
PHYSICAL REVIEW 8 VOLUME 44, NUMBER 5 1 AUGUST 1991-I

Two-dimensional spin- — Heisenberg antiferromagnet at finite temperature2
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We analyzed the high-temperature series of the two-dimensional spin-2 Heisenberg antiferromag-
net using a variant of the Pade approximant method. Our analysis agrees very well with the Monte
Carlo simulation result. Specifically, the agreement is very good for the internal energy per spin at
T & 0.3J, for the specific heat and for the uniform susceptibility at T ) 0.5J on a square lattice.
We also analyzed the internal-energy series on a triangular lattice. The ground-state energy per spin
at zero temperature is found to be Es/N = —0.524, which is in good agreement with the values
obtained by simulations and spin-wave theory.

Since the discovery of high-T, superconductors, the
two-dimensional (2D) Heisenberg antiferromagnet has
been studied extensively. To calculate the thermody-
namic properties such as the internal energy E(T), the
specific heat C„(T), and the uniform susceptibility y(T),
one uses methods such as spin-wave theory, quantum
Monte Carlo simulation, and high-temperature series ex-
pansion. At very low temperature, spin-wave theory2
works very well. In the intermediate-temperature regime,
one uses quantum Monte Carlo simulation. The recent
quantum Monte Carlo simulationss were done in the tem-
perature range from T = 2.5J to T = 0.257 but the
simulation is very time consuming at low temperature

I

due to thermalization problems. The high-temperature
series expansion, 4 unfortunately, converges only at high
temperature since the expansion parameter is J/T. So
this method is not useful unless we have a way of extrap-
olating the series to the low-temperature regime. In this
paper, we apply a variant of the Pade approximant
to analyze the existing series. 4 Our analysis of the low-
temperature behavior agrees very well with Monte Carlo
simulation. 3

The series for the 2D spin- z Heisenberg antiferromag-
net was calculated 20 years ago. The high-temperature
series on a square lattice for E(T) up to ninth order,

E/N = —0.5J( 1.5z+ 0.75z —0.875z —1.5625z + 0.406 25z + 2.705 208z

+0.713 764 9z' —4.179 204z' —3.315 586z'),

where z = j/(2T). For C (T) up to tenth order,

C = 1.5z (1+z —1.75z —4.16z + 1.35416z + 10.820833z
+3.330 902 3z —22.289 087z —19.893 514z ). (2)

For y(T) up to 11th order,

y = 0.5z( 1 —2z+ 2z —1.3z + 1.083z —1.183z + 0.5097222zs
+0.321 825 4z + 0.407 390 9z —1.067 28z —0.692 818 8z ). (3)

In order to extrapolate to the low-temperature limit,
we take the derivative of E with respect to z and then
make the Pade approximant7 of dE(z)/dz so that we
have

M

&~(z) = ) f z". (6)

dE(z) Gtv
cz FM

where

N

Gtv(z) = ) g„z" (5)

After integrating dE(z)/dz we obtain

J/2T G
FM(z)

Using the series coeKcients in Eqs. [1]—[3], we can
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FIG. 1. The internal energy E(T) vs temperature T/J
Here the triangle is the data of Makivi and Ding, the dotted
line is the direct estimate of the high-temperature series, and
the solid line is from our analysis. In the plot, we used the
Pade approximant of [4,4].

easily compute Eq. (7) at a given temperature. In Figs.
1—3, we plot the quantities E(T), C„(T),and y(T) versus
temperature T/J, respectively. For comparison, we also
plot the Monte Carlo simulation resultss and the direct
estimates from Eqs. (1)—(3). We see that the agreement
between our result and that of Monte Carlo simulation
is excellent for internal energy at temperature as low as
T = 0.3J. Below that this method does not apply. This

T/J

FIG. 3. The uniform susceptibility y(T) vs temperature
T/J. Here we used the Pade approximant of [5,5]. Symbols
are as in Fig. 1.

is because the internal energy is a monotonic function of
the temperature so that the point where the Pade ap-
proximant changes sign indicates the breakdown of the
method. For C„(T) and Jt'(T) such a problem does not
exist but unfortunately the agreement is not as good as
for E(T). Here the agreement is good at temperature
down to T = 0.5J. Finally, we analyzed the series for
internal energy on a triangular lattice. The series has
been calculated" up to tenth order,

E//j/ = —1.125J( z —0.5z —1.416z + 1.875z + 2.84583z —7.072916 6z
—4.6937002z + 25.246552z + 0.0900118z ).

In Fig. 4, only E(T) versus T/J and the direct es-
timate of the above equation are plotted since we are
not aware of any other calculation at finite temperature
on the triangular lattice. For the triangular lattice, the
internal energy can be extrapolated down to zero temper-
ature. This is not surprising because usually the series
for the triangular lattice behaves better than that of the
square lattice up to the same order. Our estimate for
the ground-state energy per spin is Ez//i/ = —0.524 or
per bond, E&/Ns ——0.175, which is compared with the

results obtained by other methods: Es//j/s ———0.1789
obtaineds by the variational method for small lattices;
Es/Ns ———0.183 obtained from exact diagonalization
of small clusters; and Es//i/s ———0.181 obtained from a
general spin-wave theory. ~ This method has also been
usedii in analyzing the series of thermodynamic prop-
erties of the 2D Heisenberg antiferromagnet on a square
lattice generated by the finite-size expansion method. z

In this case, the series suAers a similar divergence prob-
lem at low temperature by direct estimate. And this
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FIG. 2. The specific heat C„(T) vs temperature T/J.
Here we used the Pade approximant of [4,4]. Symbols are
as lI1 Fig. l.

FIG. 4. The internal energy E(T) vs temperature T/ J on
a triangular lattice. Here, we used the Pade approximant of
[2,6]. Symbols are as in Fig. 1.
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method works very well. In view of our result the high-
temperature series of higher order is clearly desired.

In summary, we have applied a variant of the Pade
approximant to analyze the high-temperature series of
the 20 spin-& Heisenberg antiferromagnet. Our results
agree very well with Monte Carlo simulation results.
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