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Lattice vibrations of the icosahedral solid a-boron
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Crystalline a-boron consists of B» icosahedra in a rhombohedral lattice of R 3m space-group symme-
try. We here carry out a classical force-field analysis of the lattice vibrations. The q=O Brillouin-zone
vibrations are treated as those of a D3d-point-group-symmetry B» cluster perturbed by intericosahedral
crystalline forces; valence-force constants are fitted to account for Raman and ir spectral data. Two-
centered intericosahedral bonds are found to be twice as strong as intraicosahedral bonds, while three-
centered crystalline bonds are almost as strong as those within a B» unit. The highest-frequency Raman
line arises from the breathing mode, strongly perturbed by the two-centered interactions. The lowest-
observed-frequency Raman line is attributed to B» libration. As crystal-force-field strengths are turned

up, noncrossing of frequencies is encountered; we, therefore, correlate a-crystal modes with II, regular-
icosahedral and D3d B»-cluster modes through eigenvector expansions. Useful classical predictions are
made of ir intensities for wave vector q=O modes by considering adjacent bond stretching; a prediction
of Raman intensities in terms of bond polarizabilities appears to be of very limited value. The phonon
analysis is extended from the Brillouin-zone center to the edges by introducing phase-angle differences
along two distinct (one C, and one C~) rotational-symmetry axes. The acoustical-branch wave speeds
are predicted to be 1. 1 X 10 and 0.38 X 10 cm/sec for the c-direction longitudinal and transverse com-
ponents, respectively. Finally, we consider possible origins of the 525-cm Raman line with anomalous
polarization and width; most likely this is a Raman electronic line associated with vacancies and 8»
units.

I. INTRODUCTION

Boron compounds have found extensive use in science
and industry. Their possible use as very-high-
temperature semiconductors and thermoelectrics has
generated renewed interest in the physics and chemistry
of boron-rich solids' " and is a principal source of
motivation for the present work. Here we describe vibra-
tional studies of the simplest crystalline structure for
pure elemental boron, o;-boron. Although interesting in
itself, it also serves as a starting point for the study of vi-
brations of other, more complicated, icosahedral and
rhombohedral boron-rich solids. These include boron
carbide, B)2P2, B)2Asq, and B)202.

The a-boron unit is at the low end in size, mass, and

complexity of a wide range of microscopic icosahedral
structures that have excited strong interest recently; at
the high end, perhaps, is the outer shell of the AIDS
virus. Evidence of 12 atoms positioned at the vertices of
a nearly regular icosahedron in crystalline boron carbide
was reported almost 50 years ago. ' A molecule to
which I& symmetry has been ascribed ' is the borane ion

B&2H]2, which consists of two concentric regular
icosahedra, the inner of boron and the outer of hydrogen
atoms. Other observed or proposed icosahedral struc-
tures include such diverse entities as the 12 Nb atoms on
the 6 faces of an Nb3Sn 315 unit cell, the Be&3 com-
ponent in a UBe, 3 lattice, Ar, 3 clusters, icosahedral car-
borane molecules, ' dodecahedrane" (C20H2o), the
icosahedral phase' for Al-Si-Mn, a C60 truncated-
icosahedron molecule with 12 pentagonal and 20 hexago-

nal faces, ' the icosahedral form of multiply twinned gold
or silver particles, ' and the shell of a ribonucleic acid
containing virus' that can cause the common cold in hu-
mans. Perhaps icosahedral structures are of special
significance because they are closed and multifaced; they
offer strength of binding' and, for biological systems,
protection of vital inner cores.

a-boron is composed of 12-atom icosahedra. The
icosahedra are arranged in planes bonded to each other
by three-centered bonds within a plane and by two-
centered bonds to icosahedra in adjacent planes. The
space group is R 3m. Since 6 of the 12 atoms form one
type of external bond and the other 6 a different type, an
icosahedron is of D3d point-group symmetry rather than
regular icosahedral I& symmetry.

Group-theory properties of o.-boron and the relation-
ships of D3d irreducible representations to those of an Iz
icosahedron are well understood. ' Werheit and
Haupt have attempted ' a qualitative correlation of a-
boron ir spectra with vibrational modes in the free regu-
lar B,z icosahedron. However, description of a-B,z

phonons across the Brillouin zone has not previously
been attempted, and even for the zone center there has
been no satisfactory characterization of vibrations in
terms of atom-atom interactions.

In the present paper we characterize wave vector q=O
phonons in terms of a valence-force-field model including
intraicosahedral and intericosahedral interactions. We
then extend our considerations to phonons with qXO.
This work may be considered a major revision and exten-
sion of the most thorough previous study of q=O pho-
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nons, that due to Weber and Thorpe. ' The Weber and
Thorpe (WT) study began with a classical force-field
(CFF) description of the B&2H&2 molecular ion. To
treat n-B&2, they removed the 12 H's, added two-centered
crystalline interactions to take account of forces between
icosahedra in different planes, but found it necessary to
set to zero coupling forces between icosahedra in a com-
mon lattice plane. They retained unchanged from
B]2H]2, internal-B, 2 bonds. WT fitted crystalline force
constants to the two highest-frequency Raman lines but
not to ir data. The Raman spectra' they utilized were
very reliable in the range of observations, but did not ex-
tend below 400 cm ' and included no polarization
discrimination. Our q=O results reported here differ
markedly from those of Weber and Thorpe. We make
use of both Raman and ir data; further the Raman data
include polarization discrimination. Our analysis consid-
ers 8,2 units only, first as an II, cluster, then a D3d clus-
ter, and finally a D3d unit in an o;-crystal. We include
three-centered bonds among icosahedra in a common lat-
tice plane and find these to be quite strong. Further,
from x-ray-diffraction analysis the two-centered bonds
linking planes of icosahedra are not radial as in
icosahedral boranes. These bonds are distorted 7' from
radial in a manner consistent with a significant force by
three-centered bonds among icosahedra within a lattice
plane. Also, among intericosahedral bonds, only three-
centered ones affect ir frequencies and they must be in-
cluded to fit ir data. Weber and Thorpe considered a
very sharp 525-cm ' Raman line to be spurious (which
indeed seems to be correct) and dropped it from further
consideration. We make some effort to account for this
line, either as an ordinary mode of the q=O Raman spec-
trum or in terms of other possible origins.

In Sec. II we describe the crystal structure and experi-
mental optical spectra of O.-boron. Section III contains
the details of our normal-mode analyses; there we corre-
late crystal q=0 modes with I& and D3d cluster modes.
In Sec. IV we detail our classical force-field intensity cal-
culations. The extension of results from the center to the
edges of Brillouin zones in two distinct directions is given
in Sec. V. Finally, in Sec. VI we summarize our findings
and highlight unsettled questions.

II. STRUCTURE AND SPECTRA OF a-BORON

A. Crystal structure

a-boron was successfully prepared by McCarty et al.
in 1958. It is stable up to 1200'C and then transforms to
a more complicated form, P-boron, at about 1500'C.
Decker and Kasper studied the crystal structure of the
o.-boron form by x-ray-diffraction methods. Their results
were refined later by Morosin et al.

The basic unit in the a-boron structure is an icosahed-
ron, as shown in Fig. 1, with 12 B atoms at the vertices.
A perfect icosahedron, with all its edges of equal length,
belongs to the II, point group. In n-crystalline form,
however, the symmetry is lowered to D3d as the edges are
not all equal. The polar triangles (1-2-3, and 4-5-6 in Fig.
1) have sides 1.751 A each. The equatorial puckered hex-

FIG. 1. Numbering of icosahedral atoms. The c or z axis is
vertical. Atom No. 5 of the 4-5-6 polar triangle is not shown.

agon (7-10-8-11-9-12) has all sides=1. 782 A. Each ver-
tex of a polar triangle is connected to three vertices of the
equatorial hexagon through two edges of length 1.806 A
each and one of length 1.801 A. We refer to the former
(e.g. , 3-7 and 3-9 in Fig. 1) as "slant" and the latter (e.g. ,
3-12) as "vertical, " for simplicity.

The primitive cell is rhombohedral with sides 5.057 A
and an angle of 58.06 . Visualize one icosahedron at each
of the eight rhombohedral vertices in Fig. 2(a). Then a
primitive cell consists of the three (north) polar triangle
atoms from vertex 1, three (south) polar triangle atoms
from vertex 8, and one equatorial atom from each of the
other six rhombohedral vertices. (In a hexagonal unit
cell description, a„,„=4.927 A and c„,„=12.564A. )

The icosahedra lie in planes. Within a plane, icosahe-
dra are bonded to each other by what are called three-
centered or 6 bonds, of length 2.019 A; i.e., each hexagon
atom forms a three-centered bond with hexagon atoms
from two other icosahedra in the same plane. In Fig. 2(b)
one such bond is seen (from above) for icosahedra at ver-
tices 2, 3, and 4 of Fig. 2(a). Polar triangle atoms in
adjacent-plane icosahedra are connected by ordinary
two-centered bonds each of length 1.670 A. Seen in Fig.
2(c) is a two-centered link between icosahedra at vertices
1 and 4 of Fig. 2(a). Later, we shall find that the two-
centered bonds are stronger than other bonds in the crys-
tal and contribute significantly to the strength in these
materials. The intericosahedral three-centered bonds will
be shown to be weaker than other bonds in the structure,
but still much too strong to be neglected. As mentioned
in the Introduction, two-centered bonds are not radially
outward from icosahedral centers. They are bent toward
the vertical [in Fig. 2(c)] by about 7 . We attribute this to
the three-centered bonds which pull icosahedra in a plane
closer to each other.

B. Experimental infrared and Raman spectra

The infrared transmission spectrum of o.-boron was re-
ported by Golikova et al. A total of six bands were
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identified in the range from -400 to 1300 cm '. Two
rather sharp bands at 705 and 806 cm ' were very
strong. An absorption centered at 920 cm ' was of inter-
mediate strength, while a feature at 548 cm ' was weak
but noticeable. A dip in transmission reported at 1080
cm ' was very broad, while a feature at 1200 cm ' was
very weak. Werheit et al. obtain comparable results.

The experimental Raman spectra to which we compare
our theoretical frequencies were obtained by Tallant.
He observed spectra with resolutions of —1—5 cm ' us-
ing several different exciting frequencies. Also, using an
oriented single crystal, Tallant was able to characterize
elements o;„and e, of the polarizability tensor, thereby
discriminating A, from E modes. A spectrum of

0
Tallant's obtained with an exciting line at 6471 A is
shown in Fig. 3. Note that the Rayleigh scattering at low
Raman shift has been subtracted out. This spectrum was
made on an unoriented crystal and without polarization
analysis. In Table I, column 1, we list Tallant's frequen-
cies, which are considered to be accurate to +2 cm
We list Raman frequencies from Refs. 18 and 30 in
columns 3 and 5. The three sets of frequencies agree
closely. In parentheses are estimated intensities; it should
be noted that in different spectra, the intensities can vary
appreciably with both exciting frequency and sample
orientation. Compare, for example, the intensities for
1186, 692, and 175 cm in Fig. 3 with corresponding in-
tensities from Ref. 23(a), Fig. 3(c), shown in Table I,
column 2. The shoulders at 1198 and 1157 cm ' (also
visible but not labeled in the Ref. 30 spectrum) have been
described' as possibly arising from two-phonon scatter-
ing or Fermi resonances. The line at 525 cm ' is present
in all known Raman a-spectra, but is far too sharp (width
(1 cm ') to be accounted for by vibrations in which
there is a natural abundance of ' 8 and "B. Note that
Shelnutt et al. label their 524-cm ' line, but not the ex-
tremely weak feature at -710 cm

E
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FIG. 2. (a) Numbering of the rhombohedral primitive cell
vertices. The c axis is along the 1-8 diagonal. (b) Icosahedra at
vertices 2, 3, and 4 as seen looking along the c axis from vertex
No. 8 toward No. 1. The three-centered bond linking the
icosahedra is shown. Polar triangle atoms Nos. 1, 2, and 3 of
icosahedron No. 4 are darkened. (c) The two-centered bond be-
tween icosahedra at vertices Nos. 1 and 4. (Special thanks are
due R. Schae6'er for help with this figure. )
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FIG. 3. Raman spectrum for an a-boron crystal obtained by
0

D. Tallant using a 6471-A excitation.
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TABLE I. Raman frequencies (in cm ') for a-boron. Intensities relative to the peak at -795 cm
are shown in parentheses.

Tallant et al. ' Richter, Weber, and Ploog Shelnutt et al. '

1186 (0.8)
1157 (0.05?)
1123 (0.1)
933 (0.7)
872 (0.03)
795 (1.0)
776 (0.2)
710 (0.01)
692 (0.8)
587 (0.02)
525 (0.3)
175 (0.1)

(1198) {0.05)
1185 (0.1)

(1157) (0.02)
1125 (0.03)

931 (0.5)
872 (0.1)
796 (1.0)
776 (0.5)
710 (0.02)
693 (0.02)
587 (0.02)
524 (0.9)

1184 (0.1)

1121 (0.05)
930 (0.5)
870 (0.1)
793 (1.0)
774 (0.4)

691 (0.1)
586 (0.02)
524 (0.4)
215 (0.2)

0
'Reference 23; shifts obtained using a 5145-A laser excitation.

0
Reference 18, with a 6764-A excitation.

'Reference 30, obtained from a 6328-A line.

As we shall discuss in the next section, a total of ten
single-phonon Raman vibrational lines should be ob-
served, with four of these A&g modes. Tallant has pin-

0
pointed the four most intense lines with 5145-A excita-
tion, 692, 795, 933, and 1186 cm ', as A

&
. However,

the 1157- and 1198-cm ' shoulders also have a, (a„,
indicative of A

&
. On the other hand, the zz and xz in-

tensities at 525 cm ' are not significantly different, fitting
neither the A

&g
nor Eg assignment. The ten Raman lines

with four A, can be accounted for by ignoring the 1198-
and 1157-cm ' shoulders and including two but not three
of the lines at 710, 587, and 525 cm ' as E modes.

III, VIBRATIONS OF B]2 CLUSTERS
AND q=0 MODES OF o;-BORON

A. Classification of modes

According to group theory, ' ' the following types of
I& vibrations will occur for 12 identical atoms at the ver-
tices of a perfect icosahedron:

ling(1), 1T,g(3), lGg(4), 2Hg(5),

2T,„(3), 1T2„(3), 16„(4), 1H„(5) .

The prefactor indicates the number that occurs and in
parentheses the dimensionality of each listed irreducible
representation. The T, represents a pure rotation and

one T,„a pure translation; thus there are 30 nonzero-
vibrational modes with 8 distinct frequencies.

When the symmetry is lowered from I& to D3d, split-
ting occurs as is shown in Table II. Twelve identical
atoms at the vertices of a D3d icosahedron would have
the following representations

4A )g 2A2g 6Eg 2A )„4A2„, 6E„

If one subtracts the 6 zero-frequency translational and
pure rotational modes, one obtains for a free D3d 8/2
cluster 30 nonzero modes with 20 distinct (barring ac-
cidental degeneracy) frequencies in the following repre-
sentations:

ig 2g g iu A2u 5E. .

For a D3d B,2 primitive cell in a crystal lattice, the
pure translations A 2„+E„remain zero-frequency modes
(q=0), but the rotations A2 +Es become nonzero-
frequency librations. Thus, in o,-boron, there will be 22
distinct nonzero frequencies corresponding to 33 in-
dependent modes:

4A ~~, 242g 6Eg, 2A
~ 3A2 5E

Of these, only ten (4A
&

+6E ) will be Raman active
and only eight (322„+5E„)will be infrared active in
first order.

TABLE II. Splitting of Ih irreducible representations into D3d modes. The numbers in parentheses
indicate dimensionality.

Ih

Ag{1)
Tlg(3)
G, (4)
H', (5)

A )g{1)
A„(1)+E,(2)
A }g( 1 )+ A2g( 1 )+Eg(2)
A l~( 1)+2E (2)

Ti (3)
T2. (3)
G„(4)
H„(5)

D

A p„{1)+E„(2)
A „(1)+E„(2)
A ] (1)+A2 (1)+E (2)
A i„{1)+2E„(2)
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B. Classical models

To determine an accurate quantum mechanical poten-
tial surface for a B&2 unit cell in a lattice with D3d sym-
metry and 33 degrees of freedom is presently an impossi-
ble task. Such potential surfaces can, however, be satis-
factorily represented in terms of classical potential con-
tributions. For small oscillations the potential can be
represented as a positive definite sum expressed in terms
of coordinates representing displacements from an equi-
librium configuration. Even if one retains only quadratic
and bilinear forms, the number of terms is far too high to
permit determination of a unique set of interaction
coeScients from 18 experimental frequencies. Fortunate-
ly, almost all bilinear terms are extremely small, if one
can apply here the results ' from a Gaussian 86,
Hartree-Fock calculation on a B&2H&2 molecule. We,
thus, adopt a classical valence-force-field (VFF) model
for B&2. Of course, if the model fails either by not ac-
counting for observed spectra or by yielding nonsensical
interaction strengths, we must either use a more compli-
cated model or drop classical modeling altogether. In
fact, we find that an even simpler model, with only
nearest-neighbor central forces, accounts for most of the
observed spectral data in a surprisingly accurate and
reasonable way. We believe that this occurs because
nearest-neighbor interactions are predominant.

A VFF model has two types of energy terms contribut-
ing to total strain energy (TSE) at a given atomic
configuration, i.e., to the vibrational potential energy at a
point in configuration space. These are

V/j z k&j (R&j R(~j~ )

(2)

Here V; is a Hooke's-law central-force contribution for
the interaction between atoms i and j at separation R;.
with R q the separation at equilibrium. Equation (2) is a
quadratic angular spring interaction term with 8;$ the
equilibrium angle between bonds ij and jk.

Our computations make use of a scheme originally
developed by Boyd" for determination of equilibrium
conformations and normal-mode eigenvectors and fre-
quencies for molecules. For lattice dynamic studies we
have made four significant additions/modifications.
These introduce (a) crystal forces on unit cells in q=O
modes, (b) classical infrared and Raman intensity deter-
minations, (c) correlation of vibrational modes in related
structures through eigenvector expansions, and (d) deter-
mination of q&0 vibrational properties.

In Sec. III C1 we describe vibrations in a free I& B&2
icosahedron. In Sec. III C 2 we detail normal modes for a
free D3d B,2 cluster and correlate D3d and I& modes. In
Sec. III D and III E, respectively, we model u-boron q=0
lattice modes and correlate these with cluster modes.

1. Regular icosahedron

Regular-icosahedron vibrations were described in Ref.
22. We here summarize I&-mode visualizations for three
reasons: (a) Visualization of Ih vibrations is interesting in
itself and has been described only in conference proceed-
ings. (b) The geometric distortion from Ih to D3d is ac-
tually slight in a-boron. The range of intraicosahedral
B—B bond lengths is 1.751—1.806 A. (c) Some q=O
crystal modes retain spectral frequencies and intensities,
much as if a-boron was composed of noninteracting
icosahedr a.

Three symmetry descriptions of an II, icosahedron are
each valuable in understanding individual vibrational
modes. In description A (see Fig. 1) a vertical C3—S6 axis
passes through the centroids of two polar triangles and
one equatorial, six-membered, puckered ring. At equilib-
rium, the polar triangle atoms 1-2-3 and 4-5-6 are at lati-
tudes 52.62' N and S, respectively, of the circumscribing
sphere. The puckered ring atoms are either 10.81' N
(atoms 7, 8, and 9) or 10.81' S (10, 11, and 12). Note that
the polar triangles are inversions, not projections, of each
other. For Ih there are ten C, -S6 axes.

Description B is presented in Fig. 4. Here the vertical
line passing through vertices 1 and 4 is a C5-S&o axis.
With 1 and 4 as poles, the two regular planar pentagons
are at latitudes 26.57' N and S. The numerical relation-
ship between nearest-neighbor separations R B B and the
radius R of the circumscribing sphere is R ~

C. Cluster modes

a-boron vibrations are perhaps best interpreted as per-
turbed B,z cluster modes; therefore, before discussing lat-
tice phonons, we first describe free B,2 vibrations. Many
a-phonons are intr aicosahedral modes virtually
unaffected by crystalline forces. Other modes, even those
strongly altered by intericosahedral forces, can be under-
stood in terms of their cluster origins and specific crystal-
line perturbations.

FIG. 4. Icosahedron with five-fold axis vertical, useful for
visualizing II, modes v3, v&, and vol. Atoms Nos. 6 and 12 of the
7-10-5-6-12 pentagon are not shown.
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=1.0515R. There are six C~—S&o axes connecting oppo-
site vertices.

The third is a cubic description pictured in Fig. 5.
Atoms are in pairs on cube faces. Two-centered bonds on
opposite faces are parallel while those on adjacent faces
are orthogonal. At equilibrium, a vertical C2 axis bisects
bonds 1-2 and 4-6, while these four atoms define a verti-
cal o. symmetry plane. There are 15 distinct Cz axes and
15 o. planes in I&. The relationship between RB B and L,
the length of a cube side, is R B
=(&5—1)L/2=0. 618L for Iz. In A15 Nb3Sn the Nb
atoms are arranged as in Fig. 5; however, on a face
RNb Nb=0. 5L. Thus the 12 Nb atoms on the 6 cube
faces form an irregular icosahedron.

To simplify description of Ih oscillations, we incorpo-
rate only a central-force Hooke's-law interaction between
nearest neighbors. There are 30 such interactions (corre-
sponding to the 30 edges of an icosahedron). Each atom
is assigned a mass of 10.8 amu, the mean value using the
natural abundance of boron isotopes. Force constants in
Eq. (1) are all set to k,"=1.3 X 10 dyn/cm, our optimum
value for a VFF model of a-boron; also, we used

0
R =1.77 A, the B—B separation in borane molecules.
Characterization of resulting mode frequency, degenera-
cy, and type is presented in Table III. We do not use the
customary numbering of molecular modes. Rather the
ordering is from highest to lowest frequency for clarity in
relating II, eigenmodes to modes after degeneracy split-
ting.

The vI species is of u symmetry; in each such mode, di-
ametrically opposite atoms have the same displacement
in magnitude and direction. The oscillations are best
visualized in terms of description A (Fig. 1). The dom-
inant distortion in each vI mode is of a puckered hexa-
gon, the equatorial ring in Fig. 1. About half the strain
energy is in the six-ring bonds (rather than 20% for
equipartition). Around the ring there is alternation of
bond stretch and bond compression at any instant.

The five vz modes can also be interpreted in terms of
Fig. 1, but these are of g symmetry. Opposite atoms
move in opposite directions, but have the same displace-
ment magnitude at any instant. For each vz mode,
—50% of the total strain energy (TSE) is in the intratri-
angle and intrahexagon bonds.

Figure 4 is most useful for visualizing the three v3 vi-
brations. For one mode, pentagon 2-3-9-11-8 is contract-
ing (exhalation) at an instant when pentagon 7-12-6-5-10
is expanding (inhalation). At that same instant, polar
atom 1 is moving toward the centroid of the contracting

10

FIG. 5. Cubic description of an icosahedron helpful for II,
modes v5 and v6 as well as for visualization of A15 structure.

pentagon, while polar atom 4 moves away from the cen-
troid of the expanding pentagon. Thus the entire north-
ern hemisphere is contracting, while the southern hemi-
sphere is expanding. Of course, when both polar atoms
are heading south, both pentagon centroids must move
north to keep the center of mass from displacing.

The nondegenerate mode v4 is pure breathing (dilation)
with all atoms moving radially.

All four v5 vibrations are similar and can be under-
stood in terms of the cubic description (Fig. 5). Approxi-
mately 70% of TSE is due to changes in the six RB B for
the six atom pairs on the cube faces.

The H„v6 modes are perhaps the most difficult to visu-
alize. Four of the five modes involve pairs of opposite
tetrahedrons moving almost undistorted on the cir-
cumscribing sphere. Three of these four are antisym-
metric tetrahedron twists; strain is due to bond-length
changes between the eight tetrahedron atoms and the
other four atoms. A fourth H„oscillation involves two
tetrahedrons (e.g., 1-3-2-8 and 6-12-4-5 in Fig. 5) sliding
on the sphere, without twisting, thereby compressing one
bond (5-8) while stretching the opposite bond (3-12); 30%
of TSE is in these two bonds. The fifth v6 mode is an an-
tisymmetric twist of two pentagons.

The three T2„(v7) oscillations are closely related to
those of T,„(v ). 3The Tz„modes also involve antisym-

TABLE III. Normal-mode vibrational degeneracies, symmetries, and frequencies (in cm ) for a free
boron icosahedron that is regular at equilibrium. The mass of each atom is assumed to be 10.8 amu,

Q

each spring constant is 1.30X 10 dyn/cm, and R B z =1.77 A.

Deg. Sym.

G„
Hg
Tlu
A~

Freq.

837
835
783
752

Vg

V6

V7

V8

Deg. Sym.

Gg
H„
T2.

Freq.

608
452
395
346
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metric pentagon breathing. In v7, however, a polar atom
moves toward the centroid of an expanding pentagon,
while the opposite polar atom moves away from the con-
tracting pentagon centroid. In T2„ the strain energy for
bonds between polar and pentagon atoms is one-fourth
that in T&„ for comparable intrapentagon bond changes.

Visualization is more difticult for the low-frequency
Hgv8 modes than for those of v2. The v8 modes involve
pentagon distortions or rocking. More details on these
modes can be found in Ref. 22.

2. D3~ Bzz cluster

If one imposes the equilibrium configuration of an a-
boron primitive cell on a free B,2 cluster, the lowering of
symmetry splits the I& modes into those of a D3d
icosahedron. We list in Table IV the D3d cluster modes
obtained using the same atomic interactions and masses
as used for an Iz icosahedron. The splitting due to
geometric distortion alone is very small (maximum is 12
cm ' for Gs), and therefore correlation of D3d and Ih
modes is unambiguous; the correlation is shown in the
Iz-origin columns. We use f; for D3d cluster frequencies
to discriminate from I& values designated by v, . In Table
IV we order our f; from highest to lowest values as we
did for frequencies in Table III.

The a-boron vibrational Raman spectrum described in
Sec. IIB has a wide range of q=O optical-phonon fre-
quencies. The ir spectrum also has, although to a some-
what lesser degree, a wide range of frequencies. The nar-
rower range for a free B&2 cluster in Table IV indicates
that the observed wide ranges must be attributed to
strong crystalline forces. This is especially true of two-
centered intericosahedral interactions which affect g
modes (hence Raman spectra). It also must apply to
three-centered forces among icosahedra since the two-
centered interactions do not affect u modes (hence ir
spectra); without three-centered crystal forces, one might
expect to observe only one ir vibrational line from T&„,or
two very close lines if resolution were sufhcient, since
only I& T,„modes are ir active.

Very brief descriptions for visualizing the individual

D3d B)2 modes are now given.

f, . A superposition of Iz G„modes leads to f, . In f,
the polar triangle 1-2-3 (see Fig. 1) enlarges symmetrical-
ly while moving in the —z direction, while triangle 4-5-6
is symmetrically contracting and also moving in the —z
direction. While the six triangle atoms move down, the
six puckered-hexagon atoms move up to keep the center
of mass fixed. A11 strain energy is in triangle bonds and
intertriangle-hexagon bonds.

f2. The polar triangles both contract symmetrically
while translating away from the icosahedral center of
mass in a vertical direction (Fig. 1). About two-thirds of
TSE is in the triangle-bond contractions.

f3. For these two vibrations, almost 90% of TSE is in
the slant and vertical bonds connecting polar triangle and
ring atoms.

f4. In this pair of modes, 75% of TSE is in triangle
atom-ring atom bonds and 20% in polar triangle distor-
tions.
f5. This mode retains Ih G„ form. 70% of TSE is in

puckered hexagon bonds; around the ring at any instant,
there is alternation of stretch and compression.

f6. Approximately 40% TSE is in ring hexagon bonds
and 40% in the slant bonds. Both f6 and f3 are E
modes originating in the Izv2 vibrations; for f6, strain in
the ring bonds replaces strain in the vertical bonds in f3.
f7. The two modes originate in the I& T» v3 and retain

that nature, even though the pentagons involved here are
not regular and pole-pentagon equilibrium bond lengths
differ. In one hemisphere bonds expand (irregularly),
while in the other hemisphere bond lengths shrink. 60%
of TSE is in pole-pentagon bonds and 30% in intrapenta-
gon bonds. Looked at from a D3d (Fig. 1) point of view,
97% of TSE is in the slant, hexagon, and vertical bonds.

fs. This mode also arises from Ih T,„. Here one polar
triangle (Fig. 1) is expanding at an instant when the oppo-
site triangle is contracting. Further, all slant bonds con-
nected to the expanding triangle are themselves expand-
ing, while the slant bonds to the contracting triangle are
shrinking. Nearly 60% of TSE is in polar triangle bonds
and 40% in slant bonds.

f9. This arises from the Ih pure breathing mode and
remains a breathing mode. Since there are four different
equilibrium bond lengths, there is not quite equipartition

TABLE IV. Normal-mode symmetries and frequencies (in cm ) for a free D3d boron icosahedral
cluster. Masses and spring constants are as in Table III, 10.8 amu and 1.3X10 dyn/cm, respectively.
The equilibrium geometry here is that of an a-boron primitive cell. Presplitting Iz origins are shown.

8

f9
fio

Sym.

A2„
A)g

E„
A I„
Eg

A2„
A)g
E.

Freq.

844
837
836
835
834
834
784
781
752
611

Iz Origin

G„(v, )

H (v2)
H ( )

G„(v, )

G„(v, )
H', (v. )

Tq„(v3)
T,„(v,)

A, (v. )

Gg(v5)

fbi
fir
fi3
fi4
fi5
fi6
fi7
f18
f19
f20

Sym.

A)
A2g

E„
A I„
E„
A2„
E„
Eg
Eg
A)g

Freq.

610
599
456
452
448
397
394
347
345
344

Iz Origin

Gg(v5)
Gg(v5)
H„(v, )

H„(v, )

H„(v, )

T2„(v7)
Hg(vs)
H ( )

H, (v, )
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of strain energy among bonds.
f io. These are most easily pictured in terms of Fig. 5.

For one of the two f,o modes, the six cube face bonds 1-
2, 3-12, 4-6, 5-8, 7-10, and 9-11 are compressed at any in-
stant when 1-3, 2-10, 4-5, 6-9, 7-12, and 8-11 are
stretched. Over 99% of TSE is in these 12 bonds.
fii. The principal movement in this 2 i mode is by

the three northern hemisphere ring atoms (7,8,9) moving
south in Fig. 1 at an instant when the three southern
hemisphere atoms (10,11,12) are moving north. Over
60% of TSE is in the slant bonds, which are simultane-
ously stretching equally.
f iz. This is a twist mode. Seen from above in Fig. 1,

triangles 1-2-3 and 4-5-6 rotate counterclockwise about
the vertical C3 axis, while the puckered ring rotates
clockwise about the same axis. Over 99% of TSE is in
the slant bonds, half of which contract, while the other
half stretch.

fi3. These two are from It, v6 modes and can be pic-
tured in terms of antisymmetric twists of two opposite
tetrahedrons. They are better viewed as strains predom-
inantly in the two polar triangles of Fig. 1.

fi4. All movement is horizontal in terms of Fig. 1.
The predominant motion is an antisymmetric twist
without distortion of polar triangles 1-2-3 and 4-5-6.
Over two-thirds of TSE is in the slant bonds connecting
triangle and hexagon atoms. The rest of TSE is in alter-
nating stretch and compression of hexagon bonds.
f». The f» have a common Ih origin [H„(v6)] with

f» modes. In f», 50% of TSE is in polar triangle
bonds, and in f», 50% is in vertical bonds (refer to Fig.
1). 30% is in slants and 20% in hexagon bonds in both
f i3 and fi5.

f,6. In this A z„vibration the six polar triangle atoms
move vertically (Fig. 1) in one direction, while the verti-
cal movement of the six hexagon atoms is in the opposite
direction. Over 90% of TSE is in the vertical and slant
bonds between triangle and hexagon atoms. The hexagon
itself distorts significantly, but with very small changes of
hexagon bond lengths; the horizontal motion of atoms
7,8,9 is inward when that of 10,11,12 is outward.

f,7. The f,7 retain the nature of the IhTz„(v7) an-
tisymmetric pentagon breathing modes. However, in
D3d C5 symmetry is lost and intrapentagon bond lengths
are not all equal. Over 50% of TSE is in intrapentagon
bond-length changes and over 30% in polar atom-
pentagon atom bond-length changes.
f is. These involve hexagon and triangle distortions,

the former without, the latter with bond-length changes.
40% of TSE is in triangle, 30% in vertical, and 30% in
slant bonds.

f». Polar triangle atoms vibrate with the largest am-
plitudes and in directions such that 70% of TSE is in
slant bonds.

fzo. In this lowest nonzero-frequency mode, the polar
triangles 1-2-3 and 4-5-6 in Fig. 1 move in opposite verti-
cal directions, while the puckered hexagon breathes
through horizontal atom displacements. The icosahed-
ron oscillates between prolate and oblate configurations.
97% of TSE is in hexagon and vertical bonds.

D. Models applied to a-boron q=0 modes

1. Simple central for-ce model

We first applied a simple, three-constant quadratic
model with only central forces included. All in-
traicosahedral B—B bonds were taken to have the same
force constant k;„„all external two-centered bonds had
kz„and all external three-centered bonds had k3, . To
treat interactions involving links to the 12-atom primitive
cell, we introduced image atoms from neighboring cells.
Calculated frequencies were fitted only to Raman spectral
lines. The predicted ir frequencies could then be com-
pared with experimental values. Two types of fits were
attempted. In (a) we fitted to nine Raman lines including
the one at 525 cm ' but excluding the weak one at 710
cm ' as an experimental line. In (b) we excluded the line
at 525 cm ', but retained the one at 710 cm '. For both
fits (a) and (b), calculated A, modes were fitted to exper-
imental A

&
frequencies. We did not consider the experi-

mental high-frequency shoulders to be q =0 single-
phonon transitions, and we did not include the 175-cm
line because a libration requires angle-bend interactions.

The results of fitting this model to nine experimental
Raman lines are shown at the left of Table V. The force
constants both for fits (a) and (b) are shown at the top
left. Even though one expects central forces to predom-
inate and all internal interactions to be similar since dis-
tortions from I& are small, still the results for the nine
Raman lines are surprisingly reliable. Higher-frequency
modes are more accurately fitted than those at lower fre-
quency. This is to be expected since higher frequencies
generally are pure stretches, while lower frequencies in-
volve angle bends. The rms errors in the two models are
similar and therefore not helpful in choosing between the
525- or 710-cm line as a vibrational transition.

At first glimpse, the ir predictions on the right of Table
V look bad. However, closer study indicates these re-
sults, too, are surprisingly good. The three predicted
lines (two low frequency and one intermediate) with no
experimental counterparts are found to be weak by
methods to be described in Sec. IV. Three of the experi-
mental lines at 920, 705, and 548 cm ' are well predicted
in both fits. Both fits (a) and (b) yield almost degenerate
modes near 920 cm '. Each fit yields a reasonably strong
line between 705 and 920 cm ', although the fit to the
806-cm ' line is not too good. Only the 1200- and 1080-
cm ' experimental bands are unaccounted for by either
fit. In fact, it is difficult to understand how such high-
frequency ir lines can arise in n-boron. The two Raman
lines above 1000 cm ' are in large part associated with
two-centered forces bonding polar triangle atoms in
different icosahedra [see Fig. 2(c)]. These are the shortest
and almost certainly the strongest bonds in O.-boron.
However, for u modes, the ir-active ones, these bonds
must be rigid. It has been pointed out to us that SiO2
mirror coatings have 1080- and 1200-cm ' absorptions.
Indeed, the broad absorbance peak at —1060 cm ' and
the small ripple at —1200 cm ' in SiO2 closely resemble
the two high-frequency transmission dips in Fig. 1 of Ref.
29. In the remainder of this paper, we treat the lines at
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TABLE V. Simple, three-constant, central-force, quadratic model fitted to a-boron Raman frequen-
cies. Calculated value errors are listed for Raman modes, calculated frequencies for ir lines. Frequen-

0
cies are in cm ' and force constants in mdyn/A.

Expt

1186(A )g)
1123
933(A ]g)

872
795(A Ig)
776
710
692(A $g)

587
525

Raman
Fit (a)

k;„,=1.45
k, =2.9
k3, =1.0

—9
7

26

2
—39

1

—54
66

—22

Fit (b)

k;„,=1.55
k2, =2.7
k3, =1.0

—15
1

46

32
—28

11
—39
—33
—73

Expt

1200
1080

920

806
705
548

Infrared

Fit (a)

909

908
872
865
716
541
477
422

Fit (b)

' 933

932
902
891
730
556
493
436

rms error 33 37 31

1080 and 1200 cm ' as not being a-boron ir absorption
lines. Setting these two and the three weak-intensity lines
aside leaves four ir lines to be predicted. The two simple
models predict these four unfitted lines just about as well
as the nine fitted Raman lines.

Although the two simple three-constant sets in Table V
fit the data as well or better than one could have hoped,
there remains an ambiguity question. Even when one fits
exactly three constants to three frequencies, there are 3f

ways of ordering the constants. One might question,
for example, whether k3, ) k2, & k;„,. This would contra-
dict the generally accepted view that three-centered
bonds are weaker than two-centered ones. Also, k;„, is
close to the intraicosahedral kB z for central-force and
VFF models' applied to the borane molecular ion
B&2H]2 where there are no crystal k2, or k3, . Finally,
the ordering is consistent with expectations based on
bond lengths.

Looking at k values, we see that both models are essen-
tially the same. The two-centered external bonds are
about twice as strong as internal bonds. The three-
centered external bonds are almost as strong as the in-
traicosahedral ones.

2. Valence force fields

Before improving on the simple model of the previous
section, one should consider the errors to be expected in
the better model. If one does not do this, it is easy to fall
into a numerology trap. A VFF model can be expected
to account for the Raman libration frequency at 175
crn ' and to improve to some extent the prediction of the
710-, 692-, and 587-cm ' Raman lines. But a VFF will
not take into account anharmonicities or incorporate bi-
linear terms other than those introduced by Eq. (2). The
leading anharmonic term for the ground state of B2 intro-
duces a correction to the fundamental vibration ' of
2',x, or about 20 cm '. Thus discrepancies of about 30

cm ', as found for rms errors in the previous section, are
quite reasonable. A closely related question is how many
different k; and 2, k of Eqs. (1) and (2) to incorporate in
the VFF model. There are four distinct internal B—B
bonds and many distinct internal and external angles in a
B,2 D3d lattice. We resort to the principle of simplicity.
We use as few different interaction constants as account
reasonably for experimental results.

In considering incorporation of Eq. (2) interactions, we
concerned ourselves with sets of angles, each set to be
completely included with a single value of 3 or to be
completely excluded. The sets were the following: 60
internal (to 1 icosahedron) angles each of -60, 60 inter-
nal angles each of —108', 30 external angles of —120' (at
2-centered bonds), 6 external angles of 60' (at 3-centered
bonds, i.e., 3c), 12 external angles of -90 (3c), 24 exter-
nal angles of —108' (3c), and 24 external angles of —143
(3c). We incorporated these sets one at a time to find
their effects on each normal mode; i.e.„we evaluated
Bco/BA, where ~ is a predicted o.-boron frequency and 3
an interaction constant. (We had, of course, previously
evaluated matrix elements Bco/Bk. ) We found that the
sets of external 60', 90', and 108 had little effect on fre-
quencies. The internal 108 and external 120' sets tended
to invert the order of the top two (A &z

and Ez) Raman
modes. Hence we retained as nonzero contributors to the
strain energy only the internal 60' and external 143 sets
of 60 and 24 angles, respectively.

In the simple central-force model incorporating either
the 525- or 710-cm ' feature as an experimental vibra-
tional line was almost equivalent. We continued to inves-
tigate both in VFF model fits. However, we soon found it
superior to incorporate the 710-rather than the 525-cm
line in the sense that we could continue to get improved
rms values with the one at 710 but not with that at 525
cm '. Henceforth, therefore, we will discuss only VFF
fits with the 710-cm ' line included and that at 525 crn
excluded as an a-boron Raman vibrational line. Our best
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TABLE VI. Valence-force-field model interaction constants.
0 0

k's are in mdyn/A and A's in mdyn A.

k;„,
k~,
k3c

1.3
3.0
1.0

A 60' int

A143 ext

all other A

0.15
0.15
0

VFF model parameters are listed in Table VI. One
should note that there are only five distinct interaction
constants.

In Table VII are the calculated vibrations using the
VFF model parameters of Table VI. The symmetries and
frequency errors of Raman-active and ir-active modes are
shown. Also listed are ir modes predicted to be too weak
for observation and forbidden-transition modes. All ten
Raman-active frequencies are accounted for reasonably;
the rms error for these is 23 cm ', significantly lower
than for the nine frequencies of fit (b) in Table V, and the
overall rms error for 15 Raman and ir frequencies is 28
cm '. It seems clear that use of four different k;„, or
more than two different 3 is not justified in VFF frequen-
cy fitting.

The central-force constants in the VFF model retain
essentially the same values as in the purely central-force
model. The k;„, is lowered somewhat because of the in-
clusion of A6O. ;„,. It remains true that kz, is about twice
as large as k;„„while k3, is somewhat smaller than k;„„
but it is not negligible. Raman frequencies 710, 692, and
587 are better accounted for in VFF, primarily because of
~60' ~. The librational freqUency is fixed by A, 43

The strain energies in the VFF model as determined
from Eqs. (1) and (2), summed over all interactions of the
same type, are indicated in Table VIII; tabulated num-

bers are percentages of TSE for each calculated frequency
co;. One may note that only four of the a-boron frequen-
cies are significantly affected by two-centered external
bonds. No u modes can incorporate 2c strain energies
since opposite atoms (e.g., l and 4) move identically in a
u mode and at the Brillouin zone center the image atom
of 4 to which 1 is bonded also moves identically. Because
of the magnitude of k2, and the large 2c contribution to
co& and co2 modes, these frequencies are much higher than
any listed in Table IV for a cluster. Both g and u modes
can be affected by three-centered interactions. The
lowest-frequencies co2, and cozz correspond to f=0 clus-
ter frequencies (free rotations) which were not listed in
Table IV; their strains are almost entirely due to angular
interactions involving atoms in two different icosahedra.

E. Correlation of q=0 crystal modes with D3d cluster modes

Eigen vector expansions

The correlation of D3d with I& cluster modes shown in
Table IV is unambiguous because geometric distortion
from I& to D3d is slight in a-boron. On the other hand,
correlation of crystal with cluster modes is ambiguous;
the two-centered interaction between icosahedra is
stronger and the three-centered interaction among
icosahedra is almost as strong as intraicosahedral forces.
One sees the effects by comparing frequencies of the same
species in Tables IV and VIII; for example, the highest
Ai frequency in Table VIII is 341 cm ' above the
highest 3

&
in Table IV.

In Fig. 6 we illustrate for A modes how one might try
to correlate the a-crystal modes with I& and D3d cluster
modes in a step-by-step process. At the left we show the

TABLE VII. Predicted a-boron q =0 modes and frequencies with the valence-force-field interaction
constants in Table VI. Symmetries and calculated frequency errors are listed for Raman- and ir-active
modes. Also listed are ir-active modes expected to be very weak and inactive modes. All frequencies
are in cm

Expt.

1186
1123
933
872
795

Sym.

A)

A(
Eg
A(g

Calc. value
error

—8
26
22

1
—26

Expt.

Raman active
776
710
692
587
175

Sym.

Eg
Eg
A)
Eg
Eg

Calc. value
error

24
—17
—21
—47
—5

920

806
705
548

A2„

E„
A2„
A2„
E„

—11
58
22
46

Infrared active
also predicted from the model
are ir-active, very weak modes

E„at 884
E„at 531
E„at 449

Inactive modes
the model predicts the following inactive modes:

A2g at 664 A, „at 883
A„at 180 A(„at 504
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TABLE VIII. Strain energies (%) in VFF model vibrations. The calculated frequencies co; are in cm . Only contributions of
10% or more are listed.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

Freq.
(co; )

1178
1149
955
913
909
884
883
873
864
800
769
727
693
671
664
594
540
531
504
449
180
170

Sym.

Eg

E„

A~„

A,
A2„

E„
Eg
E„

E„
A~

13

22

14
53

24
34
19
19

13
24
19

32

Hex.

18

34

61
31

25

15

18
18
25

Vert.

13
13
15
23

26
29
43
10

Slant

16
18

49
15
62
28
45

30

38
81

10
28
55
46

2c

61
62

16
13

3c

34
24
20

19
18
21
24

11
25

60'
int.

10

12
15
15
12
11
15
17
16

143'
ext.

13

93
81

A =triangle bonds, Hex=hexagon bonds, vert=vertical bonds, 2c=two-centered external bonds, 3e=three-centered external
bonds, 60 int= 60' internal angle bends, and 143' ext = 143' external angle bends.

gJ +J
J

(3)

In Table IX we list c;. that are ~ 10%. Because modes
from diFerent irreducible representations do not mix, we
can conveniently divide this table into four parts. We do
not list coefficients for co2, and co22, which arise from
zero-frequency cluster modes.

four II, nonzero-frequency g modes that give rise to four
and one A2 crystal modes. Along the next vertical

axis to the right, the five D3d cluster modes are labeled.
Further to the right k2, is increased from 0 to its VFF
value of 3.0 mdyn/A (with k3, =0), and finally k3, is
turned up (with k2, fixed at 3.0 mdyn/A) from 0 to its
final VFF value of 1.0 mdyn/A. The geometry is un-
changed as k2, and then k3, are increased. Even though
this is a classical, quadratic force-field application, a non-
crossing rule applies. Two such avoided crossings are
seen in Fig. 6 for the four 2

&
modes. To avoid ambigui-

ty in mode correlation and confusion in the associated in-
terpretation, we resorted to eigenvector expansions.

The 36 normal-mode eigenvectors u for a D3d B&2
cluster can form a complete orthonormal set for any
36-dimensional vector. We expanded the a-crystal VFF
normalized eigenvectors v; in terms of the D3d cluster
set

1200

C3

1000—

—Hg

—Ag

400—
—Hg

200—

I

800—
O

0-
C3

QJ

a 600 ——Gg

A)g

Aqg

A)g
A~

Atg

K2c

I

I

I

I

I

0

3.0
Kgc 1.0

CRYSTAL FORCE CONSTANTS
(Mdyn / A)

2. Ag modes

The highest calculated frequency, which we identify
with the experimental 1186-cm A

&
Rarnan line, arises

FIG. 6. Correlation of a crystal with 8» cluster Ag frequen-
cies. To the left the A~, G~, and two Hg frequencies are shown
for an II, cluster. Just to the right are the five A~ frequencies
for a D3d cluster. Further to the right, the two types of crystal
bonds are turned on.
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predominantly from the cluster 752-cm ' breathing
mode. It is as if a crossing of the top two curves in Fig. 6
actually took place. Why does the frequency rise so
dramatically when crystal forces are included? Radial
movement of triangle atoms means double stretch and
double compression of the strongest bonds, the two-

centered bonds between icosahedra. Mixing in of fzo
tends to amplify the vertical movement of triangle atoms
while reducing the motion of hexagon atoms; therefore,
there is relatively little internal hexagon and external
three-centered bond strain. Weber and Thorpe (WTj
considered the 1186-cm ' experimental line to be E

TABLE IX. Correlation of VFF-calculated u-boron q=0 crystal modes with central-force-field D3j
B12 cluster modes. Listed are the squares of expansion coefficients c';J (%) that are ~ 10%. Frequencies
are in cm

2

837
A1g

(a) A

f9
752
A1g

D3q cluster modes

fbi
610

fi2
599

20

344

CO11

CO14

CO15

Crystal modes
1178
955
769
671
664

A1g

A1g

A1g

A1g

A2g

62
35

79
14

95
100

18
23
56

(b) Eg

f8
834
Eg

D 3g cluster modes

fio
611

f18
347
Eg

19

345

CO2

CO8

CO10

Crystal modes
1149
873
800
693
540

Eg
Eg
Eg

53

32
93

19
66
12

29

63

19
23
21

1

844
A2„

(c) A„

fs
834

D 3J cluster modes

f8
781
A2„

fi4
452
A1„

fi8
397
A2„

CO12

CO19

Crystal modes
913
883
864
727
504

A2„
A1„
A2„
A2„
A1„

59

41
100

38
44

100

22

22
56

4

835
E„

(d) E„

f7
784
E„

D 3z cluster modes

fi8
456
E„

fis
448
E„

fi7
394

CO5

CO6

CO16

CO18

CO20

Crystal modes
909
884
594
531
449

E„
E„
E„
E„
E„

15
80

77
15

10
85

81

88
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arising from a 770-cm ' H cluster mode.
The second-highest A

&
calculated frequency at 955

cm ' (experimentally 933) has its largest contribution
from 837 cm '

A&g and therefore from a v2I& origin.
Whereas c& 9 and c& z0 are of opposite sign, c3 9 and c3 20
are of the same sign. The breathing contributions were in
phase for triangle atoms for co, , while the opposite is true
for co3. Thus, for co3, it is the three-centered crystal in-
teraction that raises the frequency significantly above
that of f2, because the three-centered force constant is

0
only 1.0 mdyn/A, the total increase from fz is only 118
crn '. As we do, WT also matched the experimental
933-cm ' Raman line with an A

&
theoretical mode. But

their theoretical a mode was correlated with the cluster
breathing mode.

The experimental A
&

mode at 795 cm ' generally is
the most intense of the Raman lines. Without the use of
graphs or eigenvectors, one would be tempted to corre-
late this line with the borane molecule B,2 breathing
mode which is observed at 743 cm '. However, con-
sideration of radial motion on both two- and three-
centered crystal bonds would soon convince one that this
correlation must be invalid. We match the 795-cm line
with the theoretical mode co»=769 cm ', which is a
mixture of f2 (with a high-frequency I&H origin) and
f20 (from the low-frequency Ih Hz). For co» external
three-centered bonds are compressed at an instant when
two-centered bonds are stretched, as one expects in the
f20 oblate configuration. Internally, it is the triangle and
vertical bonds that are most strained, as in f2. While
there is radial motion of hexagon atoms that stresses
three-centered external bonds, there is also vertical
motion that relieves internal hexagon-hexagon bonds.
Because no polarization data were available to them, WT
correlated the 795-cm ' experimental lines with a
theoretical E that arose from the I&6 mode.

We match the calculated co&4=671 cm ' mode to the
experimental 692-cm ' A, line. This correlates strong-
ly with f» originating from Ih G . Here, 50 cm of the
rise in frequency from 610 cm ' is due to the inclusion of
60 internal angle interactions in the VFF model. The
mode is almost unaffected by crystalline two- or three-
centered forces. Since Ih G modes are Raman (as well as
ir) forbidden, one might expect the 692-cm Raman line
to be very weak. It does appear so in Fig. 3. However, in
some Raman scattering experiments, e.g. , those listed in
Table I from Ref. 23, this line is comparatively strong.
The experimental 692-cm ' line was matched by WT to
an A

&g mode with an I&H origin.
The only calculated A2 which does not arise from a

pure-rotational cluster mode is co». ~» correlates ex-
clusively with the f,2 mode. Excluding angle bends, the
strain for co&& is in internal slant bonds, as for f i2. This
A2s line (forbidden in both in Raman and ir) was calcu-
lated to be at 801 cm ' by WT.

3. E~ modes

There are six q=0, E modes in a-boron. According
to Tallant, the experimental frequencies are 1123, 872,
776, 710, 587, and 175 cm '. The latter, a librational

mode, arises from zero-frequency rotations; it will be dis-
cussed further in Sec. V.

The experimental 1123-cm ' line and theoretical
1149-cm line are identified as the same mode. This is a
mix of f3 and f» originating from the high- and low-
frequency I&Hg's, respectively. Much of the co2 TSE is in
the two-centered bonds connecting icosahedra in different
planes, as is the case for the co& A

&
. For co& all six exter-

nal two-centered bonds from one icosahedron are
compressed simultaneously. For co2, at a given instant,
two of the six may be compressed, two stretched, and two
unstrained. The TSE is less for ~2 than co, for eigenvec-
tors of the same length; the increase in frequency from f3
to co& is appreciably less than from f9 to co, . WT associ-
ated the 1123-cm ' line with a theoretical A, mode that
arises from a 770-cm '

IhHg mode.
~8, which we match with the 872 cm ' experimental

Raman line, is the f& mode. Over 30 cm ' of the rise
from 834 to 873 cm ' is due simply to the inclusion of
angle bends in the VFF crystal model. Thus co8 is essen-
tially an isolated icosahedron mode. The empirical 872-
cm ' line was identified by WT as an E mode correlated
with a 770 cm ' H representation.

The strongest of the E lines in Fig. 3 is at 776-cm
and we relate this to the calculated co&0=800 cm ' mode.
The crystal mode has external bonds, both two- and
three-centered, strained significantly. Without benefit of
polarization discrimination, WT considered the 776-
cm ' line to be A &,' they extrapolated back, on turning
off two-centered interactions, to a (G origin. Using a
graph of E 's analogous to Fig. 6, we, too, would have
traced the 776 cm ' mode to a Gs origin. Table IX(b)
shows that m, 0 is actually a mixture of four of the five
contributing cluster modes, based on use of Eq. (3).

The 710-cm experimental line we tie to co&3, which is
rather strongly correlated with f,0. About half of the
rise from 611 to 693 cm is due to addition of 60 inter-
nal angle strains and half to external interactions (each
too small to be listed in Table VIII). WT also tie the
710-cm ' line to the fourth-highest calculated Eg fre-
quency, but in their Fig. 3 this correlates with the low-
frequency H mode.

The lowest observed nonlibrational E mode is a weak
line at 587 cm '. Both WT and we tie this to E modes
that arise from the low-frequency I&Hg representation.
Of the rise from 347 to 540 cm ', we associate only 30
cm ' with the addition of valence (60 internal angle)
forces, the rest to external interactions. Of the external
interactions, two-centered ones contribute less than 1%
TSE. Three-centered bonds are strained significantly.
The distances between one hexagon atom and each of the
two bonded external atoms [see Fig. 2(b)] do not change
identically; one separation may be increased at an instant
when the other is decreased from equilibrium values.
WT, with k3, =0, probably had significantly strained 108
internal angles.

4. A„modes

As described in Sec. IIID 1 and as is seen in Table
VIII, the q=0 ungerade modes cannot incorporate the
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strong two-centered external forces; WT, too, calculated
in their a-boron model a highest ir-active frequency of
879 contrasted with a highest Raman-active value of
1210 cm '. We, therefore, do not regard the 1200- and
1080-cm ' lines as true o.-boron ir absorptions. Howev-
er, it should be noted that Werheit and Haupt ' (WH) did
treat the 1200- and 1080 cm ' lines as ordinary e-boron
absorptions and correlated these with I&G„and T,„
modes, respectively.

After subtracting the 1200- and 1080-cm ' lines, only
four observed frequencies remain. Yet group theory pre-
dicts that there should be eight ir-active modes. We must
account for this difference in terms of degeneracies, low
intensities, or lines lying outside the experimental obser-
vation range.

The experimentally observed absorption at 920 cm
we identify with (partially) co4. This mode is a composite
of three cluster modes: f&, fz, and f&6. In all three and
in ~4 the internal slant and vertical bonds are strained
significantly. The superposition greatly reduces strain in
polar triangle bonds. Hexagon atom movements are very
much as in f,6. The six external interatomic separations
involving atoms 7, 8, and 9 (Fig. I) are stretched equally
at an instant when the six external separations from
atoms 10, 11, and 12 are compressed equally. These are
the three-centered strain forms that raise the co4 frequen-
cy above those of f„f8, or f,6. WH correlate this
strong experimental line with a G„origin, which for an
Ih system is ir inactive. WT did not publish ungerade-
mode correlations.

We match the calculated co9 mode with the strong ir
absorption observed at 806 cm '. Whereas the combina-
tion of f &

and f~ canceled much of the internal triangle
strain in co4, for co9 they add constructively for triangle
bonds, but destructively for slant bond strains. The con-
tributions by f,6 to hexagon atom motion is very much
as for co4,

' external three-centered bonds from atoms 7, 8,
and 9 are stretched equally while those from 10, 11, and
12 are compressed equally. The strong intensity of the
806-cm line is due to the strong contribution of fs,
which arises from the one ir-active I& mode, i.e., T&„.

On this same basis the 705-cm experimental line,
which we tie to cu&2, should also be strong. This is indeed
the case. Superposition of fs and f,6 for co, 2 leads to
strong triangle and vertical but little slant bond internal
strains. The hexagon atom movements from f&6 lead to
the same form of three-centered bond contributions to
TSE as for the other two A2„modes. WH correlate both
the very strong 806- and 705-cm ' observed lines with
H„, an ir-inactive mode for Ih systems.

The other two 2„ lines are both ir-inactive 2 &„'s cal-
culated to be at 883 and at 504 cm '. These correlate
with f& and f,4, respectively. WT calculated the fre-
quencies for these two to be at 756 and 556 cm

5. E„modes

There are five E„modes. Even though there are two
avoided E„ frequency crossings as k3, is increased from 0

0
to 1.0 mdyn/A, the correlations are simpler and clearer

than for the A &, E, or Az„modes. Only one of the five
has a strong contribution from f7, which correlates with
the ir-allowed I& Tj„. Thus we might expect only co5 to
be associated with a strong absorption.

We associate co5 as well as co4 with the experimental
line at 920 cm '. One would not expect the ir spectrum
to have co4 and co5 resolved. The intraicosahedral distri-
bution of strains in co~ is much like that in f7. The large
hexagonal internal strains and the large external three-
centered strains are directly traceable to hexagon atom
movements in f7.

The co6 mode is predominantly f&, which originates in

I&G„. In a system with I& symmetry, the G„ is ir inac-
tive. We find (as described in Sec. IV) co6 to be down in
intensity from co5 by a factor of 30 and thus too weak to
be observed. ~6 has largest icosahedral strains in slant
and triangle bond, as one would expect with a strong f4

contribution. Attributable to f4 correlation are negligi-
ble internal hexagon strains and external three-centered
strains of &3% of TSE.

The observed line at 548 cm ' we tie to the co,6=594
cm theoretical E„mode. This arises primarily from
the lower E„mode that originates in the ir-inactive H„I&
species. One might, therefore, expect co&6 to be weak or
perhaps unobserved. The 548-cm ' line is indeed weak.
Among intraicosahedral bonds the verticals are the most
strained as in f&&. The relative motion of hexagon atoms
is such that internal hexagon strains are negligible, while
external three-centered bonds and 143 angle bends are
appreciable. WH correlate the 548 crn ' line with Ih T2„.

We do not relate ~&8=531 cm ' to an observed mode.
We determine its intensity to be only about one-fifth that
of c0&6 and the experimental 548-cm line itself is weak.
The principal internal strains in co, s are as in f», al-
though triangle bonds are weaker for co,s. With 3% TSE
in external three-centered bonds and 7% in external an-
gle bends, the frequency and strains are altered somewhat
from those of an isolated D3& icosahedron.

co20 is also not related to an observed ir line. While we
estimate the intensity to be close to that of co,6, this line
lies near to the edge of observation. Therefore, we as-
sume that it is likely to be in a region of decreased detec-
tion sensitivity. The presence of crystal interactions
somewhat perturbs the motion of hexagon atoms from
that in f,7. About 4% TSE is in external three-centered
bonds and angle bends.

One can see from the above discussion how either sim-
ple ordering of frequencies or graphical correlation as in
Fig. 6 could be misleading. The mode changes with in-
troduction of crystalline forces are comprehensible, but
not simple.

IV. CLASSICAL PREDICTION OF INTENSITIES

While frequencies are far more valuable in applying
CFF models to spectral data, intensities should not be
neglected. With a reasonable level of reliability, intensity
models can predict lines not yet recorded that should be
observable and can help account for lines that are al-
lowed but are too weak to be observed. Since assignment
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TABLE X. Comparison of relative intensities for experimen-
tal ir and u-mode VFF-predicted lines. Unity is assigned to the
strongest mode. Frequencies in cm ' are listed in parentheses.

Expt' Predicted

0.6 (913)
0.3 (920)

0.8 (806)

. 0.6 (909)
0.02 (884)
10 (883)
0.2 (864)

'Estimated from Fig. 1, Ref. 29.

Expt'

1.0 (705)

0.1 (548)

Predicted

1.0 (727)

0.05 (594)
0.01 (531)
10 (504)
0.05 (449)

of force constants is not unique, intensity determina-
tions can reinforce or can cast doubt on assigned interac-
tion strengths.

A B,2 icosahedron, whether of I& or D3d symmetry,
has no permanent electric dipole moment M at equilibri-
um. Further, M(R) is zero for all nuclear separations R
of a B2 molecule and is very close to zero for individual
B—B bonds in a-boron. We must look, therefore,
beyond individual bonds for nonzero M during an oscilla-
tion. We seek a procedure that can distinguish two very
similar modes, e.g. , v3 and v7 (Table III), by predicting
MAO for one (here v3), but M=O during the other (v7).
To be consistent with a classical quadratic potential ap-
proximation, the dependence of M should be linear in
atom displacements from equilibrium. Such a procedure
can supplement VFF vibrational frequency determina-
tions with classical infrared intensity predictions.

Alben et al. , proposed a method with these charac-
teristics and applied it to homopolar systems, amorphous
Si and G-e. We adopt their scheme for a hompolar lattice,
i.e., o,-boron with its B&2 primitive cells. The method re-
lies on the assumption that when two adjacent bonds 6
and 6' undergo different changes in bond length, electron
density shifts from one bond, say, 5, to the other. As a
result, a nonzero M is established, even for homopolars,
from the center of 6' to the center of A.

Consider three atoms I, m, and n, with 6 the bond con-
necting I and m, and 5' connecting m and n. Let r

&
be a

unit vector from the equilibrium position of m toward the
equilibrium position of l. Then (r

&

—r „)is in the direc-
tion from the center of 6' to the center of 5, assuming 6
and 6' are of the same length. Call the 3-d displacement
from equilibrium of atom l in eigenmode a, w&(a). Then
the contribution by the adjacent bonds 6 and 6' due to
two different bond-length changes is

M zz(a)=(r
&

r„)—
X [(w —w„) r „—(w —wl ) r I ] .

The total contribution to M is

M(a)=g g M ~~,(a) .
m

The rn sum is over all atoms in the primitive cell. In a
given mode o., we take the predicted intensity to be pro-
portional to co(a)M (a). In Table X we compare predict-

ed relative ir intensities with experimental values estimat-
ed from Fig. 1 of Ref. 29. One notes first that the pre-
dicted intensities for forbidden A, „modes co7=883 cm
and co&9=504 cm ' are zero within computer roundoff.
(The M values for all g modes are zero correctly because
of cancellation of opposite bond-pair contributions. ) The
three strongest observed ir lines are also the three strong-
est predicted lines; however, the 913-909-cm ' pair are
predicted to be too strong and the 864 -cm ' mode too
weak. In the previous subsection we had already com-
mented on the results for the predicted 884, 531, and
449-cm ' modes; the former two may be too weak and
the 449-cm ' mode too near the detection limit to be ob-
served.

The experimental values in Table X are estimates from
a single source; predicted values incorporate no weight-
ing factors (other than frequency). In light of this, the
agreement between experimental and predicted intensities
is reasonably good. With regard to weighting of contri-
butions from Eq. (4), we make no ad hoc corrections: for
different equilibrium angles between 6 and 6', for
different equilibrium bond lengths, for electron-density
distinctions among internal, two-centered, and three-
centered external bonds, to take into account permanent
atomic charges. That Table X presents a useful compar-
ison is likely because of the nondominant role of density
of states and to the near-Iz geometry of the B,2 units.
For boron arsenide, phosphide, and carbide, it will cer-
tainly not be possible to neglect atomic charges; atomic
movement in an eigenmode will result directly in
significant contributions to M.

In an analogous manner it is possible, in principle, to
estimate classically intensities of vibrational Raman lines.
Vol'kenshtein ' proposed treatment of molecular polar-
izabilities in terms of individual bonds. Long, using
Vol'kenshtein's approximations, formulated a general
theory for relative intensities in terms of bond polariza-
bility; Long characterized each bond by three polarizabil-
ity functions. Alben et al. wrote the three independent
forms for each bond in equations analogous to our Eq. (4)
above and then summed over bonds and atoms as we do
in Eq. (5); they made application to amorphous Si and
Ge. Tubino and Piseri applied the bond polarizability
concept to determination of Raman intensities in scatter-
ing from covalent crystals, diamond in particular.

We have attempted to apply the bond polarizability
concept to prediction of relative Raman intensities in o.'-

boron, but consider the outcome not to be useful. The
expressions that we used are closely related to Eqs. (6)—(8)
in Ref. 45. Each bond connecting atoms l and m has four
contributing factors to Ba„~/BQ, . Here A and B are
space-fixed (i.e., laboratory) Cartesian coordinates and Q,
represents the normal coordinate in eigenmode e. If a~~

represents the equilibrium polarizability when the electric
field E is parallel to a bond and e~ the polarizability for E
perpendicular to the bond, then a~~, a~, Ba~~/BR&, and
Ba~/BR, all contribute to Ba„~/BQ, . The former two
contribute to the intensity from rotation of the bond in
mode e. Tubino and Piseri knew from experiment a~~, a~,
and their derivatives. Such values, to our knowledge, are
not available for B—B bonds within or between B&z
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icosahedra. Thus parametric weighting of independent
contributions is necessary. Further, intensities are pro-
portional to the squares of Ba„z/BQ„allowing weight-
ing factors with both positive and negative signs. The
method does yield the correct forms for the Raman inten-
sities in terms of laboratory coordinates for each of the
D3d irreducible representations. But this alone does not
justify publication of results. Because of the high degree
of fiexibility in choosing parameters to fit experimental
intensities, we feel that we cannot present our Raman re-
sults as anything more than numerology at this time.

V. BRILLOIJIN ZONE AND DISPERSION

In Secs. III and IV we attempted to describe observed
optical spectra in terms of q=O phonons. For a broader
understanding of n-boron lattice dynamics, it is necessary
to describe vibrations across the Brillouin zone. In this
section we consider q&0 vibrations along the two sym-
metry directions: (a) in the z- or C3-axis direction, i.e.,
along the line connecting vertices 1 and 8 in Fig. 2(a), and
(b) in the x- or C2-axis direction, i.e., along the line
bisecting 9-12 and 8-10 in Fig. 1.

In order to solve the vibrational eigenproblem at a lo-
cation other than the Brillouin zone center, we intro-
duced as a factor of atomic displacements ' the quantity
exp[2iriq r(l„lz, l3)]. The set of integers (I, , l2, l3)
specifies a lattice point. We chose to solve, for each q, a
72X72 real matrix, whereby each eigenvalue and eigen-
vector appeared twice.
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FICz. 7. o,'-boron dispersion curves obtained wi th phase
difference in the c direction.

A. q, &0

When q, is increased from 0, with q and q still 0, the
symmetry of the 12-atom unit cell declines from
D 3d ~C3 The modes correlate as follows: A, g

~ A

A2g~A2, Eg~E, A)„A~, A~„~A), and E„~E
(see Appendix IV of Ref. 53). Thus mode degeneracy is
retained, but g and u symmetry are lost.

A plot of the dispersion curves co versus q, for the 36
modes (24 frequencies) is shown in Fig. 7. Two charac-
teristics most obvious are the complexity and the near-
zero slope of most curves. Labeling is avoided because of
the large number of modes; however, the symmetries at
the I point (q, =0), and therefore at any q„can readily
be determined from columns 2 and 3 of Table VIII. Loss
of g and u symmetry is seen in the avoided crossing at
about q, =0.04 A ' of two modes, one of which was A2,
(727 cm ') and the other A ig (671 cm ') at the I point.
At q, =0.04 A ' both are of the same A

&
symmetry and

therefore "repel. "
The edge of the zone in Fig. 7 corresponds to a phase

difFerence of m between adjacent constant-z planes con-
taining lattice points in Fig. 2(a). For greater phase
difFerences, each dispersion curve folds back on itself. At
the zone edge, lattice points 1 and 5,6,7 are all in phase;
points 2,3,4 and 8 are in phase with each other, but m out
of phase with the former four. This occurs when
2vrq, ch„=3m. or q, = 1.5/12. 56=0. 119 A '. When

0

q, =0.119 A ', the symmetry reverts to D3d. However,
here a primitive cell is composed of 24 rather than of 12

atoms. At q, =O an inversion center during a normal-
mode oscillation can be at the midpoint of the long diago-
nal in Fig. 2(a), the midpoint of the two-centered bond in
Fig. 2(c), or at the center of any icosahedron. Such
points are not all equivalent at the q, -zone edge; symme-
try operations with the midpoint of the two-centered
bond fixed would yield that the highest-frequency mode is
A &,' inversion through an icosahedron center yields A2„.
This mode is not an icosahedral breathing mode, but does
stretch two-centered bonds. Hence it has the highest fre-
quency at q, =0.119 A

The three I -point translational modes split into a TA
(two-fold) mode which rises to 108 cm ' and an LA
(one-fold) mode with co=389 cm ' at the edge. (The ap-
parent initial positive curvature for the TA mode is not
real, but an artifact of our frequency-determining and
plotting imprecision. ) If we least-squares fit straight lines

0
to the two lowest curves in Fig. 7 with q, ~0.05 A, we
obtain for the acoustic-branch phase velocities
c,(LA) = 1. 1 X 10 cm/sec and c,(TA) =0.38 X 10
cm/sec.

B. q„&0

The dispersion curves obtained on increasing q are
shown in Fig. 8. The x axis is in an ah„direction and a
full range of co values for each curve is obtained between
q„=O and 1/ah„=0. 203 A '. The symmetry changes
from D3d at the I point through C2 to C2& at the right-
hand edge. In general, excluding q„=O, there are 36 non-
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else zero-point energy differences would be isotope depen-
dent.

We further note that there are two stable forms of B& &

cages known among borane molecules. One is a trun-
cated icosahedron, open, and with only 11 vertices; the
other is a closed octadecahedron. The latter is presumed
to be the lower energy form. If during cz-boron growth a
B& &

cage forms and closes before a 12th atom can be add-
ed, a vacancy defect is created. The local structure will
be altered as will the electronic states as a result of the
defect.

We therefore propose that the 525-cm ' shift arises
from a Raman transition between two electronic states
separated in their ground vibrational states by 0.0650 eV.
Electronic Raman spectra are well known. ' It is even
possible that very shallow electronic levels were observed
long ago for a-boron.

We were led to consider defects simply to account for a

spurious Raman shift. The effect, however, of such de-
fects on structure, mechanical characteristics, electron
transport, entropy, and other thermodynamic properties
could be quite significant. Also, B&& cages might not be
confined to a-boron. Similar vacancy defects could occur
in other icosahedral and rhombohedral boron solids.
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