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Invariant molecular-dynamics approach to structural phase transitions
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Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and
suitable to study problems like structural phase transitions are introduced. Because they are invariant
with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with
the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to
now have been done by using Parrinello-Rahman dynamics.

In the molecular-dynamics (MD) simulation method
for statistical mechanics, ' the equations of motion (EM)
for a collection of particles are solved numerically. Be-
cause the number of particles is limited, periodic bound-
ary conditions are used to eliminate unwanted surface
effects. However, this suppresses fluctuations in volume
and shape of the MD cell containing the particles under
consideration. These (unharmonic) fiuctuations are re-
sponsible for numerous phenomena of direct relevance to
condensed matter physics, for instance, structural phase
transitions.

In the past decade we have seen the extension of MD
methods to deal with ensembles other than the traditional
microcanonical, and among these some allow for
changes in the MD cell. The first of these methods was
introduced by Andersen and aimed to simulate fluids sub-
jected to constant pressure. It allows us to obtain
isenthalpic-isobaric ensemble averages by calculating
averages over trajectories of particles evolving according
to the following fictitious Lagrangian:

N yyg .
L=Q ~ g s s, —g gP(r )+ Q —PQ.

i=1 i =1 j&i

In Eq. (1) the particles coordinates r, , i =1, . . . , N,
were replaced by scaled coordinates s; =r,. /Q'~, where
Q is the MD cell volume. The first term (Kl) is the ki-
netic energy (KE) of particles of mass I; measured in a
frame which "breathes" with the cell, the second is the
potential energy (PE) of the interacting particles ex-
pressed in a pair potential form ( UI ), where r;~. = ~r; —rj ~.

The third term has a fictitious mass W and is the KE as-
sociated with volume fiuctuations (KL ), and the last one
represents the PE ( UL ) due to an external pressure P.

A generalization of this idea led Parrinello and Rah-
man (PR) to propose a Lagrangian which has a time-
dependent metric tensor. Let h be the matrix formed by
Ia, b, cj, where a, b, and c, are the time-dependent edges
of the MD cell, with the corresponding time-dependent
metric tensor g =h h. The particles coordinates are then
r; =hs;, where s; are particles positions in lattice coordi-
nates and consist of 3D vectors whose components vary
from 0 to 1. The PR Lagrangian and the corresponding

EM's then are

Ã 8'L= g s; gs; —g gP(r;)+ Tr(h h) PQ, —
i =1 i =1 j &i

~ ~s.=
l (s; —s ) —g gs;,

j+E lj
(3a)

h = (II—P)o,8 (3b)

where cr = IaXb, b Xc, cXaI and II is the symmetrized
stress tensor:

i =1 i =1 j &i
(4)

with v;=hs, . In the limit of pure volume Auctuations,
except for this third term, all the others coincide in both
Lagrangians above.

Despite the fact that this Lagrangian has not been ob-
tained from first principles, many encouraging results
have been obtained in MD simulations of structural
phase transitions. ' ' As a matter of principle, however,
there are some objections one could raise regarding the
KL term. The most obvious is that its nominal value de-
pends on the choice of cell edges. For instance, take a
square lattice and consider volume fluctuations only. If
the cell edges are chosen as a=(L, O), b=(O, L), at a par-
ticular time to, a=(5, 0), b=(0, 5), and EI =8'5 . In
contrast, if they are chosen as a'=a, and b'= a+b, at to,
a=(5,0), b=(5, 5), and EL =

—,
' W5 . In MD simulations

involving many ( —10 ) particles, this KE may be small
and the above objection is likely not to be the most seri-
ous one. There are however further questionable dynami-
cal effects which will be addressed below.

In this Brief Report two new Lagrangians which differ
from the PR's by the choice of the KL term and are in-
variant under modular transformations as described
above are proposed. The first one uses a different scaling
for the particles' coordinates, and the components of the
strain tensor e, instead of those of h, are chosen as
dynamical variables. The second one, besides having all
the properties of the first, coincides with Andersen's La-
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(II—P)(1+e)0
8' (6a)

q;=— y'r, )"
(q; —q) —d 'dq, .

jWi =l ij
(6b)

Equation (6a) reveals that only under special condi-
tions ([II,(1+e) ']=0, at all times) e will remain
symmetrical. In general there will be KE associated with
free rotations of the cell. However, by symmetrizing the
right-hand side of Eq. (6a),"which is equivalent to con-
straining the three antisymmetrical strain components,
this superAuous rotation can be eliminated. Equation
(6a) also indicates that in the absence of thermal fluctua-
tions, in which case the first term on the right-hand side
of Eq. (4) vanishes, the symmetry of the Bravais lattice
will remain unchanged. This happens because initially
e=O and II, as well as e, have the same point symmetry
group of the lattice. In the following steps, e, II, and e'

will again have the same original symmetry. Therefore,
the fictitious dynamics associated with e does not change
the lattice symmetry. The same analysis applied to the
strain resulting from the PR dynamics (e=hh0 ), indi-
cates that the point symmetry group of e, and therefore
the Bravais lattices, should be that of the simulation cell,
which in general is an invariant subgroup of the initial
Bravais lattice's. This symmetry reduction associated
with the noninvariant fictitious dynamics, will be demon-
strated in the examples below. An alternative form for
Eq. (5) is

m. NL= g s;.gs; —g g P(r,")+ Tr(hfoh )
—PQ

i =l i=1 j&i

(7)

with fo
= ( o o o o ), where o.o = j ao Xbo, bo Xco, co X ao] .

In this case the EM's for the particles' coordinates coin-

grangian in the limit of isoshape Auctuations. The dy-
namics that the PR and the new invariant Lagrangians
give rise to are compared under strict conditions and the
superior (more physical) character of the invariant La-
grangians is demonstrated.

The lack of invariance in the PR dynamics refers to its
behavior under a modular transformation, h ~hm, where
m is a constant integer matrix with det( m ) = l. Because
Tr(h h)WTr(m h hm), not only the nominal value of
Ez, but also the forces and trajectories will depend on the
choice of m. Instead if we choose ICr =(8'/2)Tr(e e),
where e is the strain, this problem is avoided because e is
invariant as is the rest of the Lagrangian. The relation-
ship between e and h is h =(I+e)ho, where
ho= jao, bo, co] corresponds to some reference structure,
the initial one for example. The new scaling for the parti-
cles' coordinates then is, r; =(1+e)q; and the new invari-
ant Lagrangian becomes

N
L= g q. dq; —g g $(rJ)+ Tr(ee ) PQ—, (5)

i=1 i=1 j&i

where d =(I+e) (1+e). By applying Lagrange's equa-
tion we obtain the new EM's:

cide with Eqs. (3a) and (6a) turns into

h= (11—P)~f (8)

(9)

with f =(o."o ), e=h h and f' " =df /dh;J.
This is the EM used in the next example, which deals

This form is easier to implement in codes already per-
forming PR dynamics.

In the following examples, the dynamics generated by
Eqs. (2) and (7), as well as by another invariant
modification of Eq. (7) (see below), are compared. The
systems considered consist of lattices which are initially
distorted and allowed to evolve along conservative trajec-
tories. Zero temperature is chosen because thermal Auc-
tuations would cover up the fluctuations addressed here
and disguise the active role played by the noninvariant
fictitious dynamics in breaking the systems' symmetry.
Therefore the simulation of classical statistical systems is
deferred to future work, until the basic aspect of interest
here is unfolded.

First consider an fcc lattice with Ar atoms interacting
through a Lennard-Jones pair potential. The MD cell is
composed of two cubes, each one containing four atoms,
stacked vertically, and placed initially away (11.0ao, ao
being the Bohr radius) from the equilibrium lattice con-
stant (-9.91ao). Then, the system is allowed to move'2

through an ensemble of states along the trajectories gen-
erated by Eqs. (3b) and (8). Figures 1(a) and 1(b) show
the evolution of cell dimensions according to Eqs. (3b)
and (8), respectively. In Fig. 1(a) the ensemble of states
generated has tetragonal symmetry, while in Fig. 1(b) the
cubic symmetry is never reduced, with the vertical cell
edge always twice longer than the horizontal ones. The
point here is to show that fluctuations in the cell shape
generated by Eq. (3b) are determined by the shape of the
simulation cell, which is arbitrary, and not by the stresses
which have the symmetry of the lattice. For instance, if a
trigonal cell is chosen, the system will move through an
ensemble of trigonal structures. Instead if Eq. (8) is used,
a unique motion results, regardless of the simulation cell
shape. As expected in this case, a pure volume Auctua-
tion occurs.

Despite Eq. (7) describing more properly the behavior
of systems with isoshape fluctuations, it does not coincide
with Eq. (1) in the isoshape limit. It is possible however
to modify slightly the third term (Xr ) to obtain the
desired limit while still keeping the invariance property.
This mapping is advantageous since in the isoshape case
the averages over the trajectories correspond to
isenthalpic-isobaric ensemble averages, and also the
virial theorem is obeyed. ' Consider Ei = ( W/
2)Tr(h cr o h ). Recall that the components of h are pro-
portional to Q' and o =Ah '. Then ho. =Q and
Kz -—0, which is the isoshape limit. The EM's for the
particles coordinates obtained from this invariant La-
grangian remain unchanged [Eq. (3a)] while those for the
components of h become
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tious dynamics associated with the lattice should not play
any active role in this regard. By making the Lagrangian
invariant, the arbitrariness of the cell shape and the
"Gctitious" symmetry breaking are eliminated, and con-
straints on the strain tensor, other than symmetrization,
become unnecessary and undesirable. This is a relevant
point in addressing dynamical processes behind recon-
structive structural phase transitions, where distortions
of the cell are unavoidable.

0.0
0.0 250.0 500.0

Step
750.0 1000.0

FIG. 1. Fluctuations in the cell edges lengths of an fcc crys-
tal of Ar initially displaced from the equilibrium lattice constant
(see text). The simulation cell contains two cubes stacked verti-
cally. In (a) Eq. (3b) is used while in (b) Eq. (7). The time step is
dt = 10 fmt sec, m; =39m~ (m~ being the proton mass), and in
(a) 8'=35m~ while in (b) IV=0.0007m~/ao. The cuto6'radius
for the pair interactions is 50.0ao.

6.979

6.948
CQ

6.917

6.886

6.855
7.010

fee

SC'
bcc

(b)
with the dynamical effects caused by the lack of invari-
ance of the PR Lagrangian during a cell relaxation or a
sudden quench. Figure 2(a) shows the contour plot of the
energy surface associated with the set of trigonal Bravais
lattices with one Ar per cell. The structures are charac-
terized by a nearest-neighbor distance d and by the angle
0. The global minimum is located at the fcc structure
(E = —6.566 mRy/atom, d =7.006ao, and 8=60 ).
There is also a local minimum at the bcc (E = —6.282
mRy/atom, d =6.866ao, 8= 109.47') and a saddle point
at the simple cubic (sc) (E = —4.339 mRy/atom,
d =6.858ao, 8=90') along the energy barrier (dashed
line) separating the fcc and the bcc minima. Figure 2(b)
represents the basins of attraction of Bravais lattices after
relaxations by means of "downhill" trajectories' generat-
ed by Eq. (9). These basins faithfully portray the shape of
the total energy surface, with the fcc (bcc or sc) lattice be-
ing the end structure if the starting point is at the left
(right or top) of the energy barrier. The symmetry is not
broken along the invariant trajectories and the basins are
unique regardless of the choice of the simulation cell. In
contrast if the PR dynamics is used, then the basins of at-
traction will depend of the choice of the MD cell. For
example, if the cell edges Ia, b, cI have the same length
and angle between them, Fig. 2(b) still holds, but if they
are chosen differe tlyn, a's [a'=a, b' —b, c'=a+b+cI,
then the original symmetry reduces along the trajectories
and a larger set of end structures is possible [Fig. 2(c)].'

In conclusion, because of the lack of invariance under
modular transformations of the PR Lagrangian, the cell
and particles dynamics it generates depend on the choice
of the simulation cell. This creates questionable dynami-
cal effects related to symmetry breaking. In classical
physical systems, symmetry is broken by internal stresses
caused by thermal fluctuations of the atoms. The ficti-
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FIG. 2. (a) Contour plot of the energy per atom associated
with trigonal lattices characterized by the nearest-neighbor dis-
tance d and angle 0. There is a global minimum at the fcc struc-
ture, a local one at the bcc, and a saddle point at the sc along
the energy barrier (dashed line) separating the fcc and the bcc
minima (see text). The contour lines are separated by 0.2 mRy.
Basins of attraction of the final structures which have initially
been placed in trigonal phase characterized by d and 0 and al-
lowed to relax by means of the (b) Eq. (9) and (c) by Eq. (3b) (see
text). The 2D mesh used is 0=60+10'i, with i=0, . . . , 5 and
d =(6.855+0.0155j)ao, with j=0, . . . , 10.
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Note added in proof. It was recently brought to my at-
tention that C. Cleveland had proposed an invariant La-
grangian [J. Chem. Phys. 89, 4987 (1988)] that is
equivalent to the second one proposed in this paper.

I am thankful to P. B. Allen for numerous helpful dis-

cussions. I have also profitted from conversations with J.
D. Althoft; N. Berkovits, J. Davenport, F. Khan, G. Fer-
nando, R. Le Sar, and M. Weinert. This work was, sup-
ported by the Division of Materials Sciences, U.S.
Department of Energy, under Contract No. DE-AC02-
76CH00016.
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