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Modified potential-induced-breathing model of potentials between close-shell ions
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We have developed a simple ab initio model for the calculation of the thermoelastic properties of ionic
compounds. The model is based on the Gordon-Kim-type electron-gas theory with spherically sym-
metric relaxation of ionic charge densities. The relaxation is controlled by a spherically averaged poten-
tial due to the total crystal charge density. The potential is self-consistent with the charge distribution,
and contains Coulomb, exchange, and correlation contributions. We find that this potential yields
anions that are slightly smaller than those stabilized by a point-ion Coulomb potential only. In the case
of MgO, this results in a zero-pressure density that di6'ers from experiment by less than l%%uo, a significant
improvement over models that include only point-ion stabilization potentials. Further, the calculated
equations of state and B1-B2phase-transition pressures of NaCl, KCl, MgO, CaO, and SrO are in equal-
ly good agreement with data. The calculated equation of state and structure of the more covalent and
less symmetric SiO2 stishovite is only slightly less accurate.

I. INTRODUCTION

The cubic oxides, especially MgO and CaQ, and the
high-pressure phases of Si02 are of considerable geophys-
ical interest and have been subjected to intensive theoreti-
cal and experimental scrutiny. Much effort' has been
devoted in recent years to model the thermoelastic prop-
erties of oxide minerals with electron-gas theories of ionic
interactions. These are approximate quantum mechani-
cal models which can be easily extended to complex
minerals and have shown much promise in modeling
mineral thermoelastic properties under the extreme con-
ditions of planetary interiors.

In 1972 Gordon and Kim developed the electron-gas
theory of crystals of closed-shell ions. They approximat-
ed the total charge density of a crystal p as a sum of
ionic/atomic charges which were assumed to be rigid and
spherically symmetric. The overlap interactions were
given by electrostatic, kinetic, exchange, and correlation
energy functionals of p. The atomic or ionic charge dis-
tributions were derived from self-consistent Hartree-Fock
(HF) wave functions. The electron-gas energy functionals
(strictly valid only for a uniform and infinite electron gas)
tend to underestimate the total kinetic energy, and
overestimate the exchange and correlation energies
Waldman and Gordon introduced scaling factors which
ensured an approximate agreement between the atomic
energies computed from the Hartree-Fock and electron-
gas methods. Although the modified electron-gas (MECx)
model has achieved some success with simple oxides, it
did not prove suSciently accurate for a quantitative
description of crystal thermoelastic properties. The mod-
el tends to underestimate the zero pressure density and,
as all rigid-ion models, cannot account for the observed
violation of the Cauchy relations.

To overcome the rigid-ion problem, Muhlhausen and
Csordon introduced a shell-stabilized MECx (SSMEG)
model which allows the ionic charge distribution to con-
tract, or expand, in response to a Watson-spherical-

potential approximation to the crystal point-ion
Coulomb potential. The atomic charge distributions
were derived from the Hartree-Fock equation with the
Watson sphere potential included as an external poten-
tial. Boyer et al. introduced a similar model, the
potential-induced-breathing (PIB) model, which also al-
lows the ionic charge distributions to spherically distort
in response to the electrostatic site potential. Instead of
the Hartree-Fock equation, the latter authors used a den-
sity functional approximation to the Dirac equation to
compute the ionic charge densities. Since the atomic
charge distributions deform under crystal strain, both
SSMEG and PIB models include ionic self-energy contri-
butions to the crystal energy.

The PIB model has been used to examine the high-
pressure properties of several oxides, including MgO,
CaO, SrO, and BaO, ' corundum and stishovite and
MgSi03 perovskite. In most cases, reasonably good
agreement between theoretical predictions and experi-
mental data was achieved. Stishovite, which is presum-
ably more covalent than the cubic oxides, did not fare as
well. A notable success of the PIB model is its ability to
yield elastic constants that violate the Cauchy relations in
the manner observed in the cubic oxides.

In an attempt to further increase the accuracy of
electron-gas potentials, Wolf and Bukowinski required
that the total crystal energy be minimized with respect to
the Watson sphere radius. Electronic charge densities
were again computed with the Hartree-Fock equation.
The anion charge densities thus obtained are more sensi-
tive to crystal structure and, in contrast to the PIB and
earlier models, depend on the chemical composition of
the crystal. Some improvement in the accuracy of the
equations of state and elastic constants of MgO and CaO
were obtained.

No attempt was made in any of these models to make
the charge density self-consistent with the crystal poten-
tial. Complete self-consistency requires an appropriate
band-structure calculation. It is, however, possible to re-
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tain the advantages of a pair-potential model, and achieve
a good measure of self-consistency, by requiring that the
spherical ionic charge densities be consistent with the
corresponding total crystal potential. We present here an
approximation to this ideal in which the ionic densities
are made self-consistent with the spherically averaged
crystal potential around the ionic site. The crystal poten-
tial is based on the same Hamiltonian as that used to ob-
tain the ionic densities, and includes approximate ex-
change and correlation effects, as well as Coulomb in-
teractions. We show that excellent agreement is thus ob-
tained with the experimental equations of state and B1-
B2 phase transformation pressures of cubic ion com-
pounds. We also achieve significant improvements in the
calculated equation of state and structure of SiO2 stisho-
vite.

We begin by outlining, in Sec. II, the theoretical ap-
proach and calculation methods. In Sec. III the predict-
ed compression curve and phase transition of oxides are
presented. As a further test of the model, the calculated
equations of state and phase transition pressures of NaCl
and KC1 are also presented in this section. Sec. IV surn-
marizes the results.

II. DESCRIPTION OF MODEL

ZZp —Q Qp p (r&)pp(r2)
P'p(R) = dr, dr2

R

are electron-1 —electron-2,
electron-2 —nucleus-a dis-

where r, 2, r &13, and r 2~
electron-1 —nucleus-P, and
tances, respectively.

The non-Coulombic overlap interactions (P"p, P p,P'p)
are approximated with local density functionals:

P p= J«[p pE"(p p) p—E (p ) p—ps (pp)],

where p &=p +p&, and I stands for k, x, or c. The
Thomas-Fermi functional, without correction parame-
ters, is used to approximate the kinetic-energy density c."
and the combined exchange-correlation energy density
[E (p)+c,'(p)] is estimated with the Hedin-Lundqvist
model. "The summation of short-range pair interactions
in Eq. (3) is extended to the fourth nearest neighbors in
crystals with B1 symmetry, and fifth nearest neighbors in
those with B2 symmetry. For ion pairs at separations
greater than twice the nearest-neighbor distance the over-
lap contributions are negligible.

A. Total energy calculation

U-if= &4'

is the energy of the ion subjected to the crystal poten-
tial, measured relative to a reference state, to be defined
later. Within the pairwise approximation, the total over-
lap energy can be expressed in the form

overlap 2 X Nap( (3)

where R is the interatomic distance and a and p range
over all ions in the cell and all ions in the crystal, respec-
tively. The prime on the summation indicates that the
a=p terms are omitted. The overlap pair interaction
P p(R ) contains electrostatic, kinetic, exchange, and
correlation-energy contributions,

4.p=0'p+4'"p+0 p+0'.p .

The short-range electrostatic interaction energy P'p re-
sults from the overlap of the charge distributions of ions
a and p, and can be expressed in terms of their respective
charge distributions, p and p&, and their nuclear and ion-
ic charges, Z and Q

Our model is based on the Gordon-Kim-type electron-
gas theory. The crystal is assumed to consist of overlap-
ping spherical ions or atoms. The total crystal energy per
unit cell U contains of the long-range Coulomb energy,
the overlap energy, and the self-energy; i.e.,

Madelung + overlap + self

The Madelung energy, UM d,l„„,is calculated with the
Ewald' method. U„lf contains self-energy contributions

from each ion in the unit cell

B. Self-consistent crystal potential and charge distributions

The ionic charge densities (p ) are given by
p= g, n; I%';.I, where n; is the number of electrons in ith
orbital and 4; is a solution of

(H+ V„y„„)%';=E;4;,
where H is the Hamiltonian operator' of a free ion, with
the Hedin-Lundqvist parametrization of the exchange-
correlation energy, E,. is the orbital energy, and V„„,l is
the potential due to all other atoms in the crystal.

Vcrystal contains Coulomb, Vcrysalp and exchange-
correlationp Vcr'ystal contributions:

= roc M rrxc
Vcrystal ~ crystal + " crystal

If we let the ion whose charge is to be computed to the
0th ion, then Vc'ryst» is given by

Z, n( Ix' —R; I ) —p, ( Ix' —R; I )
V;,„„,)(x)=fdx' g

i&0

R, and x (or x') are the coordinates of the ith ion and an
electron, respectively, as measured from the 0th ion. As
in the free-ion Hamiltonian, the Hedin-Lundqvist model
is used to represent v„' „,l.

For computational ease, we use an approximation to
Vcrystal that is similar to a Watson-sphere potential. In-
side a sphere of radius g, we replace V„„„,&

with its
spherical average ( V„„„„),which is then approximated
by a polynomial of the distance from the ion's center.
Outside the sphere, the potential is assumed to be of the
form —Q*/r. The radius is chosen such that
( V„~„,~ ) (g) = —Q*/g, where Q* is the electronic



MODIFIED POTENTIAL-INDUCED-BREATHING MODEL OF. . . 2497

TABLE I. Effective charges on anion sites in crystals.

Compound

B1 structure
B2 structure

NaC1

0.78
0.86

KC1 MgO

1.72
1.64

Cao
1.8
1.8

Sro

charge of the 0th ion that lies outside a sphere of radius
at which the spherical average of the total crystal poten-
tial is a maximum. Q* changes little with compression
and we therefore take it to be independent of pressure for
a given composition and structure.

A starting V«yst» is obtained from ionic charge densi-
ties calculated with Watson-sphere stabilizing potentials,
as is done to obtain PIB potentials. New ionic charge
densities are then obtained from Eq. (7), and the process
is repeated until g changes by less than 10 atomic
units. We find that this yields a good measure of self-
consistenty of the ionic charge distribution. The pro-
cedure usually requires from five to eight iterations.

Sample crystal potentials of 0 in MgO in the B1
structure are shown in Fig. 1. Values of Q" are listed in
Table I. Shown for comparison are the corresponding
Watson-sphere-type potentials, defined as

Madelung &
Or ~ —~Madelung &

Q ~» for "+ "Madeiung ~

where Q =2 for 0 ion, and rM, d,&„„s=d/aM, d,~„„s,
where d is the nearest-neighbor distance and aM, d,l„„ the
Madelung constant. Note that overlap effects make
V„„„,&

at the 0 site in MgO (B 1) more attractive than
the Watson-sphere potential inside the ionic sphere. As
pressure increases ionic overlap, so does the difference be-
tWeen V«ystal and VWatson.

C. Cohesive energy

The cohesive energy of alkali halides equals the total
crystal energy at zero pressure if the self-energy is refer-
enced to that of a free ion. However, Eq. (7) with the
Hedin-Lundqvist Hamiltonian often does not yield stable
negative ions. We therefore reference the self-energy of
Cl ions to their energy in a su%ciently expanded crystal,
as obtained by increasing the lattice constant of an
alkali-chloride crystal until an asymptotic value of the
Cl energy is found. This ionic energy is —458.43778
a.u.

Since the free 0 ion does not exist in nature we cal-
culate the cohesive energy of the alkaline-earth oxides ac-
cording to

MO(solid)=M +(free ion)+O (free ion)+e

for M =Mg, Ca, and Sr. The Hartree-Fock energy
difference of the reaction

0 (g, V;'$)~0 (g; P)+e
is —0.35221 a.u. ,

' where g stands for the ground state
and V the stabilizing potential which yields the limit
value of the HF energy. We use the HF energy of
0 (g, V;'S) ( —74.43730 a.u. ) as the self-energy refer-
ence for total-energy calculations. After adding an es-
timated correlation-energy di6'erence between 0 (g; P)
and 0 (g; 'S ), the reaction energy for the process is
—0.269+0.011 a.u. ' We calculate the cohesive energy
by subtracting the correlation-energy difference and the
reaction energy from the calculated binding energy.
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FIG. 1. Crystal potentials at O site in MgO (B1 structure)
at different V/Vo ratios. Solid lines are from our calculations.
Dashed lines are from the Madelung potential with the
Watson-sphere approximation.

FIG. 2. Radial charge densities of 0 in MgO (B1 struc-
ture) at zero pressure. The solid line is derived from our crystal
potential model. The dashed line is derived from the Madelung
potential with the Watson-sphere approximation.



2498 HUOYI ZHANG AND M. S. T. BUKOWINSKI

D. Equations of state

We calculate the equations of state P ( V) from the stan-
dard thermodynamic relation, P ( V) = (dF—/d V ) z,
where the Helmholtz free energy per unit cell F( V, T) is
the sum of the static lattice energy U( V), the zero-point
vibrational free energy Fo( V), and the thermal free ener-

F(V, T)=U(V)+Fo(V)+Fq(V, T) .

We use the Debye model to approximate the zero-point
free energy and the thermal free energy. The Debye tem-
perature 0 and the Gruneisen parameter y, are estimated
from the static lattice energy U( V) according to a model
described by Aidun and Bukowinski. ' Pressures at
which the Bl (NaC1 structure) phase transforms to the
B2 (CsC1) phase are obtained by equating the correspond-
ing Csibbs free energies G (P, T)=F +PV.

III. RESULTS

LLI

o~-

+ CV-0
0.0 0.5 1.0 1.5 2.0 2.5

RAD IU S (a.u. )

FIG. 3. Radial charge densities of Mg +. On the scale of the
graph, the density obtained from the crystal potential is indis-
tinguishable from that obtained with a Watson-sphere approxi-
mation to the Coulomb potential.

A. Charge densities

The zero-pressure radial charge densities of 0 and
Mg + ions in a MgO B1 structure are shown in Figs. 2
and 3. where they are compared to the corresponding
densities derived from the Watson-sphere potentials.
+crypt+] yields anions that are slightly smal ler, but makes

no discernible difference to the Mg + charge distribution.
The smaller O ion yields a denser crystal than that pre-
dicted by the PIB model. The static lattice constant at
zero pressure is reduced from 4.3 A of the PIB model to
4.19 A. We find that 0 is more compressible in our

TABLE II. Thermodynamic properties of NaC1 and KC1.

Static properties Room-tempeature properties

Compound/
structure

data/model

Lattice
constant
D, (A)

Bulk
modulus
Z, (GPa)

Cohesive
energy
E (eV)

Volume
at Opa
Vo (A)

Bulk
modulus
Z (GPa)

Debye
temperature

8 (K)

Gruneisen
parameter

y

NaC1 (B1)
our model
data
SSMEG model

5.571
5.64'"
5.64"

28.08

32.0

7.97
8.03
7.98"

44.85
44.85'

24.30
23.8(75)

4.93
4.0(39)

314
308'

1.59
1.62'

NaCl (B2)
our model
data
SSMEG model

3.420

3.000

37.31 7.67

7.67

41.02
41.7(27) '

34.4
36 2(42)

4.36
4d, g, h

357 1.33

KC1 (B1)
our model
data
EG model

6.200

6.10'

19.35

22.5'

7.40
7.35'
7.60'

62.04
62.42'

16.27
17.45'

5.16
5.23'

238
230'

1.68

KC1 (B2)
our model
data
EG model

3.717

3.636'

26.86 7.30

7.49'

52.93
5 1 87g~h, k

23.86
31.6~'

4.82
4g, h, k

274 1.55

'Value at T=O K.
"Reference 15.
'Reference 16.
"Reference 17.
'Calculated from thermal expansivity.
Reference 34.

~High-pressure data extrapolated to P =0.
"Assuming K' =4.
'Reference 5.
'Calculated from thermal expensivity.
Reference 19.
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FICx. 4. NaCl equation of state at 300 K. The solid and
dashed lines are the theoretical equations of state of the B1 or
B2 structures, respectively. The solid and open circles are data
(Refs. 16 and 17). The vertical line, B1-B2, indicates the pre-
dicted phase-transition pressure at 300 K.

FIG. 5. KCl equation of state at 300 K. Meaning of lines is
the same as in Fig. 4. The solid and open circles and open
squares are data (Refs. 18, 19, and 16).

model than in the PIB model at the pressures examined
here.

B. Equations of state and phase transitions
of cubic ion crystals

The equilibrium properties of KCl and NaC1 and their
structural stabilities are calculated to test the model. The
equilibrium properties at 300 K are listed in Table II.
The results from some previous electron-gas calcula-
tions' are also listed for comparison. Figures 4 and 5
compare our calculations with the experimental equa-
tions of state at room temperature from Perez-Albuerne
and Drickamer, ' and Yagi, ' and the recent high-
pressure measurements of Campbell and Heinz. '

Phase-transition pressures from B 1 to B2 structures are
listed in Table III, with experimental data also listed for
comparison. ' ' The calculated phase-transition pres-
sures of both materials are in excellent agreement with
the data.

The calculated equilibrium properties of the alkaline-
earth oxides, MgO, CaO, and SrO are compared with
data in Table IV, along with results from other electron-
gas calculations. ' The improvement in the predicted
thermodynamic properties due to the self-consistent
treatment of the crystal potential is apparent. Figures
6—8 show the calculated and experimental equations of
state at room temperature. Our calculations are in excel-
lent agreement with measurements of volume at all pres-
sures, with deviations not exceeding experimental uncer-
tainties. A Birch-Murnaghan fit to the calculated equa-
tion of state of MgO yields a bulk modulus of 180 GPa,
which is higher than the acoustically determined value of
163 GPa. However, the calculated equation of state of
MgO agrees very well with the equation of state obtained
from static compression measurements.

The phase-transition pressures from B1 to B2 struc-
tures are listed in Table V, with experimental data also
listed for comparison. ' ' The calculated phase-
transition pressures of CaO and SrO are in good agree-
ment with the data. The predicted B1-B2 phase-
transition pressure of MgO is 580 GPa; there is no re-

Compound

TABLE III. Phase-transition pressure and volume change.

NaCl' KClb

B1-B2 transition
pressure (GPa)

0 3
Volume change (A )

Volume change (%%uo)

This study
Data
This study
This study
Data

29
29(3)
—1.20
—4
—1.3'
—5.8'

2.1

2.0
—6.91

—12

'Data from Ref. 17.
Data from Ref. 16.
Heinz and Jeanloz in Ref. 17.
Sato-Sorensen in Ref. 17.
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FIG. 6. MgO equation of state at 300 K. Meaning of the
lines is the same as in Fig. 4. The solid and open circles are data
(Refs. 16 and 20).
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FIG. 9. Pressure dependence of stishovite structural parame-
ters. Data on (a) solid triangles, (b) open triangles, and (c) are
from Tsuchida and Yagi (Ref. 28). The absolute oxygen posi-
tion is the product of a and u parameters and the data are from
Ross, Shu, Hazen, and Gasparik (Ref. 30).

25
ported observation of any transition up to the highest ex-
perimental pressure of 200 Gpa.

E21
O)

19
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125 150

FIG. 7. CaO equation of state at 300 K. Meaning of lines is
the same as in Fig. 4. The solid and open circles are data (Refs.
22 and 21).

C. Si02 stishovite

The structural properties of Si02 stishovite were ob-
tained by minimizing the Gibbs free energy with respect
to the structural parameters of an orthorhombic unit cell.
There are five parameters: three lattice constants: a, b,
and c, and two oxygen coordinates in units of a and b, re-
spectively, u and U. In the case of tetragonal rutile struc-
ture, a =b and u =U.

Because a fully numerical self-consistent calculation

36
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~ 26)
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I I t I
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15

FIG. 8. SrO equation of state at 300 K. Meaning of lines is
the. same as in Fig. 4. The solid and open circles are data (Refs.
24 and 23).

FIG. 10. Si—0 bond lengths of stishovite. Data are from
Ross et al. (Ref. 30).
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TABLE IV. Thermodyanmic properties of MgO, CaO, and SrO.

Compound/
structure

data/model

Lattice
constant
D, (A)

Static properties
Bulk

modulus
Ep (GPa)

Cohesive
energy
E (eV)

0 pressure
volume
Vp (A')

Room-temperature properties
Bulk Debye

modulus E'' temperature
SC (GPa) 0 (K)

Gruneisen
parameter

r
MgO (B1)
Our model
Data
PIB model

MgO (B2)
Our model

4.192

4.30

2.613

187

139

182

31.9
31 4'
33.5

30.5

18.65
1S.67b

18.07

180
163'

175

4.04
4.13(9)'

4.20

837
776

830

1.24
1.5

1.26

Cao (B1)
Our model
data
PIB model

4.800

4.82

121

102

28.3
27.4'
30.1

27.96
27.S2'

118
111(2)g

4.08
4.2(2)g

660
605'

1.22
1.5

CaO (B2)
Our model
Datab

2.890 140 27.5 24.45
24.59(33)g

136
130(20)g

4.26
3.5{5)g

704 1.29

SrO (B1)
Our model
Data
PIB model'

5.159

5.13

93.4

80

26.8
25.6b

34.72
34.35'

91
91.3(27)'

4.19
4.3(3)'

551 1.30

SrO (B2)
Our model
Data"

3.090 130 25.9 29.79
28.13& k

128
160{19)'"

4.08
4 0j, k

637 1.23

'Reference 13.
Reference 25.

'Reference 26.
Reference 27.

'Reference 1.
'Reference 21.

gReference 22.
"Obtained from high-pressure fits, i.e., extrapolated to P =0.
'Reference 23.
'Assumes E' =4.
"R.eference 24.

TABLE V. Phase-transition pressure and volume change.

Compound

B1-B2 transition
pressure (GPa)

0 3
Volume change (A )

Volume change (%)

'Data from Ref. 20
bData from Ref. 21.
'Data from Ref. 24.

This study
Data
This study
Data
This study
Data

MgO'

580
& 200

—0.31

—3.4

Caob

61
63(4)

—2.09
—2.0

—10
—10.0

SrO'

35
36(4)
—2.70
—3.4

—10
—13.0

TABLE VI. Zero-pressure properties of stishovite.

Properties This study Experiment PIB Model

Volume (A)
c/a ratio
Q

Ep (GPa)
Kp'

'References 30—32.

45.54
0.681
0.311

378
6.4+3.5

46.54
0.638
0.306

287-313'
1.7—6'

43.39
0.708
0.306

411
3.73
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47
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45

~ 43ocf
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O

37
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Pressure (GPa)
120

FIG. 11. Stishovite equation of state. The solid line is from
our model and the dashed line is from PIB model. Data from
Liu, Bassett, and Takahashi (Ref. 29) and Tsuchida and Yagi
(Ref. 28) ~

The model stishovite remains in the tetragonal rutile
structure up to 150 GPa. A structural change from the
tetragonal rutile structure to an orthorhombic CaC12
structure was recently observed at approximately 100
GPa in a static compression experiment.

Figure 9 shows that the pressure dependence of the
crystal parameters is in good agreement with the
data. ' The octahedral bond lengths shown in Fig. 10
have the same trends with pressure as the data. The
structural and equation-of-state parameters together with
data and the results of PIB model calculations are
listed in Table VI. The equation-of-state results are com-
pared to data in Fig. 11. The self-consistency require-
ment clearly yields a significant improvement in the accu-
racy of the calculated structure and equation of state of
stishovite. However, the agreement is not as good as
found for the cubic ionic crystals, suggesting that co-
valent effects are significant in stishovite. Another likely
source of error is the low coordination of the oxygen ion
in stishovite, which may render the spherical approxima-
tion to the potential less than adequate.

IV. SUMMARY

like the ones employed for the cubic compounds is too
time consuming on a minicomputer, we fit the pair poten-
tials to functions of the distance r,j between ions i and j:

k
5

V(r, )= g A"k 5/3
Vk=1

The Ak's were constrained by fitting Eq. (11) to self-
consistent pair potentials for 30 sets of orthorhombic
structural parameters that span the range expected in the
energy minimization. We found that the 30 sets of Ak's
thus obtained can be accurately described by third-order
polynomials in the Coulomb energy per molecule.

A modified potential-induced-breathing (MPIB) model
has been developed to improve the accuracy of electron-
gas-type potentials. The relaxation of the ionic charge
density is controlled by a spherically averaged potential
that is obtained from simple density functional theory.
The potential is self-consistent with a crystalline superpo-
sition of spherical ionic charge distributions, and con-
tains Coulomb, exchange, and correlation contributions.
We find that with this potential anions are more sensitive
to their environment than in models where the charge
density responds only to the point-ion Coulomb potential
of the crystal. Significant improvements are obtained for
calculated thermodynamic properties of cubic oxide com-
pounds and Si02 stishovite.
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