Control of the hole concentration in the $YBa_2Cu_3O_{6+z}$ -type superconductors $(Yb,Ca)(Ba,Sr)_2Cu_3O_{6+z}$ with low and high Ca contents

Takahiro Wada, Yuji Yaegashi, Ataru Ichinose, H. Yamauchi, and Shoji Tanaka

Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome 1-Chome,

Koto-ku, Tokyo 135, Japan

(Received 15 January 1991)

 $(Yb_{1-x}Ca_x)$ $(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ $(0 \le x \le 0.4)$ solid solutions of the YBa₂Cu₃O_{6+z} ("1:2:3") -type structure were successfully synthesized. The solid-solution samples were characterized with respect to the oxygen content, crystal structure, and superconducting properties. The "fully oxygenated" samples with $z \sim 0.8$ were prepared employing postannealing at high oxygen partial pressure atmosphere $[P(O_2)=400 \text{ atm}]$. The samples had orthorhombic unit cells and showed bulk superconductivity. The superconducting transition temperatures (T_c) and T_c shows T_c and $T_$

I. INTRODUCTION

The importance of the hole concentration in copperoxide superconductors is widely recognized.¹ A number of studies concerning the relationship between the hole concentration (p) and the superconducting transition temperature (T_c) have been reported.² In the $La_{2-x}Sr_xCuO_4$ system, as the Sr content x, and therefore p, increases, T_c increases first to have a maximum and then becomes zero for $x \ge 0.26$.³

In YBa₂Cu₃O_{6+z} (1:2:3), a tetragonal-orthorhombic structural phase transition and a stepwise increase in T_c are observed as the oxygen content increases, i.e., 6+z.⁴ YBa₂Cu₃O_{6+z} consists of two kinds of oxygen-deficient perovskite blocks, i.e., the Y-CuO₂-BaO block with a fixed oxygen content and the BaO-CuO_z-BaO block with variable oxygen content.⁵ The structural phase transition can be explained by a preferential ordering of oxygen in the CuO_z plane.⁶ T_c for the YBa₂Cu₃O_{6+z} system reaches a maximum plateau around $z \sim 1.0$.² Some attempts to demonstrate the decrease in T_c with increasing hole concentration was made for the (Y_{1-x}Ca_x)Ba₂Cu₃O_{6+z} system.^{7,8} However, the minimum T_c obtained was as high as 80 K because the solubility of Ca for the Y site in this system is low, being limited to x = 0.2.⁸

A preliminary investigation was carried out to obtain the optimum composition in $(R_{1-x}Ca_x)(Ba_{1-y}Sr_y)_2Cu_3O_{6+z}$ (*R* being a rare-earth element) system with the high Ca content x. It was concluded that the highest Ca content, x = 0.4, was obtained at y = 0.2 when R = Yb. Therefore, the $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ system was chosen for studying the 1:2:3 superconductors with high hole concentrations. As was found in $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$, the superconducting transition temperatures linearly decreased with increasing Ca content when post annealed at $P(O_2)=400$ atm. The minimum T_c of 32 K was obtained for $(Yb_{0.6}Ca_{0.4})(Ba,Sr)_2Cu_3O_{6.71}$.

II. EXPERIMENT

The $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples with x = 0.0, 0.1, 0.2, 0.3, and 0.4 were prepared by a solidstate reaction method. High-purity powders of Yb_2O_3 , $CaCO_3$, $BaCO_3$, $SrCO_3$, and CuO were used as starting materials. Appropriate amounts of powders were mixed, calcined, and compacted. The bars were sintered at 850 °C for 20 h in a mixed gas of 99% N₂ and 1% O₂. The "fully oxygenated" samples 1–5 were obtained by post annealing at $P(O_2)=400$ atm and at 600 °C for 3 h and then at 400 °C for 3 h. The post annealing was made by using a hot isostatic pressing (HIP) technique.⁹

The $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples with lower oxygen contents (samples 6–10 for x = 0.1 and samples 11–14 for x = 0.3) were prepared employing quenching and annealing techniques. Some of the samples were re-heat-treated at 300 °C or 500 °C for 3 h in air and then quickly cooled into liquid nitrogen. The quenched sample was post annealed at about 450 °C for 100 h in an evacuated silica tube to obtain a homogeneous distribution of oxygen throughout the sample. Other quenched samples were reduced further using Ti₂O₃ as the reducing agent at about 500 °C for 100 h.

The lattice constants were determined by powder x-ray diffraction using $CuK\alpha$ radiation. The average valence of copper was determined by a Coulometric titration tech-

nique.¹⁰ A hydrochloric acid solution (1 N HC1) was used for the solvent. The 1 N HC1 solution was free from dissolved oxygen and titrations were carried out in oxygen-free N₂ gas flow. In this technique, the concentration of a Cu⁺ ion in the CuCl solution was previously determined by a blank titration. Then Cu³⁺ ions in the sample solutions reacted with Cu⁺ ions (CuCl) and the excess of Cu⁺ ions was titrated by an anodic oxidation as follows:

 $Cu^{3+}+Cu^+ \rightarrow 2Cu^{2+}$, $Cu^+(excess) \rightarrow Cu^{2+}+e^-:Coulometry$.

The oxygen content was calculated from the determined average Cu valence: the valences of the ions such as Yb, Ca, Ba, and Sr were considered to be constants, i.e., Yb^{3+} , Ca^{2+} , Ba^{2+} , and Sr^{2+} , respectively. This Coulometric titration technique allowed the determination of oxygen content to an accuracy of 0.02 per formula unit.¹⁰

Electrical resistivity measurements were carried out using a conventional dc four-probe method and the dc magnetic susceptibility measurements using a SQUID magnetometer (quantum design, model MPMS). The measurements were performed by decreasing temperature with a constant magnetic field of 10 Oe. Superconducting transition temperatures $(T_c^{mag}s)$ were determined from the temperature dependences of the dc magnetic susceptibility. T_c^{mag} was the highest temperature at which the sample showed a negative magnetic susceptibility.

III. RESULTS

A. $(Yb,Ca)(Ba,Sr)_2Cu_3O_{6+z}$ with $z \sim 0.8$

Figure 1 shows the x-ray powder diffraction patterns for the $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples which were post annealed at $P(O_2) = 400$ atm (samples 1-5). The peaks in the pattern are indexed for an orthorhombic unit cell with the lattice constants a = 3.79 Å, b = 3.86Å, and c = 11.6 Å. The crystal structures of these samples were of the orthorhombic $YBa_2Cu_3O_{6+z}$ type. The determined lattice constants for samples 1-5 are summarized in Table I. The lengths of the a and c axes slightly increased and that of the b axis decreased with increasing Ca content. The figure shows that the sample with x = 0.1, 0.2, 0.3, and 0.4 (samples 2-5) were single phases and the samples with x = 0.0 (sample 1) contained Yb₂BaCuO₅ as a minor impurity phase but the amount was estimated to be less than 5%. Therefore, we determined the oxygen content in the sample, disregarding the impurity phase.

The oxygen contents, 6+z, of the samples are also summarized in Table I and they are plotted against the Ca content, x, in Fig. 2. This figure shows that the oxygen content monotonically decreases from 6.88 for the sample with x = 0.0 to 6.71 for the sample with x = 0.4, as x increases. It was not straightforward to obtain samples with high Ca contents and high oxygen contents.

FIG. 1. X-ray powder diffraction patterns for $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples which were prepared by postannealing at $P(O_2) = 400$ atm.

FIG. 2. The relation of oxygen contents, 6+z, and the Ca content, x, for $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples which were prepared by postannealing at $P(O_2)=400$ atm.

Sample number	Composition		Lattice constants			T_c^{mag}	χ at 10 K	
	x	Z	a (Å)	b (Å)	c (Å)	(K)	$(10^{-3} \text{ emu/gOe})$	
1	0.0	0.88	3.789(1)	3.866(1)	11.598(1)	80	4.7	
2	0.1	0.89	3.789(1)	3.859(1)	11.600(1)	68	6.9	
3	0.2	0.85	3.794(1)	3.854(1)	11.607(1)	48	5.8	
4	0.3	0.78	3.794(1)	3.851(1)	11.622(1)	40	2.2	
5	0.4	0.71	3.797(1)	3.851(1)	11.624(1)	32	2.4	
6	0.1	0.86	3.790(1)	3.859(1)	11.603(1)	72	4.6	
7	0.1	0.84	3.791(1)	3.859(1)	11.600(1)	76	6.4	
8	0.1	0.69	3.800(1)	3.858(1)	11.611(1)	77	3.7	
9	0.1	0.61	3.822(1)		11.686(1)	76	3.7	
10	0.1	0.36	3.821(1)		11.745(1)	48	2.3	
11	0.3	0.73	3.797(1)	3.856(1)	11.593(1)	68	4.3	
12	0.3	0.56	3.830(1)		11.677(1)	82	4.3	
13	0.3	0.43	3.822(1)		11.708(1)	64	3.3	
14	0.3	0.10	3.817(1)		11.750(1)	48	1.4	

TABLE I. Compositions, lattice constants, and superconducting properties of $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$. (Numbers in parentheses indicate standard deviations.)

The maximum average valence of the Cu ion obtained was 2.30 (for the sample with x = 0.2 and z = 0.85).

All of the samples 1-5 showed a metallic temperature dependence of resistivity and exhibited bulk superconductivity with sharp superconducting transitions. Figure 3 shows the temperature dependences of the dc magnetic susceptibility. The magnetically determined superconducting transition temperatures $(T_c^{\text{mag}}$'s) were 80 K for x = 0.0, 68 K for x = 0.1, 48 K for x = 0.3, and 32 K for x = 0.4. These values for T_c^{mag} were in good agreement with T_c 's electrically determined. Thus, for the first time, we demonstrated a decrease in T_c for the YBa₂Cu₃O_{6+z} superconductors as the hole concentration increased.

FIG. 3. Temperature dependence of the dc magnetic susceptibility for $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples which were prepared by postannealing at $P(O_2)=400$ atm.

B. Control of oxygen content in $(Yb,Ca)(Ba,Sr)_2Cu_3O_{6+z}$

Figure 4 shows the x-ray powder diffraction patterns for the $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples with $0.10 \le z \le 0.79$ (samples 4 and 11–14). The patterns for the samples with z = 0.78 and 0.73 are in-

FIG. 4. X-ray powder diffraction patterns for $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples with various oxygen contents.

dexed for orthorhombic unit cells and those for the samples with z=0.56, 0.43, and 0.10 are intetragonal unit cells. for The lattice dexed of constants $(Yb_{0.9}Ca_{0.1})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ and $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ are summarized in Table I. The relationship between the lattice constants (a, b, b)and c/3, for the orthorhombic phase or a and c/3 for the tetragonal phase) and oxygen contents, 6+z, are given in Fig. 5 for the two systems. The c axes linearly increase with decreasing oxygen content. It is seen in the figure that orthorhombic-tetragonal phase transitions occur around (6+z)=6.6 for both systems. This indicates that the orthorhombic-tetragonal structural phase transition in the 1:2:3 compound is mostly dependent on the oxygen content of the sample.

The temperature dependences of electrical re- $(Yb_{0.9}Ca_{0.1})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ sistivity for and $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ are shown in Figs. 6(a) and 6(b). Samples with high oxygen contents are metallic and exhibit fairly sharp superconducting transitions with $\Delta T_c (= T_c^{\text{on}} - T_c^{R=0}) \sim 5 \text{ K}$). Those with low oxygen contents such as $(Yb_{0.9}Ca_{0.1})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6.36}$ and $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6.10}$ are metallic only at high temperatures above 125 K and semiconductive at low temperatures, and they exhibited rather broad superconducting transitions with $\Delta T_c > 10$ K. The resistivities at 200 K for the $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples with z = 0.78, 0.73, 0.56, 0.43, and 0.10 were 1.16×10^{-3} . 1.36×10^{-3} , 2.14×10^{-3} , 4.02×10^{-3} and 5.73×10^{-3} Ω cm, respectively. Thus, the resistivity in the normal state, i.e., at 200 K, increases with decreasing oxygen content. The zero-resistance temperatures $(T_c^{R=0})$ of the $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ samples were 40 K for z = 0.78, 57 K for z = 0.73, 80 K for z = 0.56, 58 K for z = 0.43, and 36 K for z = 0.10. Thus, as the oxygen content decreases, $T_c^{R=0}$ exhibits maximum.

FIG. 5. Relationship between the lattice constants and the oxygen content in $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ with x = 0.1 and 0.3.

The temperature dependences of the dc magnetic susceptibility for $(Yb_{0.9}Ca_{0.1})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ and $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ are shown in Fig. 7. Both samples exhibited bulk superconductivity. The magnetic superconducting transition temperatures (T_c^{mag}) are summarized in Table I. The relationship between (T_c^{mag}) and the oxygen content is showm in Fig. 8. The T_c^{mag} 's are in good agreement with T_c 's electrically determined. For the system with x = 0.1, as the oxygen content 6+z is decreased, T_c shows a maximum around (6+z)=6.69 and decreases down to 48 K at (6+z)=6.36. For the system with x=0.3, T_c also exhibits a maximum around (6+z)=6.56 and decreases down to 40 Κ at (6+z)=6.10. In the

FIG. 6. Temperature dependence of electrical resistivity for $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ with x = 0.1 and 0.3.

FIG. 7. Temperature dependence of dc magnetic susceptibility for $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ with x = 0.1 and 0.3.

FIG. 8. Relationship between the oxygen content and the magnetic T_c for $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ with x = 0.1 and 0.3.

 $(Yb_{0.9}Ca_{0.1})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ system, the maximum T_c was obtained for an orthorhombic compound with (6+z)=6.69. In the $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ system, the maximum T_c was recorded for a tetragonal compound with (6+z)=6.56. Thus, T_c maxima of the system with different Ca contents were found at different oxygen contents.

IV. DISCUSSION

The Ca content (x), oxygen content (6+z), average copper valence [V(Cu)], and magnetic superconducting transition temperature (T_c^{mag}) are summarized in Table II. T_c apparently depends on both the Ca content and the oxygen content. For samples 1–5, post annealed at $P(O_2)=400$ atm, as the Ca content increases, T_c linearly decreases, while the average copper valence V(Cu) has a maximum peak at x = 0.2. Therefore, T_c of the present 1:2:3 superconducting compounds is not simply proportional to the average valence of Cu.

Tokura et al.¹¹ proposed a model that T_c of the 1:2:3 superconductor depends on the concentration of mobile holes in the CuO₂ sheet contained in the Y-CuO₂-BaO block. The mobile hole concentration in the CuO₂ sheet, p_{sheet} , is calculated as follows. First, the average hole concentration per Cu, p, is calculated from the average Cu valence

$$p = V(Cu) - 2$$

and the critical hole concentration per Cu, p_c , is estimated from the empirical relation

$$p_c = -2.21 + 0.34(6+z)$$
.

FIG. 9. Relationship between T_c and mobile hole concentration in the CuO₂ sheet, p_{sheet} for the $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ systems with x = 0.1 and 0.3.

Sample number	Composition			Hole cor	$T_c^{\rm mag}$	
	<i>x</i>	(6+z)	V(Cu) ^a	p_c^{b}	$p_{\rm sheet}^{\rm c}$	(K)
1	0.0	6.875	2.250	0.128	0.184	80
2	0.1	6.885	2.290	0.131	0.239	68
3	0.2	6.845	2.297	0.117	0.270	48
4	0.3	6.780	2.287	0.095	0.288	40
5	0.4	6.712	2.275	0.072	0.304	32
6	0.1	6.858	2.272	0.122	0.225	72
7	0.1	6.843	2.262	0.117	0.218	76
8	0.1	6.692	2.161	0.065	0.144	76
9	0.1	6.609	2.106	0.037	0.103	76
10	0.1	6.364	1.943	-0.046	-0.017	48
11	0.3	6.727	2.251	0.077	0.261	68
12	0.3	6.558	2.139	0.020	0.179	82
13	0.3	6.431	2.054	-0.024	0.116	64
14	03	6 100	1 833	-0.136	-0.047	48

TABLE II. Composition, average copper valence, hole concentrations and magnetic superconducting transition temperature of $(Yb_{1-x}Ca_x)(Ba_{0,8}Sr_{0,2})_2Cu_3O_{6+z}$.

^a V(Cu) average copper valence V(Cu) = [$\{x - 7 + 2(6+z)\}/3$].

 ${}^{b}p_{c}$, critical hole concentration per Cu $[p_{c} = -2.21 + 0.34(6+z)]$ (Ref. 11).

^c p_{sheet} , hole concentration per Cu at the sheet site $[p_{\text{sheet}} = 3(p - p_c)/2]$.

The average hole concentration p relates to the hole concentration in the CuO_z chain (plane), p_{chain} , and the hole concentration in the CuO₂ sheet, p_{sheet} :

$$p = (p_{\text{chain}} + 2p_{\text{sheet}})/3$$
.

When $p = p_c$, p_{sheet} is zero. Thus, p_{chain} is calculated

 $p_{\text{chain}} = 3p_c$.

Consequently, p_{sheet} is obtained:

$$P_{\rm sheet} = 3(p - p_c)/2$$
.

The calculated values for p_c and p_{sheet} are summarized in Table II. T_c^{mag} 's are plotted against p_{sheet} in Fig. 9. As the p_{sheet} increases, T_c shows a maximum peak at $p_{\text{sheet}} = 0.18$ and decreases down to 32 K at $p_{\text{sheet}} = 0.304$. The shape of this T_c^{mag} versus p_{sheet} curve is similar to that of the one obtained for the La_{2-x}Sr_xCuO₄ system.

The average valence of Cu for the samples with low oxygen contents, such as $(Yb_{0.9}Ca_{0.1})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6.36}$ and $(Yb_{0.7}Ca_{0.3})(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6.10}$, is lower than 2, and the calculated hole concentration in the CuO₂ sheet is also minus. Nevertheless, these samples are superconducting. Therefore, we concluded that the present estimation¹¹ of the mobile hole concentration in the CuO₂ sheet was not adequate for the system with low oxygen content. This may be due to the ordering of oxygen on the CuO_z chain site.^{12,13}

V. SUMMARY

The $(Yb_{1-x}Ca_x)(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+z}$ $(0 \le x \le 0.4)$ solid solutions were synthesized. The superconducting transition temperatures $(T_c$'s) of the samples post annealed at $P(O_2)=400$ atm ranged from 80 to 32 K depending on the Ca content. As the oxygen content, 6+z, of $(Yb,Ca)(Ba,Sr)_2Cu_3O_{6+z}$ decreased, T_c showed a maximum peak at $p_{sheet}=0.18$. The curve of T_c versus the concentration of mobile holes in the CuO₂ sheet exhibited a similar shape as the one reported for the La_{2-x}Sr_xCuO₄ system.

ACKNOWLEDGMENTS

We thank T. Kawano for his help in a Coulometric titration. A part of this work was supported by New Energy and Industrial Technology Development Organization as a part of the program for R&D Basic Technology for Future Industries.

- ¹M. W. Shafer, T. Penny, and B. L. Olson, Phys. Rev. B **36**, 4047 (1987).
- ³J. B. Torrance, A. Bezinge, A. I. Nazzal, T. C. Huang, S. S. P. Parkin, D. T. Keane, S. J. LaPlaca, P. M. Horn, and G. A. Held, Phys. Rev. B 40, 8872 (1989).
- ²For example, J. B. Goodenough and A. Manthiram, J. Solid State Chem. 88, 115 (1990).
- ⁴R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M.

Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck, Jr., and L. W. Rupp, Jr., Physica C 165, 419 (1990).

Phys. 27, L1022 (1988).

- ⁹T. Wada, T. Sakurai, N. Suzuki, S. Koriyama, H. Yamauchi, and S. Tanaka, Phys. Rev. B 41, 11 209 (1990).
- ⁵F. Izumi, H. Asano, T. Ishigaki, E. Muromachi, Y. Uchida, N. Watanabe, and T. Nishikawa, Jpn. J. Appl. Phys. 26, L649 (1987).
- ⁶J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. Crabtree, A. Umezawa, L. J. Nowicki, and A. P. Paulikas, Phys. Rev. B 36, 5731 (1987).
- ⁷A. Manthiram, S. -J. Lee, and J. B. Goodenough, J. Solid State Chem. **73**, 278 (1988).
- ⁸M. Kosuge, B. Okai, K. Takahashi, and M. Ohta, Jpn. J. Appl.
- and S. Tanaka, Phys. Rev. B **41**, 11 209 (1990). ¹⁰K. Kurusu, H. Takami, and K. Shintomi, Analyst **114**, 1341
- (1989).
 ¹¹Y. Tokura, J. B. Torrance, T. C. Huang, and A. I. Nazzal, Phys. Rev. B 38, 7156 (1988).
- ¹²Y. Nakazawa and M. Ishikawa, Physica C 158, 381 (1989).
- ¹³J. Kondo, Y. Asai, and S. Nagai, J. Phys. Soc. Jpn. 57, 4334 (1988); J. Kondo, *ibid.* 58, 2884 (1989).