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Exact solutions for Ising-model odd-number correlations on planar lattices
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Simple procedures are first used to obtain exact solutions of highly-localized odd-number Ising corre-
lations on the kagome, square, and honeycomb lattices. To extend these results, a systematic and unify-

ing method is then developed and demonstrated for finding exact solutions of n-site (with n an odd in-

teger) Ising correlations on various planar lattices. The method combines five transformation or map-

ping theorems and linear-algebraic correlation identities of the triangular Ising model supplemented by a
foreknowledge of its spontaneous magnetization and three select triplet correlations. In particular, con-
sidering a select seven-site cluster of the triangular Ising model, the knowledge of all its eleven odd-
number correlations defined upon this cluster is shown sufBcient for determining exactly all honeycomb,
decorated-honeycomb, and kagome Ising odd-number correlations upon their correspondingly select 10-,
19-, and 9-site clusters, respectively. The direct applicability of the catenated mapping theorems and rel-

ative ease of the calculational procedures are highlighted by the resulting large numbers of multisite
correlation solutions (e.g. , approximately 80 and 50 for the honeycomb and kagome Ising models, re-

spectively), the large n „values (n,„=9, 9, and 19, respectively, for the honeycomb, kagome, and
decorated-honeycomb Ising models), and convenient prescriptions for extracting critical amplitudes.
The results also offer examples of correlation degeneracies and other linear-algebraic correlation identi-
ties that do not depend explicitly upon the interaction parameters.

I. INTRODUCTION

Our fundamental understanding of anomalous thermo-
dynamic and transport behaviors in a many-body
cooperative system stems in large measure from concomi-
tant knowledge and applications of its thermal equilibri-
um correlations. The familiar representations of macro-
scopic observables in terms of their underlying correla-
tions, e.g., specific heat and magnetic susceptibility as en-
ergy and magnetization fluctuations, respectively, Kubo
formulas, temperature-dependent Careen's functions,
Auctuation-dissipation theorems, and so forth, constitute
many of the most instructive basic relationships and use-
ful formulations in statistical mechanics and bestride vir-
tually all areas of theoretical investigation in phase tran-
sitions, critical and multicritical phenomena. Indeed, the
impetus for the modern synoptic view of critical phenom-
ena was the recognition of the essential role that the
anomalously long-ranged spatial correlations played near
a critical point, resulting in scaling theories and
renormalization-group approaches towards problems in
phase transitions and particle physics. In general, since
correlation functions are structured using thermal expec-
tation values of products of localized variables, they clear-
ly offer a more detailed description than thermodynamic
for the order and symmetry present in the system, and a
precise presentation of the correlation solutions becomes
highly desirable.

The Ising model remains the most studied and, argu-
ably, the most significant lattice-statistical model in
theoretical and computational science (any Hamiltonian
having a finite density of finitely discrete commuting local
variables can be cast as an Ising model). The model is

unusually rich in its physical applications, being used not
only to represent certain kinds of highly anisotropic mag-
netic crystals but also, e.g. , as a lattice model for fluids,
alloys, adsorbed monolayers, equilibrium polymerization,
for biological and chemical systems, and in field theories
of elementary particles (lattice gauge theories describing
the quark structure of hadrons). Notably, within the
wide variety of applications, the Ising model often pro-
vides a unified understanding of seemingly diverse prob-
lems.

The two-dimensional (d =2) simple Ising model in
zero magnetic field is the only realistic microscopic mod-
el of cooperative phenomena for which many correlation
solutions have been exactly found. From this perspec-
tive, the Ising model is thus set apart from other exactly
solved models in statistical physics, e.g. , the six-vertex,
eight-vertex, and hard-hexagon models' for which very
little is known concerning their correlations, certainly
away from criticality. Planar Ising model even-number
localized correlations have traditionally been calculated
largely through the direct use of Pfaffian techniques in-

volving rather complicated expressions of elliptic in-

tegrals and Toeplitz determinants, with exact and explicit
solutions, therefore, being restricted, in practice, to smail,
even numbers of closely neighboring lattice sites. Recent-
ly, however, a systematic and unifying method was
developed and demonstrated for obtaining the exact solu-
tions of localized, even-number, multisite Ising correla-
tions on various planar lattices. The scheme, which is
exceedingly simpler than solely using Pfa%an techniques,
embodied a series of five mapping theorems in alliance
with algebraic correlation identities, where the triangular
Ising model served an overarching role in the theoretical
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framework.
On the other hand, with no general method likened to

the Pfaf6an procedures available, exact solutions for the
odd-number correlations of planar Ising models appear
less frequently in the literature. Since theoretical analy-
ses of certain physical quantities and phenomena require
such solutions (e.g., the joint configurational probabilities
of the Ising sp jns are represented in terms of both even-
and odd-number multispin correlations), one is motivated
to similarly develop systematic procedures for finding ex-
act solutions of the localized odd-number multisite Ising
correlations on various planar lattices. As shown previ-
ously by Baxter, the anisotropic free-fermion model is
generic, being equivalent to the checkerboard Ising model
and, therefore, containing the anisotropic square, tri-
angular, and honeycomb Ising models as special cases.
Recently, Baxter and Choy have calculated local three-
spin correlations of the anisotropic free-fermion model
and, by employing the unifying concept of Z invariance,
they proved that a whole class of local three-spin correla-
tions on various lattices are all given by the same univer-
sal function. Thus, Baxter and Choy were able, in partic-
ular, to obtain exact solutions for many three-spin corre-
lations of the anisotropic free-fermion and planar Ising
models. Some similar results were also obtained by Lin
and Wu. Within the developments of the present paper,
supplemental use is made of these exact solutions for trip-
let correlations specialized to the isotropic triangular Is-
ing model thereby enabling the theorems and many of the
same strategies employed by Barry, Khatun, and Tanaka
for obtaining the even-number correlations of planar Is-
ing models to be invoked for now finding the companion
odd-number correlations.

II. EXACT SOLUTIONS
FOR HIGHLY LOCALIZED CORRELATIONS

OF THE KAGOME, SQUARE,
AND HONEYCOMB ISING MODELS

In this section, exact solutions for the highly localized
odd-number correlations will first be found in a compara-
tively straightforward manner for the kagome, square,
and honeycomb Ising models. The practical procedures
involve simple and direct use of linear-algebraic correla-
tion identities having interaction-dependent coeKcients,
supplemented only by a priori knowledge of the spontane-
ous magnetizations.

The kagome lattice (Japanese woven bamboo pattern)
is a d =2 periodic array of equilateral triangles and regu-
lar hexagons (see Fig. 1), thus also called the 3-6 lattice.
The lattice is regular (all sites equivalent, all bonds
equivalent) and may be termed "close packed" since it
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FIG. 1. The kagome lattice. Nine sites are specifically
enumerated for later use.

contains elementary polygons having an odd number of
sides (viz. , triangles) ~ One recognizes that the kagome
lattice has the same coordination number 4 as the square
lattice, the latter being "loose packed. " One defines the
kagome Ising-model ferromagnet on such a lattice of Nk
sites as the (dimensionless) Hamiltonian

Q g pmpn ~

(m, n )
(2.1)

kZk =Tr„(e ") . (2.2)

A class of correlation identities considered in the
present paper is a set of linear-algebraic equations with
coefficients dependent only upon the (dimensionless) in-
teraction parameters. To develop such identities sys-
tematically, one now proceeds to derive their basic gen-
erating equations. In the present case, let [h] be any
function of the kagome Ising variables p „p2, . . . , p&k

(excluding po, the origin-site variable in Fig. 1). Similar-
ly, letting &k, Tr„' denote a restricted (dimensionless)
Hamiltonian and trace operation, respectively, which ex-
clude po, one can construct the canonical thermal aver-
age (po[h]) as

where each site-localized Ising variable p, =+1,g&
designates a summation over all distinct nearest-neighbor
pairs of lattice sites, and Q )0 is the (dimensionless)
strength parameter of the ferromagnetic interaction. Let-
ting the set of all Ising variables Ipo, p„. . . , p~ —,] —=p,
the magnetic canonical partition function Zk is given by
the usual trace formula over all degrees of freedom of the
system:

Zk(po[h]) =Tr„(e "po[h])

=Tr&exp[ —&'„+Qpo(p, +p2+ p3+ p4) ]po[h]
v

=Tr„'(e "[h])Tr„(exp[Qpo(pi+p2+p3+p4)]po)

Tr„,exp[Qpo(pi+ p2+p3+ p4)]po=Tr„(e "[h])
Trl exp[Qpo(pi+p2+p3+p4)]
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thereby yielding

Tr„exp I. Qpo( pl + p2+ p3+ p4) 1po
&po[h)& = [hl po& [hl

Tr„,exp[QP, ,(p, +P2+p3+ p4) ]
(2.3)

having written the standard definition of a canonical thermal average which initiated the above development. To fur-
ther develop the last expression (2.3), one utilizes the following finite series expansion:

Tr„,exp[Q po(pi+ p2+ p3+ p4) )po = tanh[Q (p, +P2+p3+ p4) ]
Tr„,e"p po p 1+p2+ p 3+p4

where the expansion coefticients

Ag =
—,'[tanh(4Q)+2tanh(2Q)],

Bg =—,
' [tanh(4Q) —2 tanh(2Q) ] .

A g (p 1 +p2+ p3+ p4 ) +Bg (p 1p2p3+ p ip2p4+ p 1p3p4+ p2p3p4) (2.4)

(2.5a)

(2.5b)

To obtain the finite series form (2.4), use was made of the facts that any Ising variable pi satisfies pi"+'=pi, pi"=1,
n =0, 1,2, . . . . The coefficient expressions (2.5) were then determined by considering all possible realizations of the Is-
ing variables p„P2, P3, and P4 in the identity (2.4). Substituting (2.4) into (2.3), one obtains

(po[h ] ) = Ag ( (pi + p2+ p3+p4) [h ) ) +Bg ( (p ip2p3+pip2p4+pip3p4+p2p3p4)[I1 ] ) ~ po 6 [h ] (2.6)

~1k= Ag31k+ Bg35k

y2k y3k y4k 2( Ag +Bg )(y1k +ysk )

&6k =4Ag&sk+4Bg& 1k

(2.7a)

(2.7b)

(2.7c)

where the localized kagome correlations are defined by

Equation (2.6) is the basic generating equation for devel-
oping linear-algebraic identities among Ising multisite
correlations upon the kagome lattice.

Using the basic generating equation (2.6), the fact that
pl =1 for any Ising variable and symmetry-group opera-
tions of the system Hamiltonian (2.1), one considers the
five previously enumerated sites 0, 1, 2, 3, and 4 in Fig. 1

and obtains

2)3=(48g ) '(1 —4Ag ), (2.9a)

712 7)3 214=2( Ag +Bg )[ 1 +(48g ) '( 1 —4Ag )]

(2.9b)

2)6=48g+ AgBg '(1 —4Ag) . (2.9c)

ek—:(T, —T)IT, =(Q —Q, )IQ,

Owing to the fact that each odd-number correlation is
thus constructed as a product of a suitably analytic ratio
solution and the singular (branch point) spontaneous
magnetization (appearing in Table I), the odd-number
correlations manifestly possess the same critical tempera-
ture T, and critical exponent —,

' as the spontaneous mag-
netization but di6'ering critical amplitudes A;k,
i =1,2, . . . , whereyjk Atkek, T~T, —,

yik =(po)

y2k ( poplp2 )

y 3k (POP1P'3 )

y4k (POP 1P4)

&P1P~4&

=&p~ p~ p'& .

(2.g)

being the fractional deviation of the temperature from its
critical value T, .

In order to explicitly calculate the amplitudes Ajk,
j =2, 3,4, 5, 6, one first formally multiplies the ratio solu-
tions (2.9) by the spontaneous magnetization y, k and then
substitutes the values of the critical coe%cients Ag, Bg

C C

and critical amplitude A, k (appearing in Table I):

Simple inspection of the equations (2.7) reveals that the
ratios of the correlations, 2);:—y;k/y, k, i =2, 3,4, 5, 6 can
be obtained in terms of the known interaction-dependent
coefficients Ag, Bg Since Ag, .Bg [Eqs. (2.5)] are analyt-
ic functions of temperature for all finite temperatures, the
exact solutions for the ratio quantities g, , i =2, 3,4, 5, 6
are each found to be similarly analytic:

A3k=(48g ) '(1 —4Ag )A, k=1.01196.. .

A2k A3k

=A 4k

=2(Ag +Bg )[1+(48g ) '(1 —4Ag )]A 1k

= 1.072 70

(2.10a)

(2.10b)
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A6k =[4Bg + At7 Bg (1—4Ag )]A,k =0.90675

(2.10c)

The result (2.9b) immediately grants the exact solu-
tions

y2k =y3k

=y4k

=2( At7+Bg )[1+(4Bg ) '(1 —4Ag )]y,k, (2.1 1)

which evidently is the first explicit solution of a threefold
essential degeneracy to appear in the literature for Ising
model correlations on any lattice. Other examples for the
existence of a twofold essential degeneracy between septet
correlations

& POP lP2P3P'5P6P7 ) & PQP1P2P3PsP6P'8 ) (2.12a)

and a threefold essential degeneracy among quintet corre-
lations

FIG. 2. The square lattice where five sites are specifically
enumerated, namely, the origin site and its four nearest-
neighboring sites.

PQPlP3PsP7 &POP 1P3P5P8 ) &PQPlP4P5P7 ) (2.12b)

&, = —S g V, V7,
(, )

''' (2.13)

can be proven by using each correlation in (2.12) as a
left-hand-side generator in the basic generating equation
(2.6) and comparing the resulting correlation identities
with aid of the kagome lattice symmetry in Fig. 1.

The familiar square lattice (shown in Fig. 2) is regular
(all sites equivalent, all bonds equivalent) and, as
remarked earlier, possesses the same coordination num-
ber 4 as the kagome lattice. One defines the square
Ising-model ferromagnet on such a lattice of X, sites as
the (dimensionless) Hamiltonian

where, as before, each site-localized Ising variable
v& =+1, g(; ) designates the summation over all distinct
nearest-neighbor pairs of lattice sites, and S)0 is the (di-
mensionless) strength parameter of the ferromagnetic in-
teraction.

Since the square and kagome Ising models are each
defined upon four-coordinated lattice structures, the
basic generating equations for developing their correla-
tion identities are formally the same except for the inter-
changing of their respective (dimensionless) interaction
parameters. Specifically, for the case of the square Ising
model (2.13), the basic generating equation (2.6) is tran-
scribed to read

&Vo[e]) = Az &( V, +V2+V3 +V4)[ e]) +Bs&( V, V2V3 +VlV2V4 +VlV3 V4 +V2V3 V4)[e]), VOK[e] (2.14)

with coefficients

As =
—,'[tanh(4S)+2 tanh(2S)],

B&=
—,
' [tanh(4S) —2 tanh(2S)] .

(2.15a)

(2.15b)

In a similar fashion as previously, the basic generating
equation (2.14) is used to develop the following linear-
algebraic identities among the odd-number correlations
defined upon sites 0,1,2,3,4 of the square lattice in Fig. 2:

yl, =&V,),
& VoVlV2)

y3. =& 12 3)

y4 & VoVlV3)

yS & VoVlV2V3V4 )

(2.17)

y& Asyi. +4Bsy3

y2s 3 4 2( Ag+Bg)(yl +3 3g )

y5, =4~sy3. +4Bs»,
where

(2.16a)

(2.16b)

(2.16c)

As before, a simple inspection of (2.16) reveals that the
ratios of the correlations g;=y, , /yl„ i =2, 3,4, 5, can be
obtained in terms of the known interaction-dependent
coefficients As, Bs whereupon the correlations y3„
y2, =y4„and y5, are then obtained by multiplying the
corresponding ratio solutions by the spontaneous magne-
tization y&, of the square Ising model in Table I. These
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exact correlation solutions (Dekeyser and Rogiers and
Khatun ) are thus given by

ys, =(4B~ ) '(1 —4As )y „, (2.18a)

y2s y4s

=2( As+Bs)[1+(4Bs ) '(1 —4As )]y„,
ys [4Bs+AsBs '(1 —4As )]y

(2.18b)

(2.18c)

where (2.18b) demonstrates an essential doubly degen-
erate solution. In the same manner as previously, the
solutions (2.18) may be used to calculate the critical am
p/itudes 2,.„i=2, 3,4, 5:

designates the summation over all distinct
nearest-neighbor pairs of lattice sites, and K )0 is the (di-
mensionless) strength parameter of the ferromagnetic in-
teraction. Letting the set of all Ising variables
[oo,.cr„. . . , o.z, ]

—=o, the magnetic canonical parti-
h

tion function Z& is given as before by the trace formula
over all degrees of freedom of the system:

Z, =Tr.(e ") . (2.21)

The basic generating equation for developing linear-
algebraic identities among the multisite correlations of
the honeycomb Ising model is derived, using earlier-type
arguments, to be

As, =(4Bs ) '(1 —4As )A„=0.925802.

32, =24,

(2.19a)
&o [f]&=A &(tT, +cr +cr )[f]&

+B& [f]& o&If] (2.22)

=2(As +Bs )[1+(4Bs ) '(1 —4As )]A„

=1.012 677 (2.19b)

A s, = [4Bs + As B~ '
( 1 —4 As ) ] A „=0. 802 944

(2.19c)

where the critical values Az, B&, and 3&, in Table I
have been substituted into (2.19).

Consider the honeycomb lattice structure (d =2
periodic array of regular hexagons) shown in Fig. 3. The
honeycomb Ising-model ferromagnet is defined on such a
lattice of NI, sites as the (dimensionless) Hamiltonian

K g cJ'; O'1

(~,j)
(2.20)

where, again, each site-localized Ising variable o.„=+1,

&———)( &———3(
/ /

/ 6 '
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/ /
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FIG. 3. The honeycomb lattice and its decomposition into
two interlacing sublattices ("circled" G sites and "crossed" X
sites, respectively) where each sublattice is triangular. Ten

honeycomb sites are specifically enumerated for use throughout
the paper.

where

A =
—,
' [tanh(3K)+ tanh(K) ],

B =
—,
' [tanh(3J ) —3 tanh(K) ] .

(2.23a)

(2.23b)

Following similar procedures used above for the ka-
gome and square Ising models, Barry, Munera, and Tana-
ka show that, aided by a priori knowledge of only the
spontaneous magnetization y& of the honeycomb Ising
ferromagnet given in Table I, exact solutions can be
found for the following seven (exhaustive in number)
odd-number correlations (and their corresponding critical
amplitudes) defined upon the cluster of six sites
0, 1,2,3,4,5 in Fig. 3:

y, =&

ys=&~oo40s&

&~o~&~s&

& CT oCT ) CT 4 &

&~i~2~4&

yv & ~oo io 2o'4o s &

ys &ooo'i02oso'4& .

The essential double degeneracy

(2.24)

y4 y5 (2.25)

was also established in these same investigations.
To review, assuming a foreknowledge of only the spon-

taneous magnetizations, the present section has demon-
strated that the highly localized odd-number correlations
can be obtained by relatively direct procedures for the ka-
gorne, square, and honeycomb Ising-model ferromagnets.
These simple methods do not appear promising, however,
for finding additional numbers of exact solutions for
odd-number localized correlations upon the above lattice
structures or upon the only other d =2 regular lattice,
the triangular lattice with its larger coordination number
6. The difficulties encountered for extending the number
of exact solutions arise especially in the search for linear
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independence in the systems of algebraic correlation iden-
tities which, from experience, is a more elusive algebraic
property than closure. To address these shortcomings,
the remainder of the paper will develop and demonstrate
a systematic and unifying method for obtaining the exact
solutions of n-site (n odd integer) Ising correlations on
various planar lattices where the triangular Ising model
investigated in the next section will later play an envelop-
ing role in the theory. Z, =Tr~(e '), (3.2)

where, again, each site-localized Ising variable o. =+I,
denotes summation over all distinct nearest-

neighbor pairs of lattice sites, and R )0 is the (dimen-
sionless) strength parameter of the ferromagnetic interac-
tion. The magnetic canonical partition function Z, of the
triangular Ising model is now defined by

JV, = R (3.1)

III. EXACT SOLUTIONS FOR ODD-NUMBER
LOCALIZED CORRELATIONS

OF THE TRIANGULAR ISING MODEL

Consider the case of a triangular lattice ( X sites, say,
jn Fig. 3). The triangular Ising model ferromagnet is
defined upon such a lattice of N, ( =

—,'Ni, ) sites as the (di-

mensionless) Hamiltonian

where the notation Trx signifies that the trace operation
is taken over the degrees of freedom of all N, X-site Ising
variables.

In Fig. 3, calling site 3 the origin site, the sites 1, 2, 6,
7, 8, 9 then become its six nearest-neighboring sites. Us-
ing the same manner of derivation as previously, the basic
generating equation for developing linear-algebraic identi-
ties among Ising multisite correlations upon the triangu-
lar lattice is given by

&3[g] & =C& (1+2+6+7+8+9)[g]&

+D & ( 126+ 127+ 128+ 129+ 167+168+169+178+ 179+189

+267+268+ 269+278+ 279+289+678+ 679+689+789 )[g ] &

+E & (12678+ 12 679+ 12 689+ 12 789+ 16 789+26 789)[g] &, 3 6 [g], (3.3)

where, for notational simplicity, only the numeric site la-
bels of the Ising variables are entered within the thermal
average symbols, and where the coefficients are given by

C =
—,', [tanh(6R )+4 tanh(4R )+5 tanh(2R )], (3.4a)

V) V2 V3

D =
—,', [tanh(6R ) —3 tanh(2R )], (3.4b)

E= —,', [tanh(6R) —4tanh(4R)+5tanh(2R)] . (3.4c)

Considering the spatially compact cluster of triangular
lattice sites 1,2, 3, 6, 7, 8, 9 (see X sites in Fig. 3), the set of
odd-number thermal averages U;, i =1, . . . , 11, defined

below and diagrammatically depicted in Fig. 4 exhausts
all such (nonequivalent) possibilities defined upon this
seven-site cluster:

V4

V7

V5

V8

V6

V9

U, =
& 3 &, U, =

& 312 &, U, =
& 317&,

=&318&, U, =&31267&,

v6 =
& 31268 &,

U7
=

& 3126789 &, vs =
& 127 &,

U9=&179&, Uio=&12678&, U„=&31278& .

(3.5)

gV gV
V~o

FIG. 4. Diagrammatic representation of the triangular lattice
odd-number correlations U;, i =1, 2, . . . , 11. These correlations
exhaust all such (nonequivalent) possibilities defined upon sites
1,2,3,6,7,8,9 enumerated in Fig. 3 or 7 and constitute a spanning
set in the context of the present paper.
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Using the basic generating equation (3.3) and the
definitions (3.5), the following system of exact, linear,
algebraic, homogeneous correlation identities are derived
with cognizance of the triangular lattice symmetry (see
Fig. 4): (C 2D—+E)(u3 —2v]]+V9) =0 . (3.9)

the exact solution for v9.
Using the degeneracy relation u3=v4 stated in (3.7c),

one subtracts (3.6d) from (3.6c) giving

v, =6Cv, +2D (3U3+6v]]+ v9 )+6Eu, p,
U2 =2C(v] +U3+vs )

+2D(2u, +V3+4U]]+U9+2v]p)

+2E(u3 +u]]+ v]p ),
U3 C(2v, +v3+2V]] +v9 )

(3.6a)

(3.6b)

Since C —2D +EGO (except at K =0), one concludes
from (3.9) that

V]]
= 2(V3+U9) (3.10)

i.e., the exact solution for v~ is found to be the arithmetic
mean of the previously known solutions v3 and v9. Sub-
tracting (3.6h) from (3.6f), one obtains

+4D (u, +v3+2us+ v, p )

+E(U3+2v]]+U9+2V]p),

u4 =2C( v] +2V]] )

u6 —u» =(C 2D +—E)(v3 —2V8+u9) =0

using (3.9). Therefore, the degeneracy relation3.6c

V6 V 1 1

(3.1 1)

(3.12)

+2D(2u] +3v3+2V]]+V9+2v]p)

+2E ( 2V s +U ]p )

u~ =2C(u3+u8+v, p)

(3.6d)

v]p=(6E) '[(1—6C)u, —2D(3V3+6v]]+V9)] . (3.13)

is established.
Since v„v3 ( =u4), u8, and v9 are now determined, the

identity (3.6a) yields the exact solution for u, p:

+2D (2v, +V3+4U]]+V9+2U]p)

+2E(u, +v3+ v]] ),
U6 C(v3+2u8+v9+2v, p)

+4D(u, +v3+2V]] + u]p )

+E(2U]+V3+2V]]+ v9)

V7 6Cu, p+2D (3V3 +6U]] +U9)+6EU»

U]] =2C(2U]] +V]p )

+2D(2v, +3U3+2v]]+ v9+2v]p)

+2E(v]+2v&) .

(3.6e)

(3.6f)

(3.6g)

(3.611)

The results of Baxter and Choy for the anisotropic tri-
angular Ising model include, as a specialization, the fol-
lowing exact solutions for the isotropic case under investi-
gation:

(1—tanhR) (1—tanh R)
vi = 1

16(tanh R)(1+tanh R)
(3.7a)

e4R 2e
—4R+ 1 (e4R+ 3)1/2(e4R 1 )1/2

1+2
2R —2R 2(e —e )

Vi

(3.7b)

[e4R+ 1 (e4R+ 3)1/2(e4R 1 )1/2]2
V3 =V4= 1

(e —e )
2R —2R 2 Vi

(3.7c)

Subtracting (3.6b) from (3.6c), one obtains

v9 =u3+(C —2D +E) '(V3 —
v2 ) (3.8)

and, since the exact solutions (3.7b) and (3.7c) are known
for v2 and u3, respectively, the relation (3.8) determines

Vi =1.203269. . .

V2 =0.967 245

V3 V4 0.944 097 ~ ~ ~

V5 =0.782058. . . ,

V6= V» =0.758 910

V7 =0.647 709. . . ,

V8 =0.897 800. . . ,

V9=0.851 503. . . ,

V1Q 0.740 302 ~ ~ ~ ~

(3.14a)

(3.14b)

(3.14c)

(3.14d)

(3.14e)

(3.14f)

(3.14g)

(3.14h)

(3.14i)

One notes that, besides the double-degeneracy relations
(3.7c) and (3.12), other linear-algebraic correlation identi-
ties which do not explicitly contain the interaction pa-
rameters can be derived solely using the system of identi-
ties (3.6) (but not vice versa), for example, in addition to
(3.10),

The identities (3.6e) —(3.6g) can finally be employed to im-
mediately grant the exact solutions for the remaining
correlations u5, v6, ( =v» ), and u7, respectively. A major
goal of the present paper has thus been achieved, namely,
for the case of the isotropic triangular Ising model, exact
solutions have been found for the 11 odd-number correla-
tions vi, v2, . . . , v» defined upon the spatially compact
cluster of seven lattice sites 1,2, 3, 6, 7, 8, 9 (see the X sites
in Fig. 3). Substituting as needed the critical values R„
C„D„E„and Vi from Table I into the exact solution
expressions (3.7b), (3.7c), (3.8), (3.10), (3.13), (3.6e), (3.6f),
and (3.6g), one directly evaluates the critical amplitudes
V. , j =2, 3, . . . , 11, where, as usual, v; —V;e,'

R ~R, +, i =1,2, . . . , 11, e,:(R —R, )/R—, being the
fractional deviation of the temperature from its critical
value:
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V) 3V2+3V5 V7 =0,
V2 V3 V5+V6 =0

(3.15a)

(3.15b)

IV. ENVELOPING ROLE
OF THE TRIANGULAR ISING MODEL

In the earlier companion article of Barry, Khatun, and
Tanaka, the investigations and analyses of exact solu-
tions for Ising-model even-number correlations on planar
lattices employed a series of five mapping or extended
transformation theorems (extended in the sense that the
theorems apply beyond partition functions to multisite
correlations) which successively mapped unknown planar
Ising correlations upon linear combinations of those Ising
correlations already known on other planar lattices. The
catenated mapping theorems were direct and systematic
in their applications and, in alliance with algebraic corre-
lation identities, the method demonstrated that only a
few localized Ising correlations on the triangular lattice
actually needed to be calculated by traditional Pfa%an
procedures in order to obtain large numbers of exact
solutions for localized Ising correlations upon the honey-
comb and kagome lattices as well as upon other irregular
(bond-decorated) planar lattices. In that paper, the
theoretical approach was emphasized to be exceedingly
simpler than using solely Pfaf6an procedures which are
known to become progressively lengthly and arduous as
either the number of sites under consideration or the dis-
tances between these sites increase.

In the theoretical studies of the present paper upon ex-
act solutions of planar Ising-model odd-number correla-
tions, the same five mapping theorems mentioned above
remain completely valid and the enveloping strategy us-
ing the triangular Ising model can thus be repeated.
Since discussions and proofs of these five mapping
theorems can be found in the earlier companion paper,
only the statements and leading ideas of the theorems will
be retold here along with their new applications
throughout later sections in determining exact solutions

of planar Ising-model odd-number correlations. For em-
phasis, writing corresponding (dimensionless) interaction
parameters explicitly as subscripts on Hamiltonians, par-
tition functions, and thermal averages will be a useful and
frequent notation in this and the following sections.

(1) Theorem 1. Consider the honeycomb lattice
decomposition depicted in Fig. 3 and let [r] be any func-
tion of Ising variables containing only "crossed" X sites
(or only "circled" 0 sites). Then,

& [r]&h, K & [r]&,R

where & [r]&z z and & [r] &, z denote canonical thermal
averages pertaining to the honeycomb and triangular
Ising-model (dimensionless) Hamiltonians &i, x. and
&,z, respectively, with their (dimensionless) interaction
parameters related by 2 cosh2K =e + 1.

The above registry theorem will have significant conse-
quences throughout the remainder of the studies. In gen-
eral, any honeycomb lattice thermal average associated
with a configuration of sites which are in registry with
the sites of the triangular lattice can now be equated to
the corresponding triangular lattice thermal average, and
vice versa, in the sense of the star-triangle ( F-b, ) relation-
ships of theorem 1. It should thus be clear that the
thermal-average symbol for any correlation that satisfies
the registry theorem 1 does not actually require sub-
scripts &

.
&i, x or &

.
&, ~ since either context is

correct.
As an extension, the next theorem which utilizes

theorem 1 will enable any honeycomb Ising correlation to
be systematically expanded into a linear combination of
triangular Ising correlations.

(2) Theorem 2. Any honeycomb Ising-model correla-
tion can be represented as a linear combination of tri-
angular Ising-model correlations.

As an example which illustrates the above simple su-
perposition procedure, considering the following five-site
correlation where, again, for notational brevity, only the
site labels appear within thermal average symbols, one
finds that

& 03489 &, =
& 04389 &,

=
& [ A (1+2+3)+B123][A(3+6+7)+B367]389&i,x.

= A & 189+289+ 389+689+789+ 13 689+ 13 789+23 689+23 789 & h x.

+ AB & 12 389+ 12 689+ 12 789+ 16 789+26 789+ 36 789 & h x +B & 1 236 789 & h x

= A & 189+289+389+689+789+13689+13789+23 689+23 789&, ~

+ AB & 12 389+12689+12789+16789+26789+36789&,~+B & 1 236789&, ~

= A (v2+2u3+ vz+2u6+2us+uii )+2AB(u5+2vio)+B u7 (4.1)

where all 0 sites were systematically eliminated using the
basic generating equation (2.22) for honeycomb Ising
correlation identities whereupon every ensuing honey-
comb Ising correlation then directly corresponds by
theorem 1 to some individual triangular Ising correlation

I

defined in (3.5) and diagrammatically represented in Fig.

Towards proving that kagome Ising correlations can be
mapped upon linear combinations of honecomb Ising
correlations, one first introduces the decorated-
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honeycomb lattice, which is the lattice formed by the pre-
vious honeycomb lattice supplemented with lattice points
at the centers of all bonds (see Fig. 5). The resulting
bond-decorated lattice is irregular since all sites are no
longer equivalent. The decorated-honeycomb Ising mod-
el ferromagnet is then defined by the (dimensionless)
Hamiltonian

I

'U

a~K
I

~ a

%~0
L

'~--~---p-- ~---+-
'~ \

-+--4---~--+-

&d= L—g o. p
(p, q)

(4.2)

where o, pq are Ising variables localized on an original
honeycomb site p and "solid-circled" decoration site q,
respectively, g& ) designates a summation over all dis-
tinct nearest-neighbor pairs of lattice sites, and L )0 is
the (dimensionless) strength parameter of the ferromag-
netic interaction. The magnetic canonical partition func-
tion Zd is given as customary by the trace formula

—JydZd=Tr (e ") . (4.3)

Small portions of the honeycomb, decorated-
honeycomb, and kagome Ising models are depicted in
Fig. 6, and these models are connected by the
decoration-iteration (I) and star-triangle ( Y-6) transfor-
mations, respectively. Using the decorated-honeycomb
Ising model in a mediating role, one next states three
theorems which, taken together, will enable any correla-
tion of the kagome Ising model to be mapped upon a
linear combination of honeycomb Ising-model correla-
tions.

(3) Theorem 3. (ply . p„)q g=(p(p . p„)d L,
where the corresponding (dimensionless) interaction pa-
rameters are related by e ~=2 cosh2L —1.

(4) Theorem 4. &ptp~ . p„)dL, =M"&(o, +o.k)(o.,+o., ) (o, +o„))&r, where the left-hand-side (lhs) p
product contains n factors, M =

—,'tanh2L, and on the rhs,
o.j, o.

k are the nearest-neighbor Ising variables of p&,
' o.

q7
o., are the nearest-neighboring Ising variables of p, and
so forth.

(5) Theorem 5.

&o, o„o . o )d I =(o,o„o„.o, ).
q z,

FIG. 6. The honeycomb, decorated-honeycomb, and kagome
Ising models are connected by transformation theory. The
decoration-iteration (I) and star-triangle ( Y-6) transformations
equate, aside from known multiplicative constants, the partition
functions Zd L to ZI, z and Zd L, to Zk &, respectively, where
their (dimensionless) interaction parameters K, L, and Q are
simply related.

where the corresponding (dimensionless) interaction pa-
rameters are related by cosh(2L) =e

The unifying scheme of the present section should now
become clear. Systematically, theorem 3 maps a kagome
Ising correlation upon a p-type decorated-honeycomb Is-
ing correlation, whereupon theorem 4 then maps this
latter correlation upon a linear combination of o.-type
decorated-honeycomb Ising correlations. Each of the
latter correlations is then equated to a honeycomb Ising
correlation by theorem 5. Since theorems 1 and 2 previ-
ously established that any honeycomb Ising correlation
can itself be mapped upon a linear combination of tri-
angular Ising correlations, one sees that the triangular Is-
ing model plays the role of a "canopy or umbrella" in the
sense that knowing all its correlations on a select cluster
of sites is sufficient to determine all honeycomb,
decorated-honeycomb, and kagome Ising correlations
upon their respective sites which are appropriately locat-
ed within or upon the selected "canopy" cluster of tri-
angular lattice sites (see Fig. 7). Specifically in Fig. 7,

~N, ) ~P5
I I
I Ib. No .a p.e Go ~. .~ &4 ~.

X- N. & 4 X&,
G2 I 3

I
~ N,3

I

~O p,e
X ~8 Xa,

Gg

FIG. 5. A portion of the decorated-honeycomb lattice where
ten o. variables a o, o.

&, . . . , o.
9 and nine p variables

po, pl, . . . , p8 are specified for later use.

FIG. 7. For the calculation of Ising correlations, the triangu-
lar lattice {solid bonds) may be viewed as enveloping the honey-
comb (dashed bonds), kagome (dotted bonds), and decorated-
honeycomb (dashed bonds) lattices. Seven sites 1,2,3,6,7,8,9 of
the triangular lattice are specifically enumerated for select ap-
plications of the present theory.
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knowledge of all triangular lattice correlations
U&, vz, . . . , U» upon its 7-site cluster is sufticient to deter-
mine all honeycomb lattice correlations upon its 10-site
cluster, all decorated-honeycomb lattice correlations
upon its 19-site cluster, and all kagome lattice correla-
tions upon its 9-site cluster. This fact, that all such Ising
odd-number correlations can now be simply and sys-
tematically mapped upon triangular Ising-model odd-
number correlations, underscores the desirability of hav-
ing available exact solutions for the latter and will be
demonstrated in the next section.

V. SOME SELECT RESULTS

This section iHustrates the procedures of the present
theory by finding exact solutions for select odd-number
correlations of the kagome Ising model in terms of the

=M(o.o+o3)h K (by theorem 5)

=2M & ~o&h, K

=2M(oo), z (by theorem 1)

=2MU& . (5.1)

Next, choosing to consider a highly localized triplet
correlation, one obtains

known spanning correlations v „.. . , v» of the triangu-
lar Ising model.

Considering, first, the spontaneous magnetization (or-
dering parameter), one has

&1MQ&k, g &po&d I. (by theorem 3)

=M(o 0+ cr3) d~ (by theorem 4)

(p, ,1M2tu4)k t1 = (1M,1u2IM4)d i. (by theorem 3)

=M ((oo+cr1)(oo+cr2)(o 3+cr4) )d I (by theorem 4)

=M ((cro+cr1)(cro+o2)(o3+o4))h K (by theorem 5)

[ ((cro)h K+(cro 1cr3)hK+ &~0~1~4)h K)+ &~1~2~3&h K & 1 2 4&h K~

=M I2(y1+y2+y4)+y3 y6], (5.2)

y1= & cJQ) h, K ="»
y2 =

& crocr lcr2 &h, K
= ~ (2v1 +v2)+&v 1

y3 & 0~4~5 &h, K & ~1~2~3 &h, K 2

y4=ys =
& ~0~1~4&h, K

(5.3a)

(5.3b)

(5.3c)

where the definitions (2.24) have been used and, for con-
venience, the degeneracy relation (2.25) has also been
substituted. Using the superposition theorem 2 together
with Figs. 3 and 4, one writes

ceeded in writing a three-site kagome Ising correlation
(p, lM21M4) k & in terms of the known spanning correlations
UI, . . . , VII of the triangular Ising model. These sys-
tematic procedures for finding exact solutions of the
spontaneous magnetization y, k

= (1L1,0) k t1 and the triplet
correlation ysk = (p,p2p, 4) k t1 as linear superpositions of
the known spanning correlations can be similarly repeat-
ed to obtain exact solutions for the other (approximately
50) kagome localized correlations spanned by v1, . . . , v11.

The resulting exact solution curves for the kagome
spontaneous magnetization y, k

= (po) k g and triplet
&~ocr3cr6&h, K ~(v1+v2+v3)++v3 ~ (5.3d)

ysk=&& 1I ~4&k, ~
y6= & ~1~2~4) h, K & ~4~1~2) h, K ~(v2+v3+ vs)++vs

(5.3e)
correlation as well as the quintet correlation

y6k &I QPli 2P3I 4&k, g

For calculational convenience, one notes above that, pri-
or to elimination of all "circled" 0 sites within a thermal
average symbol by the superposition theorem 2, it was in-
itially desirable to make minimal the number of such sites
by using symmetry arguments, e.g. ,

& ~0~4~5 &h, K & ~1~2~3 &h, K

and

& ~0~1~4 & hK& ~0~3,~6 & h, K

In developing expressions (5.3), the reader is also aided by
reviewing the illustrative example (4.1) of the superposi-
tion theorem 2. Substituting (5.3) into (5.2), one has suc-

are displayed in Fig. 8 (also recall that exact solutions for
kagome highly localized correlations such as ysk and y6k
are immediately offered by multiplying the ratio solutions
(2.9) with y, k from Table I). As anticipated, in the or-
dered region, exact solution curves for these odd-number
correlations are continuous, monotonically decreasing
functions of temperature which vanish at the same bulk
critical temperature T, and with the same critical ex-
ponent —,

' (branch point singularity) as the upper-envelope
spontaneous magnetization but with differing critical am-
plitudes. Using the critical amplitudes V&, Vz, . . . , V»
of the triangular Ising model recorded in (3.14) together
with the previously stated transformation relations



2606 J. H. BARRY, T. TANAKA, M. KHATUN, AND C. H. MUNERA

1.0
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0.8—
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0.4—
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0.0 I I I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
T/Tc

FIG. 8. Exact solution curves for kagome Ising-model (a)
spontaneous magnetization (po)„& and correlations (b)

(p, ,p2p4) k &, (c) (pop ~p2p3iJ4) k g vs (reduced) temperature

Q, /Q( = T/T, ), where Q, = —' In(3+2''3) =0.46656. . . .

(Note the differing restricted ranges of the scales. )

among the (dimensionless) interaction parameters Q, I-,
E, and R, the critical amplitudes of all Ising correlations
spanned by v &, U2, . . . , U &&

can be determined exactly and
systematically as illustrated in the Appendix.

VI. SUMMARY AND CONCLUSIONS

After first employing relatively simple procedures for
obtaining exact solutions of highly localized odd-number
Ising correlations upon the kagome, square, and honey-
comb lattices, the present investigations proceeded to es-
tablish a systematic and unifying method for finding
many additional exact solutions of Ising-model odd-
number correlations on various planar lattices. In the
latter theoretical formulation, the triangular Ising model
satisfied an enveloping strategy. In particular, knowledge
of all 11 odd-number correlations upon a select 7-site
cluster of the triangular Ising model was shown sufficient
to secure all honeycomb, decorated-honeycomb, and ka-

gome Ising-model odd-number correlations upon their
correspondingly select 10-site, 19-site, and 9-site clusters,
respectively, and convenient prescriptions were
developed for extracting their critical amplitudes. The
numbers of such multisite correlations are very consider-
able, e.g. , approximately 80 and 50 for the honeycomb
and kagome Ising models, respectively, and for such n-

site (n odd integer) correlations, n,„=9, 9, 19 for the
honeycomb, kagome, and decorated-honeycomb Ising
models, respectively, where the latter n,„values are
significantly greater than existing literature values. With
foreknowledge of the spontaneous magnetization and
three triplet correlations of the triangular Ising model,
the present method of catenated transformation theorems
in conjunction with linear algebraic correlation identities
is exceedingly simpler than other approaches which, e.g.,

may be based upon a clustering property (asymptotic
separability) of appropriately chosen even-number corre-
lations for determining the localized odd-number correla-
tions.

Finally, one notes that, consolidating the present and
earlier planar Ising correlations, one is now able to con-
struct exact solutions for the joint congguvational proba
bilities of the Ising spins under consideration since each
joint configurational probability can be represented as a
linear combination of both even- and odd-number mul-
tisite Ising correlations with simple rational number
coefficients. Also, in a lattice-gas transcription of the
Ising-model magnet, any therma1 average of a multiprod-
uct of idempotent site-occupation numbers (lattice gas-
correlations) may be similarly represented as a linear com-
bination of both even- and odd-number Ising spin corre-
lations with simple rational number weights. Such recog-
nitions are fertile in both traditiona1 and topical examples
of application for exact solutions of planar Ising localized
correlations.
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APPENDIX

The critical amplitudes of the odd-number correlations
spanned by U „U2, . . . , U

& &
can be obtained in a direct and

systematic manner as follows. Using the transformation
relations stated in theorems 1, 3, and 5, the (dimension-
less) interaction parameters Q, E, and R of the kagome,
honeycomb, and triangular Ising models, respectively, are
connected by

e'&=re'~ —1, (Al)

2 cosh(2E) = e + 1 . (A2)

For temperatures slightly below criticality, one, therefore,
may write

Q(E) =Q(E, )+Q'(E, )(E E,)+-
v'3

=Q + (E E)+-
C C (A3)

having used the relation (A 1 ) and the critical value

E, = —,'In(2+&3) stated in Table I. Expression (A3) may
be rearranged to read

Q —Q,

Q, 3 Q,
(A4)

Substituting the ratio value

E, /Q, =2 ln(2+&3)/In(3+2V3)

from Table I, the last expression (A4) yields, neglecting
second-order small quantities, the scaling relation
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2V3 ln(2+ V'3)
3 ln(3+2&3)

(A5)
A &k

=v'2(2v'3 —3)' [ln(3+2' 3)/ln3]' V&

= 1.238 655. . . , (Al 1)
having defined the fractional deviations of the (dimen-
sionless) interaction parameters from criticality as

ck =(Q —Q, )/Q„eq —= (K —K, )/K, (A6)

for the kagome and honeycomb Ising models, respective-
ly. Similarly, one may derive, using (A2) and the critical
values R„X,stated in Table I, the scaling relation

&3 ln3
A7

2 ln(2+ V3)

having defined

y&i & o'oo &ozo 3o6&a, x' ~(U2+»3)+»i (A12)

represented in terms of the spanning correlations u&, u2,
u 3 by use of theorem 2. For temperatures sligh tly below
criticality, the latter expression (A12) gives, in leading or-
der,

having used the critical amplitude value (3.14a) for V& of
the triangular Ising-Inodel spontaneous magnetization.

As another example, consider the honeycomb quintet
correlation

E,
—= (R —R, )/R, (A8) A»zeI, = [3,( V2+2V3)+B, V, ]eI (A13)

as the fractional deviation of the (dimensionless) interac-
tion parameter R from its critical value R, for the tri-
angular Ising model.

To illustrate the simple procedures for extracting criti-
cal amplitudes, consider as a first example the relation
connecting spontaneous magnetizations

whereupon substituting the critical values A„B, from
Table I and the scaling relation (A7), expression (A13)
yields

A»z = [2V'3 ln(2+&3)/3 ln3]'

(p,o) k g =2MU, (A9) X (V3/9)[2( V2+2V3) —V, ]

derived previously in (5.1). For temperatures slightly
below criticality, the latter relation (A9) gives, in leading
order,

A e' =2M Ve'1k k c 1 t (Alo)

Substituting the scaling relations (A5), (A7), and the
critical value M, from Table I, the expression (A10) then
yields the critical amplitude A&k of the kagome spon-
taneous magnetization to be

=0.903 470. . . , (A14)

having used the critical amplitude values (3.14a) —(3.14c)
for V&, V2, V3 of the triangular Ising model. The result
(A14) for A»z agrees with the result previously obtained
by Barry, Munera, and Tanaka.

Following similar lines of reasoning, the above pro-
cedures for extracting exact critical amplitudes can be
readily extended to include the decorated-honeycomb Is-
ing model by deriving and employing an additional scal-
ing relation.
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