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Spectral function of a hole in the t J-model
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We give numerical solutions, on finite but large-size square lattices, of the equation for the single-

hole Green's function obtained by the self-consistent approach of Schmitt-Rink et al. and Kane et al.
The spectral function of the hole in a quantum antiferromagnet shows that most features describing
the hole motion are in close agreement with the results of the exact diagonalization on the 4 lattice
in the region of J/t ( 0.2. Our results obtained on suKciently large-size lattices suggest that certain
important features of the spectral function survive in the thermodynamic limit while others change
due to finite-size effects. We find that the leading nonzero vertex correction is given by a two-loop
diagram, which has a small contribution.

It has been suggested that the basic physics of the
copper oxide planes of high-temperature superconductors
may be described by a two-dimensional (2D) single-band
Hubbard model. In the strong-coupling limit and at half
filling this model reduces to the spin-2 antiferromagnetic
Heisenberg model. The eAect of doping is to remove elec-
trons thereby producing mobile holes in the Cuoq planes.
For small doping, the motion of holes in a Heisenberg an-
tiferromagnet can be described by the following model:

Hg g
———t ) (ct~ci + H.c.) + J ) S; Si, (I)

(i,j},o (' 2}

where c; ~ is a hole creation operator and t the electron
hopping matrix element. The strong on-site Coulomb
repulsion is taken into account by restricting the ac-
tion of the Hamiltonian operator in a subspace of the
Hilbert space having states with singly occupied sites.
The Hamiltonian (I), now known as the "t Jmodel, "-
has received significant attention by various authors be-
cause it can be derived from more realistic models that
account for the detailed chemical structure of the copper
oxide planes. ~ It combines an antiferromagnetic exchange
known to account for many of the magnetic properties
of the undoped insulating cuprous oxides3 that become
superconductors upon doping and a hopping matrix ele-
ment to describe hole conductivity.

Many attempts have been made to study the 2D t-
J model in the presence of a single hole, using both
analytical and numerical techniques. Green's-function
techniques, variational approaches, and exact diag-
onalization studies as well as other studies ~ have
provided useful information about certain features of the
single-hole dispersion relation and the spectral function.

In this paper we present numerical solutions for the
Dyson's equation of a single-hole Green's function in
the t-J model on a square lattice using the approach of
Schmitt-Rink et al.4 and Kane et al. 5 We compare the
hole spectral function with the exact results obtained on
a 42 lattice by Dagotto et al.9 and find that they are in

where ht is a spinless fermion operator that creates holes

and 6, is a hard-core boson operator. We define h; = c,.
&

t.
and bt = S,. on the t' sublattice and h; = ct and bI = S+
on the f sublattice. In the linear spin-wave approxima-
tion one keeps terms only up to quadratic in the hard-
core boson operators in both the Heisenberg and hopping
terms of Eq. (1) and diagonalizes the J term using the
standard approach of spin-wave theory for antiferromag-
nets, namely by means of a Bogoliubov transformation.
In this approximation the term (2) couples the holes to
the spin waves as

IIt —tz N ) hkhk q[ Qq(uqpk q + vq Tk)
k, g

+0! (vq'yk q + uqfk)]+ H.c.,

(3)

where N is the total number of sites and

2)—1/2 + I]l/2/~2 (4)

very close agreement in the small- J region. The results
on larger-size lattices confirm the existence of string exci-
tations above the quasiparticle peak and suggest that the
pseudogap, which exists on a 42 lattice, may be due to
the finite-size eKects. Furthermore, we find that the one-
loop diagram of vertex correction is zero so that the lead-
ing nonzero vertex correction to the hole Green's function
is given by a two-loop diagram that has a small contri-
bution. Our numerical results on the hole spectrum have
been obtained without the additional dominant-pole ap-
proximation used by Kane e4 al. , therefore this work pro-
vides complementary information based on the method
developed in Refs. 4 and 5.

Following the work of Schmitt-Rink et a/. , we write the
hopping Hamiltonian as

H( —t ) [(I—btb, )htbth~+hthib;(I —btb))]+H. c,
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FIG. 1. A(k, u) with k = (s/2, ir/2) calculated on a 4 lattice for typical values of J using e = 0.1. The dotted lines
correspond to those shown in Fig. 5 of the paper by Dagotto et al. (Ref. 9) The spectral function is normalized according to
our definition of A(k, u). Note that the agreement is good for small values of J, while for large J the locations of the peaks
are at significantly difFerent energies.

» = -sgn(V~)I(I —~k) "' —I)' '/~2

and yk = Q&
e'"' /z, and z is the number of the nearest

neighbors. The o, 's are spin-wave operators related to the
6's via the Bogoliubov transformation bk ——ugng+vkn

with dispersion Qz ——JzS 1 —y2.

In the limit J && t, using a self-consistent perturbation
approach where only noncrossing diagrams are summed,
one obtains the following expression for the hole propa-
gator:

(6)

where

Equation (6) has been numerically solved in one-
dimension (1D) by Schmitt-Rink et a(.4 The 2D case has
been extensively studied analytically by Kane et a/. in
the various limits. They used the so-called dominant-pole
approximation, which assumes that the hole spectrum is
incoherent above the quasiparticle peak. In this paper,
we give the numerical solutions obtained by iterating Eq.
(6) on finite clusters of size N = I x I, starting from

We have assumed that the output of the nth iter-
ation G~ "&(k,cu) has both real and imaginary parts
G~"&(k, ) = G" (k, )+ 'G" (k, ), h G" (k, )

and GI" (k, u) are the results of the nth iterations of
coupled equations derived from Eq. (6). The spectral
function A(k, u) = —(I/z )Gl~ I (k, cu) is obtained after
the convergence for a given lattice size and given value
of e is achieved.

First, we would like to compare our results to those ob-
tained by means of exact diagonalization on the 4 size
lattice for the single-hole case. We set t = 1. In Fig. 1,
we compare our results (the solid lines) of A(k, ~) calcu-
lated on a 4~ lattice for typical values of J with Fig. 5
of the paper by Dagotto et al. s (the dotted lines) using
the same value of e. The agreement is good for small
values of J, while for large values of J the locations of
the peaks are at significantly different energies. Vfe also
calculate the energies of the lowest-energy peaks on the
4~ lattice for different values of J's and k's. We find that
the states k and k —(z', z') are always degenerate in our
calculation, which is not true in the exact diagonaliza-
tion study. For the 4~ lattice, the hole ground state is
a degenerate state with momenta k = (z /2, z /2), (z, 0),
and (O, z). The same degeneracy also exists in the ex-
act hole ground state. On the other hand, the minimum
of the hole band in the present method corresponds to
k = (z/2, 7t/2) for the sizes of lattices larger than 42.
The energy band has very similar features to those found
by other calculations, namely, an anisotropic effective
mass with a large value in the direction (ir, 0) to (0, z)
of the Brillouin zone and a small mass in the orthogonal
direction.

In Table I, we compare the energies and the residues
of the lowest-energy peaks for different J's with exact re-
sults. We also give the results on a 16 lattice where
finite-size effects are negligible. The quasiparticle en-



2416 ZHIPING LIU AND EFSTRATIOS MANOUSAKIS

TABLE I. The energy at k = (a/2, x/2) and the residue of the quasipartic1e peak on a 4
lattice are compared to the results obtained by exact diagonalization (numbers in the parentheses)
to test the range of validity of the present method. We also give the results on a 16 lattice where
finite-size eÃects are negligible. The value of e = 0.1 has been used.

0.10
0.20
0.30
0.40
0.55
0.70
1.00

E (4x4)
—2.640(—2.643)
—2.388(—2.298)
—2.208(—1.997)
—2.058(—1.722)
—1.872(—1.344)
—1.712(—0.993)
—1.448 (—0.345)

E (16x16)
—2.778
—2.544
—2.364
—2.214
—2.022
—1.860
—1.590

u (4x4)
0.230(0.20)
0.296(0.28)
0.362(0.35)
0.414(0.40)
0.485(0.46)
0.543(0.51)
0.642(0.59)

a (16xl6)
0.247
0.277
0.322
0.367
0.427
0.477
0.575

ergy at k = (vr/2, 7r/2) can be fit with a power law as
—3.04+ 1.92J on a 4 lattice, and —3.20+ 1.936J .

on a 16~ lattice for the region of 0.1 & J & 0.4.
The energy deviates from the exact data on a 4~ lat-
tice for the values of J greater than 0.2 whereas the
residues from the two calculations remain close. The
residues have been calculated in our approach using
ak = 1/[1 —(8/0~)Re Z], where the real part of the
self-energy ReE is evaluated at ~k, which is the posi-
tion of the quasiparticle peak. The residue of the pole
at k = (w/2, n/2) can be fit to a form ag J (for
0 ( J/t ( 1) which is in very good agreement with the
results of Dagotto et al.

Having shown that this method gives results in good
agreement with the exact ones for the 4 lattice in the
small-J region, we now calculate A(k, u) for larger-size
lattices unaccessible to exact diagonalizations. One needs
to take the limit N ~ oo first and then the limit ~ ~ 0;
thus, we choose a value of e small compared to both phys-
ical scales in the model, i.e. , e && J and e && t, but larger
than the resolution A~ = 0.006, and we change the size
of the system until we remove the finite-size efFects. In
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Fig. 2(a)—2(d) we show A(k, u) at k = (x/2, n/2) for
J = 0.1 obtained on 4, 8, 16, and 32 lattices, re-
spectively. We have selected a small value of e = 0.01,
which is smaller by at least an order of magnitude than
both J and 4. Note that only states close to the low-
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FIG. 2. A(k, u) with k = (vr/2, s/2) for j = 0.1 and
r = 0.01. The results are obtained on 4, 8, 16, and 32
lat tices.

FIG. 3. (a) A(k, ~) with k = (x/2, s./2), e = Z~ = 0.004,
and J = 0.01. The dotted and solid lines denote the results
on 4 and 16 lattices, respectively. (b) The leading vertex
correction is zero. The wavy hne denotes a spin-wave propa-
gator while the solid line denotes the hole propagator. (c) The
leading nonzero vertex correction, which involves two loops.
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est peak, which is the strongest (and corresponds to the
quasiparticle excitation), are sensitive to the size of the
lattice, for lattices larger than 8 . We find that there is a
series of peaks above the lowest-energy peak whose inten-
sities decrease with increasing energy. These peaks are
not due to finite-size effects, they do not change by de-
creasing or increasing e by an order of magnitude. These
peaks were also found in the exact calculation on the 4
lattice by Dagotto et al. They found that the J depen-
dence of the positions of the second-lowest-energy peak is
given by —3.13+5.36J . Our calculation for the same
size lattice gives —2.75+ 5.49J,while on a 16 lattice
the peak is given by —3.266+ 5.7S4J in the region of
0.1 & J & 0.4. We believe that these peaks correspond
to the hole excitations moving in an approximate linear
potential imposed by the antiferromagnetically ordered
background as predicted by Shraiman and Siggia for the
t-J, model, where these excitations have no width while
in the t Jmodel -they acquire width due to spin fluctua-
tions. These string states need to be taken into account
in the definition of the quasihole state in order to obtain
an accurate description of quasiparticle operators.

It is worthwhile to mention that the pseudogap located
for the values of u between 0 and 2 in Fig. 1(c) and
the following positive frequency peaks found in the exact
diagonalization also appear in our calculation for a 4
lattice (see the solid line). However, we believe that these
features are due to the spurious finite-size effects, because
they do not show up in the larger-size lattices, as shown
in Fig. 2(d). The spectral function in the small-J limit
is shown in Fig. 3(a) for 4z and 16z lattices. In this
limit the time scale for spin fIuctuations is much larger
than that for hole hopping, so the width of the peaks
that correspond to stringlike excitations is very small.
Again, the pseudogap that appeared on the 4 lattice

disappears on the 16~ lattice. The first pole for the 16
lattice is located at uo ——3.18, which is close to the
result obtained by setting J = 0 in the form —3.17+
2.83J, which was found by Dagotto et al.

The vertex correction diagrams containing the one
shown in Fig. 3(b) do not contribute to the Green's func-
tion. This is so because f(k, q) changes sign under the
transformation k ~ k + (x, n) or q ~ q+ (n, z). Thus
the leading nonzero vertex correction is shown in Fig.
3(c) and it involves two loops. Next, we give a crude
argument which justifies the apparent success of this ap-
proximation. The dressed Green's function is of order
1/t (as shown by Kane et al. ,

s the residue of the quasi-
particle peak is of order J/t while the bandwidth of the
quasiparticle state is of order J) and the vertices are of
order t. Since the number of additional vertices and the
number of internal hole Green's functions are the same,
this diagram at first sight is of order 1. If we examine the
diagram more closely, we find that each loop contributes
1/z, z is the number of nearest neighbors, therefore the
order of this two-loop diagram is 1/z2. Thus, we expect
the vertex corrections to give a small contribution; this
explains the remarkable agreement with the exact results
at small J/t. At large J/t, however, the linearization of
the original Hamiltonian is no longer a good approxima-
tion, in particular the hopping part cannot be correctly
described by (3).

ltd'ote added in proof. After this manuscript was sub-
mitted, a paper by Marsiglio et aL appeared where a
similar calculation has been performed.
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