-
tion and entropy ' to the Hartree case. This calculation
is completely analogous to that of the specific heat in the
Hartree approximation —see, for example, Ref. 10. Simi-
lar results have also been obtained recently by Ikeda and
Tsuneto.

The free energy in the Hartree approximation is '

where c.„ is the energy variable given by Eq. (88). The
magnetization follows from M= —BF/BH. In three di-
mensions, the integration over q is divergent, a reflection
of the fact that the theory is valid only on length scales
greater than the zero-temperature coherence length: the
momentum integrals are, therefore, cut off at high mo-
menta Q. The resulting Q-dependent terms may be ab-

The second term on the right-hand side of Eq. (C3) is
generally small compared to one. Again, there is no
divergence of the magnetization in finite magnetic field
and this theoretical expectation is borne out by experi-
ment. The high-field scaling form is the same as
that for the Ettingshausen coe%cient.

Finally, the entropy, S ( T,H) = —r)F /o T is

S ( T,H) = — H, 2(0)h
32sr Arg, (0)

(BeH /r) T)

„=c[p„(1+d p„)]'r
where (r)ZH/r)T)=(c)eH/r)eH)(r)eH/r)T), with the first
factor given by Eq. (C3), and the second factor

(r)eH/"r)T) =[1/H, 2(0)](dH, 2/dT) .

The high-field scaling form of the entropy is also the
same as that for the Ettingshausen coeKcient.
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