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Exact phase diagram of a generalized Kagome Ising lattice:
Reentrance and disorder lines
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We solve exactly a generalized Kagome Ising lattice with three kinds of interactions by transforming
the system into a 16-vertex model that satisfies the free-fermion condition. The phase diagram shows
several interesting phenomena due to the frustration generated by the competing interactions: successive
transitions with reentrance, partial disorder, and disorder lines. The reentrance region in the space of in-

teraction parameters is found to be infinite, unlike previous exactly solved models. Two disorder solu-

tions with interesting behavior are found.

The reentrance phenomenon has been experimentaHy
observed in various magnetic systems including spin
glasses. ' The origin of the reentrance is the frustration
generated by the competition between interactions. In
general, the reentrance is so called when there exists a
short-range-ordered phase below a long-range-ordered
phase on the temperature scale. A we11-known example
is the spin-glass phase found below the ferromagnetic
phase when disorder is introduced into a ferromagneti. c
(or antiferromagnetic) system. ' In order to analyze the
frustration effects, we are interested here in frustrated Is-
ing spin systems that are periodically defined. These sys-
tems without disorder have their own interest in statisti-
ca1 mechanics because they are subject to exact treat-
ment and may have applications in different areas of
physics wherever it is possible to map real systems into
Ising spin language. For a recent review, the reader is re-
ferred to Ref. 3. To date, very few frustrated systems
showing the reentrance phenomenon have been exactly
solved. A few well-known systems include the centered
square (Union Jack) lattice and its generalized ver-
sions, ' the Kagome lattice, an anisotropic centered
honeycomb system, complicated cluster models, and a
three-dimensional case. ' In general, the phase diagram
shows a rich behavior with paramagnetic reentrance,
coexistence of order and disorder, and disorder line. The
partial disorder is possible when a set of spins are free to
Aip, due to competing interactions. In three dimensions,
a few systems such as the fully frustrated simple-cubic
lattice, "' the stacked triangular antiferromagnet, ' and
a body-centered-cubic (bcc) crystal' also exhibit this
property, although evidence of a reentrance is found only
for the bcc case' and a complicated lattice model. '

In this paper, we study a generalized Kagome lattice
with Ising spins. The model is shown in Fig. 1 with the
following Hamiltonian:

H= —J, g o;ol —J2 go;o~. —J3 g o;o . ,
(~',j) (i,j) (i,j )

where o; (=+I) is an Ising spin occupying the lattice
site i, and the first, second, and third sums run over the
spin pairs connected by diagonal, vertical, and horizontal
bonds, respectively (see Fig. I). When J2 =0 and J, =J3,
one recovers the original nearest-neighbor (NN) Kagome
lattice, ' having no transition at finite temperature. The
effect of J2 in the case J& =J3 has recently been investi-
gated, showing a reentrant phase in a sma11 range of
values of J2.

The phase diagram at temperature T=O is shown in
Fig. 2 in the space (a= Jan/J„P= J3/J, ) for positive J, .
The ground-state (GS) spin configurations are also
displayed. The hatched regions indicate the three partial-
ly disordered phases (I, II, and III) where the central
spins are free. Note that the phase diagram is mirror
symmetric with respect to the change of the sign of J&.
With negative J„it suKces to reverse the central spin in

FIG. 1. A generalized Kagome lattice: diagonal, vertical, and
horizontal bonds denote the interactions J&, J2, and J3, respec-
tively. The sites on the corners are numbered from 1 to 4 for
decimation.
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The 16-vertex model is soluble when the free-fermion
condition is satisfied. ' The explicit expression of the free
energy as a function of interaction parameters K&, K2,
and K3 is lengthy to write down here. We give below
only the explicit expression of the critical surface which
enables us to analyze the reentrance phenomenon. The
critical temperature of the model is given by

cosh(4K, )exp( 2K2+ 2K3 ) +exp( —2K2 —2K 3 )

= 2cosh(2K3 —2K&)+4cosh(2K, ) . (4)

FIG. 2. Phase diagram of the ground state shown in the
plane (a=Jz/J&, f3=J3/J, ). Heavy lines separate different
phases and spin configuration of each phase is indicated {up,
down, and free spins are denoted by +,—,and 0, respectively).
The three kinds of partially disordered phases and the fer-
romagnetic phase are denoted by I, II, III, and F, respectively.

the spin configuration shown in Fig. 2. Furthermore, the
interchange of J2 and J3 leaves the system invariant,
since it is equivalent to a m/2 rotation of the lattice (see
Fig. 1).

Let us consider the effect of the temperature on the
phase diagram shown in Fig. 2. Partial disorder in the
GS is known in some cases to give rise to the reentrance
phenomenon in various systems. " ' Therefore, similar
effects are to be expected in the present system. As it will
be shown below, we find a new and richer behavior of the
phase diagram: in particular, the reentrance region is
found to be extended to infinity, unlike systems previous-
ly studied, ' and for some given set of interactions,
there exist two disorder lines which divide the paramag-
netic phase into regions of different kinds of fluctuations
with a reentrant behavior.

To solve our model, let us denote the central spin in a
lattice cell shown in Fig. 1 by o. and number the other
spins from cr, to o.4. The Boltzmann weight associated to
the elementary cell is given by

Note that Eq. (4) is invariant when changing
E& —+ —E

&
and interchanging Ã2 and K3 as stated ear-

lier. The phase diagram in the three-dimensional space
(KI Kp K3 ) is rather complicated to show. Instead, we
show in the following the phase diagram in the plane
(P=J3/J, , T) for typical values of a=J2/J, . To de-
scribe each case and to follow the evolution of the phase
diagram, let us go in the direction of decreasing o..

(a) a) 0 (Fig. 3). Two critical lines are found with a
paramagnetic reentrance having a usual shape [Fig. 3(a)]
between the partially disordered (PD) phase of type III
(see Fig. 2) and the ferromagnetic (F) phase with an end
point at P= —1. The width of the reentrance region
[ —1,)33I] decreases with decreasing a, from pI =0 for a at
infinity to pI = —1 for a =0 (zero width). Note that, as a
decreases, the PD phase III is depressed and disappears
at a=0, leaving only the I' phase [one critical line, Fig.
3(b)]. The absence of order at zero a for P smaller than—1 results from the fact that, in the GS, this region of
parameters corresponds to a superdegenerate line
separating the two PD phases II and III (see Fig. 2). So,

2.0-

1.0—
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0 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I I I I I

xp [K3 ( Ir Itr 2+ tr 3o 4 ) +K g ( 0 I
0' g+ tr pa 3 )

+Kio (o, +o 2+o 3+o 4)], (2)

—1.5
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—0.5 0.0 g

where K; =J; /kT (I' = 1,2, 3), T being the temperature
and k the Boltzmann constant. The partition function is
written as

z=rrr~
I o I I CI

where the sum is performed over all spin configurations
and the product is taken over all elementary cells.
Periodic boundary conditions are imposed. To obtain the
exact solution, we decimate the central spin of each ele-
mentary cell of the lattice. We then obtain a checker-
board Ising model with multispin interactions. This re-
sulting model is equivalent to a symmetric 16-vertex
model which satisfies the free-fermion condition. '

10-'
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FIG. 3. Phase diagram in the plane (P=J, /J„T) for posi-
tive values of a=J&/J&. (a) +=1, (b) o.=0. Solid lines are criti-
cal lines which separate di6'erent phases: paramagnetic (P), fer-
romagnetic {F), partially disordered phase of type III {III).
Dotted line shows the disorder line. See text for comments.



BRIEF REPORTS 2371

along this line, the disorder contaminates the system for
all T.

As for disorder solutions, for positive a we 6nd, in the
reentrant paramagnetic region, a disorder line with di-
mension reduction' given by

exp(4K3 )

=2 cosh(2K2 )/[cosh(4K, )exp(2K2)+exp( —2K2 )] .

(5)

This is shown by the dotted lines in Fig. 3.
(b) 0)a ) —1. In this range of a, there are three criti-

cal lines. The critical line separating the F and P phases
and the one separating the PD phase I from the P phase
have a common horizontal asymptote as P tends to
infinity. They form a reentrant paramagnetic phase be-
tween the F phase and the PD phase I for positive P be-
tween /32 and infinite p (Figs. 4 and 5). An infinite region
of reentrance like this has never been found before. As a
decreases, p2 tends to zero and the I' phase is contracted.
At n= —1, the I' phase disappears together with the
reentrance [Fig. 6(c)].

In the interval 0& n & —1, the phase diagram possesses
two disorder lines, the first being given by Eq. (5), and the
second by

exp(4K3 ) =2 sinh(2K& ) /[ —cosh(4K I )exp(2K2 )

0 I I I I I I I I I l I I I I I I I I I
I I I I I

0 1 2 3 (I 4

FIG. 5. The same caption as that of Fig. 4 with a = —0.8.

0&a & —0.5, forming regions of fluctuations of diferent
nature. For —0.5&a& —1, the two disorder lines no
longer cross each other. The one given by (5) has a reen-

trant aspect: in a small region of negative values of P,
one crosses this line three times in the P phase with de-

creasing T. This behavior of the disorder lines which
cannot be seen in the scale of Figs. 4 and 5 is schematical-

ly shown in Figs. 6(a) and 6(b).
(c) a & —1. For a smaller than —1, there are two criti-

cal lines and no reentrance (Fig. 7). Only the disorder
line given by (5) survives with a reentrant aspect: in a
small region of negative values of P, one crosses this line

+exp( —2K2)] . (6)

These two disorder lines are issued from a point near
P= —1 for small negative a; this point tends to zero as a
tends to —1. The disorder line given by Eq. (6) enters the
reentrant region which separates the F phase and the PD
phase I (Fig. 4), and the one given by Eq. (5) tends to
infinity with the asymptote 13=0 as T~~. The most
striking feature is the behavior of these two disorder lines

at low T: they cross each other in the P phase for

P
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FIT+. 4. Phase diagram in the plane (P=J3/J„T) for a nega-
tive value of a=J2/J~ = —0.25. Solid lines are critical lines
which separate different phases: paramagnetic (P), ferromag-
netic (F), partially disordered phases of type I (I and III). Dot-
ted lines show the disorder lines. See text for comments.

FIG. 6. The behavior of the disorder lines (dotted) is
schematically enlarged in the case (a) a = —0.25, (b) a = —0.8,
and (c) a = —1.5. See text for comments.
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FIG. 7. The same caption as

(b) ca= —1.5.
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that of Fig. 4 with (a) o;= —1,

twice in the P phase with decreasing T. This behavior,
being undistinguishable in the scale of Fig. 7, is schemati-
cally enlarged in Fig. 6(c). The multicritical point where
the P, I, and II phases meet is found at f3=0 and T=0.

At this stage, it is interesting to note that, while reen-
trance and disorder lines occur along the horizontal axis
ct = —1 and along the vertical axis P= —I of Fig. 2 when
the temperature is switched on, the most frustrated re-
gion (ct & 0 and P &0) of the GS does not show successive
phase transitions (see Fig. 7, for example). Therefore, the
existence of a reentrance may require a sufficient frustra-
tion, but not overfrustration. Otherwise, the system may
have either a PD phase (Fig. 7) or no order at all [Fig.
3(b)].

The origin of the reentrance phenomenon has been dis-
cussed in previous papers. Let us summarize again
here: The necessary condition for a reentrance to occur
is the existence of a partial disorder in the GS next to an

ordered phase. Starting from a point in the ordered
phase at T=0, when the temperature is switched on, the
entropy will work in favor of the partially disordered
phase at high temperature. This phase is separated from
the low-temperature ordered state by a paramagnetic
reentrant phase which is necessary to keep a second-
order character of the successive transitions. Note that a
partial disorder alone is not su%cient to make a reen-
trance as shown by this model in some regions of parame-
ters and in Ref. 8. Another ingredient which favors a
reentrance may be the anisotropic character of the in-
teractions. For example, the reentrant region is enlarged
by anisotropic interactions of the centered square lattice,
and becomes infinite in the present model. It should be
noted, however, that the occurance of a reentrance may
also require an upper limit of frustration to avoid the dis-
order contamination of the whole system as shown above.

In conclusion, let us emphasize that we have obtained
the exact phase diagram of the Ising model on a general-
ized Kagome lattice. One of the most striking features is
the existence of reentrance in an infinite region of param-
eters. For a given set of interactions in this region, suc-
cessive phase transitions take place on the temperature
scale, with a paramagnetic reentrant phase. Another in-
teresting finding is the occurence of two disorder lines
which divide the paramagnetic phase into regions of
different kinds of Auctuations. Therefore, care should be
taken in analyzing experimental data such as correlation
functions, susceptibility, etc., in the paramagnetic phase.
As a final remark, let us mention that, although the sys-
tem studied here is a statistical physical model, we believe
that the results obtained in this work have qualitative
bearing on real frustrated spin systems, and in view of the
new behavior of disorder lines found here, the model may
have applications in the area of cellular automata.
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