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Point-defect interactions when annealing diamonds implanted at low temperatures
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In this paper, the point-defect interactions which occur during annealing, when doping diamond by
means of the cold-implantation —rapid-annealing technique [Phys. Rev. B 38, 5576 (1988)], are modeled
using reaction-rate theory. The equations predict that the magnitudes of the activation energies, con-
trolling dopant —interstitial-vacancy combination and dopant-interstitial diffusion, relative to the same
energies applicable to the self-interstitials, determine the end result which will be obtained for a chosen
implantation-annealing sequence. It is also possible to explain why an increase in the annealing tempera-
ture can lead to a decrease in dopant activation, as had been observed experimentally (and reported else-
where) for boron. Reasonable values for the self-interstitial activation energies are found when applying
this model to previously published results.

I. INTRODUCTION

Doping of diamond by means of ion implantation has
been attempted since the early 1960s. One aspect which
complicated the interpretation of results has been the
thermodynamic metastability of this material. It is now
clear that some of the earlier claims to success, which
even led to a patent application, ' can be ascribed to radi-
ation damage. The vacancies are known to be optically
active in diamond and are believed to act as donors
which can compensate acceptor centers. ' Above room
temperature self-interstitials can diffuse during ion im-
plantation. ' When they diffuse out of the layer, being
implanted, an excess of vacancies is left behind, which
lowers the material density and thus promotes the forma-
tion of more complex defect structures or even graphiti-
zation during subsequent annealing. From this realiza-
tion a doping procedure was developed which entailed
cooling of the diamond substrate to a low temperature
(typically liquid nitrogen) to inhibit interstitial diffusion,
followed by annealing at a suitable high temperature to
induce interstitial-vacancy annihilation. '

During the annealing stage, dopant atoms, which com-
bine with vacancies, become activated (provided that
they are substitutional dopants) and self-interstitials
recombining with vacancies diminish the radiation dam-
age. Obviously, some of the self-interstitials can still
diffuse from the ion-damaged layer to leave vacancies
behind. It was found that the residual radiation damage,
after annealing, form deep-lying donor centers at =4 ev
below the conduction band. From a statistical analysis
of the electrical conduction of boron-doped layers, which
were heavily compensated by these deep-lying donor
centers, it was found that the donors have extremely
large degeneracy weighting factors which depend on the
annealing cycle employed. To explain this phenomenon
it was tentatively proposed that the donors result from
the agglomeration of vacancies to form "vacancy crystal-
lites, " which effectively maintain the electronic charac-
teristics of the single vacancy in a narrow energy-band

structure. For the latter reason these donors were termed
"vacloids" in order to distinguish them from the stan-
dard concept attributed to vacancy clustering in other
materials.

Initially, a simple, intuitive model was derived to de-
scribe the above-mentioned cold-implantation —rapid-
annealing (CIRA) process and applied to doping when us-
ing boron ions. It was assumed that each interstitial
(self-interstitials as well as the implanted boron atoms)
has a certain probability P during annealing to encounter
and combine with a vacancy before it can diffuse out of
the implanted layer. From previous experience the as-
sumption was made that this probability is proportional
to the atomic vacancy density C, and the width of the
ion-implantation-damaged layer co, such that it may be
written as

pn„
p =pcoC =

where n, is the number of vacancies per cm, N the atom-
ic density per cm of atoms in a perfect diamond crystal,
and p a proportionality constant which increases with
temperature for self-interstitials. ' Obviously, p should
depend on the type of interstitial involved. Because car-
bon and boron are next to each other in the periodic
table, it was assumed that P would roughly be the same
for both types of atoms. ' Inherent in this approach is
the further assumption that the self-interstitials and bo-
ron interstitials are distributed in the same manner
among the vacancies. This is not true when implanting
only boron at a single energy. The situation can be
amended by either coimplanting carbon ions, to create
the damaged structure into which the boron is then im-
planted, or by implanting boron at a series of different en-
ergies to force overlapping distributions over a wider
width co.

Recent experiments, employing different initial anneal-
ing temperatures on identically implanted diamonds,
showed clearly that the carbon and boron interstitials do
not behave in a similar fashion, even though coimplanta-

2470 1991 The American Physical Society



POINT-DEFECT INTERACTIONS WHEN ANNEAI. IN'. . . 2471

tions were used to ensure similar spatial distributions. "
Although self-interstitial —vacancy recombination im-
proved with increasing annealing temperature, boron-
interstitial —vacancy combination became worse. In
terms of the simple probability function used in Eq. (l),
this would indicate that, in contrast to carbon intersti-
tials, P decreases with increasing temperature for boron.
The increase in P for the carbon-interstitial —vacancy
combination indicates that an activation energy must be
operative for this process. Similarly, an activation energy
would be expected for the boron-interstitial —vacancy
combination reaction. It is, of course, possible that the
reaction rates, at a chosen temperature, could favor one
process above the other if their "chemical" reaction con-
stants, which depend, inter alia, on the activation ener-
gies, differ. Clearly, a more fundamental description of
the point-defect interactions, which are operative during
annealing, is needed.

In this paper a theoretical model for the point-defect
interactions is derived from reaction-rate equations and
applied to some of the experimental results which have
been observed when doping diamond layers by means of
the CIRA method. From this, a deeper insight into the
role of the different activation energies can be gained, and
this, in turn, should assist in developing better annealing
cycles in the future.

As usual, k is Boltzmann's constant and T the absolute
temperature.

However, at the same time, some of the self-interstitials
also diffuse out of the damaged layer at a rate R, . It
seems reasonable to assume that this factor should be
proportional to the density of the self-interstitials and in-
versely proportional to the width co. Accordingly,

+n;
R, =

CO

where y is a proportionality constant which will increase
with temperature. From diffusion theory the average
time needed for a diffusing entity to move through a dis-
tance co follows as co /D, where D is the diffusion
coefficient. y should thus be proportional to D and
should increase with temperature subject to the same ac-
tivation energy ED; which leads to the relationship

O' =0'pexp

The rate at which the self-interstitials decrease during
the anneal is thus given by the sum of R, and R„ leading
to the equation

II. THEORETICAL MODEL
dn) = —n;
dt

Kn, +y
67

A. Rate equations

Implantation is carried out at a low enough tempera-
ture to "freeze" in the intrinsic and implanted point de-
fects, thus preventing them from diffusing. In this pro-
cess, n, p vacancies, n;p carbon interstitials, and ndp
dopant atoms are introduced per cm into the ion-
implanted layer of width co. Because of the large number
of self-interstitials created in the collision cascade of a
single ion,

Ec
K—KpeXP (4)

ndp«n p n p

After implantation, the diamond is rapidly heated to a
suitable annealing temperature, at which the point de-
fects may diffuse and combine. Self-interstitials, combin-
ing with vacancies, reduce the radiation damage, and
dopant interstitials, doing the same, become activated.
At time t there will be n, vacancies, n; self-interstitials,
and nd dopant interstitials per cm in the implanted layer
of width cu. The rate R, at which recombination occurs
will be assumed to be proportional to the density of each
reactant to the first order and may thus be written for the
self-interstitial —vacancy reaction as

Kn, n,
R, =

CO

where K is the rate constant which is assumed to follow
an Arhenius relationship with an activation energy Ec,
such that

The corresponding equation for nd is

dnd

dt
+gd

CO

where the subscripted d parameters are defined similarly
to the corresponding unsubscripted parameters with tem-
perature dependences characterized by activation ener-
gies Ecd and EDd as in Eqs. (4) and (6).

If the temperature is high enough, the vacancies can
also diffuse. Of the vacancies which did not combine
with interstitials, some may also escape from the ion-
damaged width cu, while others may interact to form the
deep-lying donor centers which had been deduced from
experiment. ' If one assumes an instantaneous heating
to a temperature at which all the point defects can diffuse
and interact, corresponding equations for the vacancies
need to be considered. However, taking the present
rapid-annealing technology into account, the rate of heat-
ing probably ensures that the interstitials (or at least the
self-interstitials) will have diffused, recombined, and es-
caped long before significant vacancy diffusion has oc-
curred. Although the possibility exists that, for certain
dopants, diffusion of the dopant interstitials may only be-
come significant at the same, or even higher, tempera-
tures than vacancy diffusion, the assumption, in this
analysis, will be made that the self-interstitial and dopant
diffusion-combination reactions efFectively exhausted
themselves before significant vacancy diffusion and ag-
glomeration can occur. Accordingly, the decrease in va-
cancies, caused by combining with the interstitials, fol-
lows from Eq. (3) and the equivalent expression for the
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dopant atoms as

Kn 7l Kd nv PldV 1

2
CO CO

(9)

perature or e sa VO&f th same n which can only mean that & p
to E s. (4) andincreases with temperature or, according to Eqs. an

(6), that Ec)ED.

B. Interstitial-vacancy equation

(10)

Integration leads to the change o n, pf to n for the corre-
sponding change of n;o (=n, o) to; g','to n. and ives the rela-
tionship

i nvP

With the assumptions made above, the intehe interstitial-
vacancy interactions will dominate the annealing process
up to the point where the residual vacancy-vacancy in-
teractions remain. o eT determine the number of residual
vacancies, w ic ih' h d'd not combine with interstitials, Eq.
(9) has to be solved. If one assumes that nd ((n; [see q.
2)], during the largest part of the annealing cycle, t e

second term m q.E . (9) may be neglected and the main
govoverning equation derived by eliminating n;, wit t e
aid of Eq. (7), which then renders

1+ dn, =dn; .
Knv

C. Interstitial decay times

n; =n„pexp
E

(16)

Substituting this expression into Eq. (9) and integratmg
gives a time-dependent expression for n„ i.e.,

~n„r, I

n =n pexp expv v

which for t ))~; becomes

Kn p7;
n,f =n, pexp (18)

Comparing the latter equation with the equivalent Eq.
(12) leads to an expression for r,.:

It is an interesting and useful exercise to assume that
the decay of the self-interstitials n,. may be described in
terms of an average lifetime ~;, allowing one to write

r

n, . =n-
K n v CO nvf

(19)

nvf =exp
nvp

Kn„p nvf

"vp
(12)

At the end of the annealing phase, n; =0, wnicri leads to
the number of residual vacancies n„f as

n, p

In other words, the time constant co /y, which may be
considered as the average time it will take an interstitia

Obvious y, w en n„f1, h n becomes very small, the effect of nd

may ey become non-negligible, especially if n„f, as deter-
b E . (12), becomes comparable to, or smal e

ever in thethan, the number of dopants activated. However, in e
doping experiments done to date, us' gin boron, the indica-
tions strongly suggest that n„f is large enougenou h to validate

7 —9, 11,12the use of Eq. (12).
For given values of K, y, and n, p, Eq. & b 1 dE . (12) can be solved

by iteration. The following substitutions are made to fol-
low the relevant behavior of this equation and to faci i-
tate later discussion:

0.8—

0.6—00 )
II

0- 04

and

Y=
"vp

(13)

Knvp
(14)

which give

ln YX=-
Y

(15)

0 10 20

X. Kfl vo

30 40

for Eq. (12). Obviously, 0( Y(1 because n,f (n„o In.
. 1 't b seen that Y decreases with increasing

i.e., with increasing K/y or n, p. ExPerimenta resu s
indicate that n,f decreases with increasing annealing tem-

FIG. 1. Fraction Y of residual, uncombined vacancies n,f to
the original density n„o, as a function of X =~n /, where K is
the reaction-rate parameter for interstitial-vacancy recombina-
tion and y the diffusion constant for self-interstitial diffusion.
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Kni

de d gd—co dt
Kd K

Integration and substitution for n; from Eq. (16) give

to diffuse out of the layer when no vacancies are present,
becomes contracted to ~;. It is not surprising that the
presence of the vacancies should shorten the average life-
time, and Eq. (19) thus seems a reasonable result.

The relationship between n; and nd at time t may be
found by combining Eqs. (7) and (8) through the elimina-
tion of n„. This leads to the difFerential equation

Kof do
exp

O'oKdo

(+C +D) ( Cd +Dd)
kT (28)

be made as small as possible. As already mentioned
above, Y=n„f/n„o decreases with increasing tempera-
ture. Accordingly, the factor P in Eq. (24) will increase.
If, as for boron dopants, R~ decreases with increasing
temperature, " it would mean that the factor I in Eq. (23)
increases faster with temperature than P. From Eqs. (4),
(6), and the equivalent expressions for the dopant atoms,
I may be written as

nd =ndoexp
—2 Kd f' + (21)

Clearly, this parameter can only increase with tempera-
ture if

K7i

Thus, at a single temperature, the dopant interstitials
may also be considered to decay with a simple time con-
stant ~d, where

s.e.,

&r =(+C +D ) (&Cd &Dd ) & 0 ~

E —Ec—ED )EEd Ecd EDd

(29a)

(29b)

CO7d=
0'd

1+ where it is known that b,F- & 0 (see Sec. II A).

III. APPLICATION TO EXPERIMENTAL RESULTS
The functions I and P follow as

KV'd
(23)

and

nvo —1 (24)

In the derivation of these equations, the parameter ~,. in
Eq. (21) was replaced with the expression in Eq. (19). As
one would expect, the lifetime of the dopant interstitials
is also shortened by the presence of the vacancies.

D. Activation ratio

dnd, = dnd —[Pdco—nd dt] . (25)

Substituting for nd and dnd, with the aid of Eqs. (21) and
(22), and integrating over a time t »rd lead to the simple
result that

+d 0'd
nd =ndo 1—

CO

The smaller the decay time ~d becomes relative to the
vacancy-free escape time co /yd, the more dopants will be
activated. By replacing rd in Eq. (26) with the expression
in Eq. (22), the dopant activation ratio becomes

n«
"do

r1+— (27)

In order to improve the activation ratio R z, I /P has to

Each dopant interstitial which combines with a vacan-
cy becomes activated. If at time t, nd, dopants have been
activated, the second term in Eq. (9) may be written as
dnd, /dt Combinin. g this fact with Eq. (8) renders

The model, derived above, emanated from the desire to
explain why the behavior of boron interstitials differs
from that of self-interstitials when annealing ion-
implanted diamond layers. " A summarized, pictorial
representation of this difference is shown in Fig. 2."'
Two curves, each for equivalently ion-damaged dia-
monds, show the change in resistance (measured at a sin-
gle temperature) as a function of the first temperature to
which the diamonds were rapidly heated after ion irn-
plantation at —196 C. One set of data is for diamonds
implanted with only carbon ions, while the other is for
coimplanted carbon and boron ions. During the first part
of the annealing cycle, each diamond was held at its
preselected temperature for 1 h. This was followed by a
further anneal at 1170'C for another hour. Rapid heat-
ing was efFected by sliding the diamonds down an inclined
chute into a preheated graphite crucible. "

The energies and doses employed for the diamonds,
which were identically coimplanted with carbon and bo-
ron ions (lower curve in Fig. 2), are shown in Table I.
Added to this table are the expected average number of
vacancies per ion, for each ion and energy, as generated
by the computer program TRIM89. The displacement
energy was assumed to be 55 eV for the carbon atoms in
the diamond lattice. According to this calculation,
n„o=7 3X10' cm. . For the second curve (Fig. 2), the
carbon-ion doses were spread over the same energies
shown in Table I, but were slightly increased to keep n, o
the same as for the coimplanted specimens.

The conduction, measured for the carbon-only irn-
planted layers in Fig. 2, must be caused by the residual
radiation damage after annealing, and this is clearly de-
creasing with increasing annealing temperature, com-
rnensurate with better self-interstitial-vacancy recombina-
tion. Less vacancies are available to form deep-lying
donor centers. In contrast, the boron-doped layers show
a minimum in the resultant electrical resistances. A par-
abola was fitted to the four lowest-temperature points,
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FIG. 2. Comparison of the change in sheet resistance with
the first annealing temperature, when using a two-stage anneal-
ing cycle, after cold-target implantation. The doses used for the
coimplanted B+ and C+ layers are shown in Table I. For the
carbon-only implanted layers, the carbon-ion doses in Table I
were slightly increased to generate the same initial density of
vacancies. Whereas the carbon-only implanted layers gave an
increasing sheet resistance with annealing temperature, the
boron-coimplanted layers show a minimum resistance at about
1000'C. A parabola was fitted to the four points measured for
the layers (annealed at the lowest temperatures), which all
showed variable-range-hopping conduction (see also Fig. 8).
The sheet resistances displayed for the carbon-only layers were
measured at 150'C and for the coimplanted layers at 40'C (from
Refs. 11 and 12).

ln(R, ) =ln(R0, )+ST
where

5"~ a" '/kN (EF ) .

(30)

(31)

Here a ' is a length approximating the extension of the

15

1013-
LLI

(3

+ 855
~ 910
& 960
o 1065 C

Dg.. "

/ p
/g

= 1.1 eV

in the density of activated boron acceptors. "'
When representing the change of sheet resistance R„

for these implantation-annealed diamonds, as a function
of absolute temperature T, it was found that large sec-
tions did not give linear relationships for ln(R, ) versus
T '. The curves, for the carbon-only implantations, are
shown in Fig. 3." At high temperatures the two layers,
annealed at 960 and 1065'C, did, in contrast, show linear
regions corresponding to an activation energy =4 eV.
This is the energy expected when electrons are activated
from vacloids to the conduction band. Furthermore, if
one ignores the noise above 10' 0/ for curve D (an-
nealed at 1065 C), the lower-temperature branch also ap-
pears linear with an activation energy of =1.1 eV. All
the other curve sections and curves gradually increased
their slopes toward smaller inverse temperatures, typical-
ly, as expected for variable-range-hopping conduc-
tion. ' ' For this electrical conduction mechanism, the
sheet resistance R, follows Mott's law with temperature
T; i.e.,

which indicated that the minimum occurred at =986'C.
(The reason why the fifth point was ignored is discussed
later in the text. ) As the compensating donors are de-
creasing with increasing annealing temperature, the
minimum can only be caused by a concomitant decrease

TABLE I. Ion energies and doses which were used to create
an intermixed distribution of radiation damage and boron atoms
over the whole width of the implanted layer.
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o
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Ion Energy (keV) Dose (cm )

Vacancies
(cm )

10 15 2.0
I

2.5
I

3.0

Carbon 150
120
80
50

Total carbon-ion dose
Boron 120

75
44

Total boron-ion dose
Total vacancies n„0

2.06 X 10'
1.34 X 10'
1.] 3 x 10"
6.20x10"
5.15 X 10'
7.64x10"
5.68x 10"
4.18x 10"
1.75 X 10"

3.19x10"
1.94x10"
1.36 X 10'
6.10X 10'

1.01 X 10'
6.34x10"
3.56x10"

7.3x10"

INVERSE TEMPERATURE (10 K )

FIG. 3. Sheet resistance as a function of inverse temperature
for the carbon-ion implanted diamond layers annealed at
dift'erent initial temperatures. Curves A, B, and C indicate hop-
ping conduction over the whole temperature range, except at
high temperatures where, for C, an activation energy of =4 eV
becomes prevalent. In contrast, curve D shows, essentially, two
regions with activation energies of =4 and 1.1 eV (from Ref.
11).
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localized wave function of a hopping center, k is
Boltzmann's constant, and N (EF ) is the density of hop-
ping states near the Fermi level. For three-dimensional
hopping, n =4. However, in a very thin layer, where the
thickness becomes comparable with the hopping dis-
tance, two-dimensional hopping may occur, and then

15

For the very high resistances shown in Fig. 3, the pos-
sibility of two-dimensional hopping should not be exclud-
ed. When plotting in(R, ) against T 'i as well as T
both representations seem to give, within experimental
error, linear relationships for the hopping parts of the
data. Accordingly, it was decided to choose between the
two possibilities by fitting Eq. (30) to the data, for both
n =4 and 3, using the method of least squares. More
data points were measured than the ones shown in Fig. 3,
and all the data, recorded at every 2 C interval, were
used to calculate the best linear curves. Although curve
D seems linear at lower temperatures, as discussed above,
it was decided to calculate similar fits for its low-
temperature branch. Only the data collected between
1000/T =2.0 and 2.2 were used for this purpose. Simi-
larly, owing to its linear behavior at high temperatures,
only the data above 1000/T=1. 8 were used for the
960'C curve (curve C). The results are summarized in
Table II. The average least-squares deviation per data
point, X,„, is also shown for each curve fitted. Except for
the D curve, X,„was less for n =4, in each case, thus
favoring three-dimensional hopping conduction. Accord-
ingly, the data were interpreted for n =4, where the
hopping-center density N(EF ) can be taken as propor-
tional to S [see Eq. (30) and Table II].

For the data of curve D, as a function of T ', X,„de-
creased even further to 1.65X10, giving a semicon-
ducting activation energy of 1.07 eV. This value is near
the energy of = 1.23 eV found for charged vacloids above
the valence band and may thus be caused by the excita-
tion of electrons from the latter band to such centers. In
a case such as the present one, where donors overcom-
pensate acceptor levels, the Fermi level should lie near
the donor level, thus causing hole conduction with an ac-
tivation energy of this approximate magnitude. Accord-
ingly, it was decided not to try to fit any part of curve D

to the hopping equation.
When, only, implanting carbon ions, the net result

after annealing should be mainly (or, at least, according
to the theory developed above, only) vacloids, which
formed out of some of the residual number of uncom-
bined vacancies n„f. It is thus tempting to identify each
hopping center, for the curves shown in Fig. 3, with a va-
cloid. However, the large degeneracy weighting factor
of these entities may amplify the number of hopping op-
tions. Furthermore, a study of the onset of hopping con-
duction in diamonds, implanted with carbon ions at a tar-
get temperature of 240'C, which allowed interstitial
diffusion during the process, indicated a correlation with
the number of excess vacancies which remained after
some interstitial outdiffusion. Initially, the assumption
will be made, albeit cautiously, that the number of hop-
ping centers for the implanted layers of Fig. 3 (after the
carbon-ion implantation and annealing) is directly pro-
portional to the residual, uncombined vacancies n„f. Ob-
viously, it is more than likely that some of these vacan-
cies diffused out of the layer and that the amount that es-
caped may also have been altered by the subsequent an-
nealing step. It seems logical to expect that more vacan-
cies will be able to escape, during both the annealing
stages employed, for a smaller value of the uncombined
density n,f. Owing to the fact that U,f decreases with in-
creasing annealing temperature, more of these uncom-
bined residuals should escape the higher the initial an-
nealing temperature becomes. Thus, by assuming, as is
done for this analysis, that the number of experimentally
determined hopping centers correlates directly with the
calculated amount of uncombined vacancies n,f, the true
number of uncombined vacancies may be progressively
underestimated with increasing annealing temperature.

To determine whether the theoretical model, derived
above, approaches a reasonable description of the experi-
mental data, a correlation between the calculated values
for n,f and S may be attempted. However, to do this
the dependence of a/p, on the absolute temperature
needs to be known [see Eq. (12) and Fig. 1]. In other
words, the parameters ~0, yz, and AE=Ec —ED are
needed according to Eqs. (4) and (6). At present, these

parameters are unknown. In fact, their determination

TABLE II. Slopes S and the appropriate ratios which are proportional to the hopping-center density
N(E+), when representing the sheet resistance data in Fig. 3 as a function of T ' ", for n =3 and 4.
X,„ is the average least-squares deviation obtained in each case.

Curves in Fig. 3

Anneal temp.
('C)

855 910 960 1065

Slope S
S 0- N(EF )

S ' ratios
X,„

54.4
6.21x 10-'
1

1.82 x 10-'

68.1

3.17x 10-'
0.51
7.71 x10-'

70.9
2.81 x 10
0.45
4.30x 10

262.0
5.56x10-'
0.0085
1.90x 10

Slope S
S ~ N(EF)
S " ratios

X,„

43.7
2.74 x 10-'
1

1.04 x 10-'

54.8
1.11x10-'
0.41
5.37 x 10

57.1

9.41 x 10-'
0.34
2.46 x 10

202.0
6.01x10-"
0.0022
1.93 x 10
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AE—ln(X) = —ln
kT 0'o

(32)

Y=n„ /n, is a function of X [see Eq. (15)] and thus alsonuf UO

of —ln(X). The relationship between these two parame-
ters can be seen in Fig. 4. If the theory is correct, all the
possible values of n„f, for a chosen n, o, must fall on this
curve. In terms of the crude assumptions, made above,
S is assumed to be proportional to n,f. Accordingly,
the data in Table II should also correlate with the curve
in Fig. 4.

To place the data points on the latter curve, the posi-
tion of at least one point is needed. By choosing a value
Y = Y for curve 3 between unity and zero, the corre-
sponding Y values for the curves 8 and C could be calcu-
lated using the ratios of S in Table II. From these
numbers the values for —ln(X) could, in turn, be derived
from Eq. (15). The linear expression [Eq. (32)] was then
fitted to the latter data by using the least-squares devia-
tion method. Yz was systematically varied and the cor-
responding values for AF. and b =1n(icon, o/yo) deter-
mined in each case. At erst, it was hoped that the aver-
age least-squares deviation X„will change as a function
of Yz and reach a minimum, from which the most prob-
able values for AE and b could be deduced. However, al-

from the existing experimental data, in itself, will lend
credence to the model if reasonable values are to be
found. Accordingly, it was decided to develop a plausible
correspondence between the theory and the data in Table
II (for n =4) and then to judge whether the values for b,E
and the other constants are acceptable.

In order to work within an inverse temperature scale,
Eq. (14) can be combined with Eqs. (4) and (6) to obtain
the relationship

though a rapid decrease in X,„was found at high values
for Y~, the decrease Aattened out at low values without
ever reaching a minimum value. This behavior can be
caused by the S shape of the curve in Fig. 4 if all the data
points lie near to, or on, its lower leg.

Another method had to be found in order to select
values for AE and b, which may be considered as reason-
able. In Fig. 5, AE, b, X,„, and the slope of X„are all
shown as functions of Y~ on a logarithmic scale. The in-
itial, rapid decrease in AE and b corresponds to the de-
crease in X and may be considered as an indication thatsv
these values for Y~ are too high. For small values of Y~,
the slope of X changes very little, showing a fairly sud-av —1.72den increase for values of Yz) 10 . The slope cn-

—1creases then nearly linearly up to Y~ =10, from where
it rapidly goes to very high values. From this behavior it
seems that X„approaches Y~ = 10 ' parabolically
when decreasing, indicating that the minimum point
should have been at the latter position. Using this value,
the corresponding values for AE and b are 1.52 eV and
21.10, respectively. However, to play safe, the slopes at
high and low values of Yz were extrapolated and their
intersection at Yz =10 =0.275, used as another pos-
sibility. In this case the values for hE and b came to 1.95
eV and 21.73, respectively. The latter value for Y& is
probably a gross overestimation. In a previous assess-
ment for a nearly similar implanted layer, annealed at a
slower rate to 1200'C, the self-interstitial activation ratio
was estimated to be =0.96; i.e., Y=n,f/n, o=0 04 A. c-.
cordingly, the appropriate value for Yz will probably be

~o=)o- tn( )
b ) &o~ vo
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FIG. 4. Fraction Y of the uncombined vacancies n,f to initia''1
vacancies n, o, as a function of —ln(X), where X =~n„o//cp.
—1n(X) is linearly related to T

FIG. 5. Difference in interstitial-vacancy recombination en-
ergy E&, and the self-interstitial diffusion energy ED, as a func-
tion of the possible annealed vacancy fraction Yz, for curve A
in Fig. 2. On the same graph the average least-squares deviation

found for each value of Y„ is also shown, as well as theav

slope of the latter curve. The corresponding values for b [see
Eq. (32)] can also be seen.
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less than 0.1. Fortunately, the value of AE changes slow-
ly for Yz &0. 1, to Aatten out at =1.3 eV for very small
Yz. One may thus safely assume that the analysis used
places hE somewhere between 2 and 1.3 eV. It was de-
cided to choose Y~ =10 ",which lies halfway between
the two previous values and has the aesthetic appeal that
the minimum value for b is selected (see Fig. 5). From
this choice the corresponding values for AE and b follow
as 1.64 eV and 20.60, respectively. Substituting these
numbers into Eq. (32) and using Eq. (14) lead to

Knvp =8.84 X 10 exp
1.64 eV

kT
(33)

For n„o=7.3X 10' cm (see Table I),

Kp =1.21 X 10 cm
0'p

(34)

No experimental data exist which may be used to
ascertain whether this value for Kp/happ is acceptable.
However, it is pleasing that reasonable-looking values for
bE could be found. From theoretical calculations the en-
ergy needed to create a vacancy in the diamond lattice is
=7 eV. ' One would expect Ez to be of the same order
of magnitude but smaller. According to Clark and Pal-
mer, ' ED =1.3 eV, which renders a reasonably accept-
able value for Ez of approximately 2.9 eV.

It is now possible to use Eq. (33) in conjunction with
Eq. (12) to calculate the change in Y =n„f In„o as a func-
tion of annealing temperature. The behavior is shown in
Fig. 6, which also shows the corresponding experimental
points which were used to derive the curve. As expected,
the relationship is not linear, but the deviation from

linearity is gradual. %'ithin a limited temperature range
it is possible to extract an average "activation" energy.
For example, the tangent (dotted line) at 900'C has a
slope of 1.31 eV.

As already mentioned, the function I [Eq. (28)] should
change faster than (() [Eq. (34)] if the dopant activation ra-
tio Rz decreases with increasing temperature. From the
previous data, the behavior of (() with temperature can be
determined, and the result, over a wide temperature
range, is shown in Fig. 7. The slope of ln(((i) versus in-
verse temperature is highest (=1.62 eV) and fairly con-
stant at lower temperatures. I can only increase faster if
its slope is higher. Accordingly, Ez &1.62 eV, which,
from Eq. (29) and b,E =1.64, gives b,Ed (0.02 eV. It is
thus possible that AEd may even be negative, in which
case EDd )Egd.

The ultimate next step would be to determine the cor-
responding values AEd and Kpd /gpd for the boron-
implanted interstitials. For the boron-doped layers, im-
planted to the doses shown in Table I and annealed to
different temperatures, the change is resistance as a func-
tion of inverse temperature is shown in Fig. 8." Except
for the layer annealed at 1100'C, which shows a linear
portion with an activation energy of =0.37 eV, as ex-
pected for hole conduction in the valence band, all the
other layers have changing slopes indicative of variable-
range-hopping conduction. In the latter cases, one may
make the reasonable assumption that the density of hop-
ping centers is proportional to the density of uncompen-
sated boron acceptors. In each case the number of boron
acceptors nz per cm follows as

) 0- 1.2

0
C C
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]0-1.4

) 0-1.6

0 v-)
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0.92
I I I [ I

0.76 0.88
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0.9 1.3 1.7
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FIG. 6. Annealed vacancy fraction 7 =n„f /n„o, as a function
of inverse annealing temperature for AE=E~ —ED =1.64 eV.
Except for a slight curvature, the relationship is nearly linear
and gives a slope of = l.3 eV at 900'C.

Flax. 7. Parameter ((), defined in Eq. (24), as a function of in-
verse temperature. For the number of activated boron atoms to
decrease with increasing annealing temperature, I, defined in
Eqs. (23) and (28), must increase faster with temperature than ((.
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n~ =Rondo, (35)

where R ~ is the activation ratio from Eq. (27) and ndo the
implanted boron-ion dose, which is 1.75 X 10' cm ac-
cording to Table I. In turn, the number of donors nD per
cm follows as

nD =n,&/h, (36)

Kll vo
A (T), (37)

where

where it is again assumed that all the uncombined vacan-
cies n„& take part to form vacloids, each consisting out of
an average of h vacancies. However, to use n„—nD to
derive values for the appropriate boron constants is ex-
tremely difficult. To do this a model is needed which ac-
curately describes the diffusion and agglomeration of the
uncombined vacancies. From a previous analysis it was
deduced that the average number of vacancies, h, per va-
cloid depends on the annealing cycle employed. The
lower the initial annealing temperature, the larger h

seemed to be. Thus, for each of the curves shown in Fig.
8, a different value of h is expected, and it is not known,
as already mentioned, how to estimate these quantities.
In fact, much more research is needed on this aspect of
vacancy diffusion and agglomeration as well as the elec-
tronic behavior of these entities. For instance, in the pre-
liminary analysis it was assumed that a vacloid can only
donate one electron. It may not be the case, and as long
as such information is unknown, it will be difficult to esti-
mate the true number of donors which form, during a
speci6c annealing cycle, out of the residual radiation
damage.

In the present situation, one can, at least, attempt to
estimate some of the quantities involved to determine
whether the model may be considered as realistic. The
minimum resistivity measured for the boron-doped layers
shown in Fig. 2 provides a rough guide. As already rnen-
tioned, the parabola was fitted to the data using only the
layers annealed at the four lowest temperatures. In the
case of the layer annealed at 1100 C, conduction oc-
curred, at least partly, by holes in the valence band,
which owing to their higher mobility, should cause a
lower resistance to be measured. The other layers relate
to variable-range-hopping conduction, and the resis-
tances increase with a decrease in the uncompensated ac-
ceptor density. Thus by parabolic extrapolation the an-
nealing temperatures at which the latter quantity is small
enough to be neglected may be roughly approximated.
The effective "sheet resistance, " measured on the same
diamonds in their virgin state after applying the same
type of contacts, was in the order of 10' 0/ . From the
parabola this resistance is expected for anneals at either
845 or 1130'C. It was thus assumed that at these tem-
peratures n~ and nD from Eqs. (35) and (36) can be
equated. Knowing the annealing temperatures, one can
solve, in each case, for an„o/qr [using Eq. (33)], then for
n„&ln„o [Eq. (12)], and for P [Eq. (24)]. From Eqs. (28)
and (29), I, at temperature T, may be written as

A (T)= EEd
P (38)

A
&
=300.14+851~ 13'

&
(39)

at 1130 C,

h2 =19.40+104.73Aq . (40)

If one looks at the equation for A (T) and compares
the preexponential factor to the equivalent one for the
self-interstitials, derived above [i.e., the inverse of the
preexponential factor in Eq. (33)], one would expect it to
be less than unity. Furthermore, the conclusion has been
reached that AEd is small or even negative. A, and A2
should thus be positive quantities having values between
unity and zero. From this reasoning it follows that
300&h& &1150 and 20&h2 &125. According to a previ-
ous analysis, using Fermi-Dirac statistics, it was con-
cluded that the average number of vacancies per vacloid,
for similarly ion-damaged layers, which were subjected to
initial anneals at 500 and 1200 C, was 2410 and 104, re-
spectively. In comparison, the values for h

&
and h2 com-

pare favorably, even for A
&

and A2 larger than unity.

IV. DISCUSSION

Although the present, scarce availability of experimen-
tal data makes it impossible to derive values for all the
constants involved in this theoretical model, the values
estimated, in terms of the present knowledge, seem
reasonable and correlate well with each other, as well as
with previous calculations. This is quite remarkable in
view of the approximations which were made when the
model was applied to the existing data. In effect, the fur-
ther assumption was also made that the diamonds heated
instantaneously to the first annealing temperature. Time
is required to reach these temperatures, and quite a large
amount of interstitial diffusion may have occurred while
the implanted surface layer heated up. Nevertheless, a
basic framework has been established which provides new
insights and suggests numerous new routes for experi-
mental investigation.

Probably the most interesting aspect of the model is
the assumption that two activation energies are involved
for each interstitial-vacancy combination reaction, name-
ly, the diffusion energy and actual combination energy.
Usually, the analysis for point-defect interactions in
solids is done solely in terms of diffusion activation. '

For example, in diamond, Palmer' and Clark and Pal-
rner' applied the latter logic to derive an activation ener-

gy of 1.3 eV for self-interstitial diffusion in diamond. A
separate activation energy for combination was not con-
sidered. Their analysis was based on the removal of the

Accordingly, the donor-acceptor equivalence at the
temperatures of 845 and 1130'C gives the following equa-
tions, where A ( T) is indicated by A, and A 2 and the va-

cancies per vacloid by h, and h 2, respectively:

at 845'C,
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is, most probably, fortuitous, it is interesting that the
effective activation energy, derived from this curve, is, to
all purposes, the same as they have found. The probabili-
ty thus exists that the 1.3 eV, reported by Clark and Pal-
mer, may not refer to the actual activation energy of in-
terstitial diffusion, but rather to the difference in the com-
bination and diffusion energies.

Finally, it should be noted that the model makes physi-
cal sense. Two interstitial types are involved. For the in-
terstitial with the highest activation energy, the rate at
which the process, controlled by this energy, occurs will
increase faster with temperature than for the interstitial
with the corresponding lower energy. Thus, if the self-
interstitial has a higher vacancy-combination energy than
the boron interstitial, it will fill vacancies faster at higher
temperatures than the boron can. If, at the same time,
the boron interstitials have a larger activation energy for
diffusion, the rate at which they can escape at higher
temperatures, from the ion-damaged layer, will be greater
than for the self-interstitials.1.5

I

2.0
I

2.5 3.0

EMPERATURE (10
FIG. 8. Sheet resistance as a function of inverse temperature

for boron-doped layers generated after annealing at different ini-
tial temperatures. The layers were first coimplanted, at liquid
nitrogen temperature, to the doses shown in Table I. Except for
the layer annealed at 1100'C, which showed a region of activat-
ed electrical conduction at 0.37 eV, the other layers could be de-
scribed in terms of variable-range-hopping conduction (from
Ref. 11).

GR1 optical absorption center, which is currently accept-
ed as a fingerprint of the vacancy in diamond. In other
words, the decrease in vacancy concentration with tem-
perature should, according to the present model, have
followed the relationship shown in Fig. 8. Although this

V. CONCLUSION

In an attempt to understand the point-defect interac-
tions which occur when annealing diamond after ion im-
plantation at low target temperatures, a model has been
developed based on reaction-rate theory. For each
interstitial-vacancy interaction, two activation energies
were considered, namely, the diffusion energy and com-
bination energy. A comparison of the equations with ex-
isting data gives consistent results and also describes how
the self-interstitials and dopant interstitials compete with
each other to fill vacancies. In particular, the observed
decrease in boron acceptor activation compared to the
improvement in self-interstitial —vacancy combination,
when increasing the annealing temperature, can be satis-
factorily explained.
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