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Trimodal random-field Ising systems in a transverse field
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The trimodal random-field Ising model with the presence of a transverse field is investigated by intro-
ducing a parameter p to simulate the fraction of spins not exposed to the external longitudinal magnetic
field. Phase diagrams are obtained for different cases, and conditions for the occurrence of tricritical and
reentrant phenomena are found. The competing effects on phase transitions due to the magnetic ran-
domness and quantum fluctuations are also discussed.

I. INTRODUCTION

The random-field Ising model (RFIM) has been a sub-
ject of extensive investigation in recent years' because
it helps simulate many interesting but complicated prob-
lems. A dilute uniaxial two-sublattice antiferromagnet in
a uniform magnetic field fits this model in that random
local fields couple linearly to the antiferromagnetic order
parameter. It can also be used to describe such process-
es as the phase separation of a two-component fluid mix-
ture in porous material or gelatine and the solution of hy-
drogen in metallic alloys.

Of more interest is the random-field effect on the struc-
ture of the phase diagram. The phase diagram may ex-
hibit a tricritical point in the mean-field approximation
(MFA). Since the correlation between spins is completely
ignored in the MFA, it is not possible to discuss the
dependence of the phase diagram on local structures.
Various methods of approximation have been proposed
to improve the results of the MFA in this model. ' A
pair approximation which takes into account the local
structure of the interaction pattern of the underlying sys-
tem has been discussed within the RFIM, and phase dia-
grams are obtained for various coordination numbers.

The bimodal random-field Ising spin system in a trans-
verse field has recently been discussed. A method in-
volving both the pair approximation and the discrete
path-integral representation' " (DPIR) has also been
developed to treat this complicated problem. ' Phase di-
agrams have been investigated, and conditions for the ap-
pearance of tricritical and reentrant phenomena have
been examined.

As the form of the random-field distribution plays an
important role in the determination of the order of phase
transitions, we consider in this report the trimodal RFIM
in a transverse field. Since the trimodal distribution
simulates a system in which a fraction p of the spins are
not exposed to the external longitudinal field, it reduces
the magnetic randomness in the system. The transverse

field, on the other hand, gives rise to possible spin-flip
transitions and hence works against the ordering. Our
aim is to investigate the competing efFects on the phase
diagram from the magnetic randomness and the quantum
fluctuations due to the transverse field.

II. THEORY

For an Ising spin system in a transverse field with ran-
dom fields h;, the total Hamiltonian is given by

H =Jgo', o.,
' —Qh, cr',. —I go, ,

where 0.; and 0'; are Pauli matrices associated with the
ith site, I represents the uniform transverse field energy,
and the random field is assumed to be a trimodal distribu-
tion of the probability'

P(h;) =p5(h, )+—,'(1 —p)[5(h; —ho)+5(h, +ho)]

with the parameter p measuring the fraction of spins in
the sample not exposed to the longitudinal magnetic field.
The summation in the first term of (1) is taken over every
pair of spins only once.

As discussed in Ref. 12, the problem can be treated in
three steps. The Hamiltonian (1) is first written in the
pair approximation in which the interacting system is re-
placed by a pair of spins in an effective field due to the
spins at all other sites. The next step is to apply the
DPIR in which the efFective pair Hamiltonian is split up
into a reference part of a one-body Hamiltonian plus a
two-body interaction. By expressing the single-spin
effective field in terms of a two-spin effective field, the
third step is to write down a single-spin effective Hamil-
tonian.

The standard procedure then leads to the single-spin
mean free energy

2373 1991 The American Physical Society



BRIEF REPORTS

/3—(f(h,s))i, =zp 1n[2cosh[P(h, &+I' )'~ ]]
2

+ (1—z )p ln 2 cosh P h,~ + I
z —1

+—(1—p )[ln(2 cosh [P[(h0+h,s ) + I ]'~ j )

+in(2cosh[P[( —ho+h, tr) +I ]'~ ] )]
'2

(1 —p) ln 2 cosh P ho+ h, s. +I
2 z —1

1/2 '

'2

+ln 2 cosh ~P —ho+ h, s + I
z —1

1/2

tanh[P(h, +I" )' ]—
)2+ I 2] i j2,

ho+ h,s —ho+h, s.
tanh( (h +h ) +I ' +

[(ho+h, s) +I ]' ' '
[( —ho+h, ) +I ]'

Xtanh[P[( —ho+h s) +I ] ~
] (3)

where z is the coordination number, h, s. is the effective field in the pair approximation, H,z=[z/(z —. 1)]h,s is the
single-spin effective field, and the symbol ( ) h stands for the average over the random-field distribution. When the
average free energy is expanded in terms of h,&, second-order transition lines can be determined from the zero point of
the coefficient of the second-order term in Eq. (3). Thus, when the average free energy in Eq. (3) is expanded into a
power series of h,~, we find

G2
2 2 i/2

6
—tanh(G/t)+(1 —p ) (6&+H&)3~2 r(6&+H2)

tanh[6'+ H'/r ) '~']+ sech [(6 +H /r)'~2] (4)

where we have defined the dimensionless parameters

t =1/PzJ, G=I /zJ, H=ho/zJ .

Phase diagrams can be calculated from Eq. (4), and the
results reduce to those for the case of a bimodal random-
field distribution discussed in Ref. 12 when p =0.

Let us now look at various limiting cases. In the ab-
sence of random fields, the system is described by the spe-
cial case corresponding to @=1. It then follows from (4)
that the second-order phase transition is determined by

I z—t ha(nG/r) =
6 z —1

For T, =0 K, Eq. (6) implies a critical transverse field

I,=(z —1)J .

This is in excellent agreement with the numerical results
obtained from a series expansion for different coordina-
tion numbers. ' '

When the transverse field is absent, the model reduces
to a trimodal RFIM. The second-order phase transition
line follows by setting G =0 in Eq. (4). Thus, we have

(1—p)tanh'(H/r) =1-
2 —1

By expanding the average free energy in Eq. (3), we find
from the fourth-order term in h, z that the tricritical
points are given by

(1—p)[1—tanh (H/t)][1 —3tanh (H/t)]+@=0 . (9)

It is not dificult to show that, in the limit z~~, the
MFA results are recovered as expected.

In general, when the trimodal random fields and the
transverse field are both present, the condition for the ex-
istence of tricritical points can be obtained in the limit
t ~0 in the fo11owing manner. ' We expand the free en-
ergy (3) in terms of the effective field h, tr, and then set the
coeKcients of the second- and fourth-order terms in the
expansion to zero separately. The resulting coupled
equations are

p/Go+(1 —p)GO/(Go+H ) =z/(z —1),
p/6 +(1—p)(60 —4H )/(Go+H )

~ =0 .

(10)

The tricritical point can be determined unambiguously
from Eqs. (10) and (11). We first eliminate H from these
equations and then solve for the critical transverse field,
which can be expressed as a Go(p, z). The tricritical
points can exist when G & Go and disappear when
G + Go. The function Go is calculated numerically for
some particular cases, and the results are plotted in Fig.



BRIP.F REPORTS

(a)
0.8—

0.7-

0.6-
0

05-
p.25 p.30 p.35 0.40

b)

0.45

0.4-

0
0 0.05

I

0.l0
I

o. i5 0.20
P

6ed transverse f'e&de critical reduce
(a)

FIG .
for ifferent coor '

. 1 Variation of t e
d' ation numbers.Wit h the parameter p for i er

Z=4, (b) Z=6, (c) z=

shows that the phaseumerical study s ow
eraturesd f 11

indicate
transi i (' h

1 h 2s

ects duet 6'e ts
that

er t,','
g

b h
'

dto the transverse field or y
random- e-fi ld distribution.

III. PHASE DIAGRAMS
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Eq. (4) for various cases. Results are presented in three
groups corresponding to the transverse fields G=0.45,
0.6, and 0.72. Each group contains three cases with the
parameter p chosen to be 0.05, 0.1, and 0.25. In every
case, calculations are carried out for the simple-cubic
structure, hexagon close-packed structure, and mean-field
approximation, with the corresponding coordination
number z =6, 12 and ~, respectively.

It is observed from Figs. 2(a) and 2(b) that the tricriti-
cal point exists in every case considered because p (0.22
and G & Gp are both satisfied. There is, however, no tri-
critical point for either of the three cases in Fig. 2(c) in
which p=0.25. On the other hand, the phase transitions
exhibit reentry within small ranges of the H value as tri-
critical points disappear, indicating possible competition
between randomness and quantum Auctuations.

Figure 3 shows the phase diagrams for G=6. Accord-
ing to curve b of Fig. 1, 6 )Gp over the whole range of p
for z=6 for which no tricritica1 point can exist. This is
indeed the case, and can be clearly seen from the figure.
Curve 1 for all the three p values calculated does not ex-
hibit any tricritical point, but the reentrant phenomenon
occurs within a certain range of H, which decreases with
increasing p. When @=0.25, as in Fig. 3(c), no more
reentry can be observed.

In Fig. 4, we plot the phase diagrams for 6=0.72,
which is larger than Gp for any z according to Fig. 1.
Thus, one can only see reentrant phenomena when the
parameter p is small. In Fig. 4(c) in which @=0.25, the
second-order phase transition hnes for all three z values
extend through the whole range of H.

In conclusion, we have calculated phase diagrams for
the trimodal random-field Ising model in a transverse
fie1d. The third peak introduced in addition to the bimo-
dal distribution of random field simulates cases in which
the distribution of nonmagnetic-like impurities or spins
are not exposed. to the longitudinal magnetic field. Its
presence reduces the randomness of the system and com-
petes with the quantum fluctuations due to the transverse
field. We have shown the existence of the critical trans-
verse field Gp above which the tricritical point can no
longer occur. For the parameter p, we find that the sys-
tem may exhibit tricritical transition only when p (0.22,
instead of 0.25 predicted by the MFA.

ACKNOWI. KDGMKNTS

This research was supported in part by the National
Natural Science Foundation of China and in part by the
U.S. 0%ce of Naval Research.

'On leave of absence from the Department of Physics, Suzhou
University, Suzhou 215006, People's Republic of China.

Y. Immry, J. Stat. Phys. 34, 841 (1984).
2G. Grinstein, J. Appl. Phys. 55, 2371 (1984).
T. Natterman and J. Villan, Phase Transition 11, 5 (1988}.

4A. R. King, V. Jaccarino, D. P. Belanger, and S. M. Rezende,
Phys. Rev. B 32, 503 (1985).

5R. Bruinsma, ¹nlinearity in Condensed Matter, edited by A.
R. Bishop et al. (Springer, Berlin, 1987), p. 291K

R. Bruinsma, Phys. Rev. 8 30, 289 (1984).
7S. Galam and S. K. Salinas, J. Phys. C 18, L439 (1985).

8T. Yokota, Phys. Rev. B 38, 11 669 (1988).
9T. Yokota and Y. Sugiyama, Phys. Rev. B 37, 5657 (1988).

R. M. Stratt, Phys. Rev. B 33, 1921 (1986).
' ~Z.-y. Li and g. Jiang, Phys. Lett. A 138, 247 (1989}.

Y.-q. Ma and Z.-y. Li, Phys. Rev. 8 41, 11 392 (1990).
D. C. Mattis, Phys. Rev. Lett. 55, 3009 (1985).

i4R. J. Elliott and C. Wood, J. Phys. C 4, 2359 (1971).
~5J. Oitmaa and M. Pischke, Physica 8 86-88, 577 (1977).
~ See, for example, K. Huang, Statistical Mechanics, 2nd ed.

(Wiley, New York, 1987), p. 428.


