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We study the near dielectric screening of the Coulomb repulsion by a lattice of point polarizable ele-
ments. We find that the far screening factor (related to the static dielectric constant) persists even to dis-
tances of one or two lattice spacings. In some configurations the screening factor is enhanced by proxim-
ity, and we exhibit a case (two like charges at body-centered positions one spacing apart in a simple-
cubic lattice) in which the screening factor exceeds 1 by ~ 1%, although the polarizability is still below
the Luttinger antiferroelectric threshold. Thus the dielectric screening overcomes the bare Coulomb
repulsion in this case, and the net effect is attractive. Such considerations may play a part in explaining
the mechanism of short-range pairing in cuprate superconductors. Incidentally we demonstrate that for
the NaCl type of crystal there exists a small range of ratios of ionic polarizability for which a third
configuration is preferred at 7 =0 K to both the ferroelectric and the Luttinger antiferroelectric spon-

taneous polarization.

I. INTRODUCTION

In any naive model of electron or hole pairing in cu-
prate superconductors, the Coulomb repulsion is trouble-
some. The bare Coulomb energy between two electron
charges 6 A apart is about 2 eV, whereas the attractive
energy available for pairing, which is usually supposed to
arise from magnetic effects, is presumably ~1072 eV,
comparable to k7,. How can the latter overcome the
former?

The problem is softened but not eliminated in the s-
channel model for superconductivity.! There the net en-
ergy of the paired state is allowed to be positive; but for
reasonable fits to data it should be only ~1072 eV, so
that we still need a way to cancel or reduce the Coulomb
repulsion. One possibility? is a capacitative effect be-
tween planes: The charged boson condensate in one
plane is stabilized by a deficiency of that charge on
another plane.

A different approach is to attribute the formation of
bosons to the pairing of fermionic quasiparticles that car-
ry no charge, as in the resonating-valence-bond (RVB)
model.> Such models bypass the Coulomb difficulty in
the insulating phase entirely, but it would seem to reap-
pear in the superconducting phase since the current must
be carried by a charged fluid.

Another way to reduce the Coulomb repulsion is by in-
voking the polarizability of the ions making up the crys-
tal lattice. For two external charges far apart within the
crystal, the effect simply reduces the Coulomb interaction
by a factor equal to the dielectric constant of the crystal,
which may be quite large. It is by no means evident,
however, whether so great a reduction may be expected
when the distance is only one or two lattice periods.

Accordingly we have undertaken to calculate Coulomb
screening in an idealized crystal composed of identically
inducible point dipoles. We do not take account of the
complications due to ionic heterogeneity, nonpointlike
polarization, and quantum and thermal effects. We take
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the naive classical point of view commonly used in deriv-
ing the Causius-Mossotti law, except that we no longer
assume that the polarization is uniform over the lattice.

We realize that the quantity we are calculating may be
partly included in the more sophisticated arguments that
ascribe pairing to the interaction of quantum orbitals, but
such arguments normally do not take account of the self-
interaction of the lattice as a whole. On the other hand,
calculations in which everything is derived from proper-
ties of the phonon spectrum* may not take adequate ac-
count of the position of the paired objects in real space.

In the following section we show how the screened
Coulomb potential may be expressed as an integral over
the Brillouin zone, in which the integrand is a simple
nonlinear function of certain sums of Madelung type. In
Sec. III we apply the powerful extensions of Madelung’s
methods now available’ to obtain quickly convergent
transformations of these sums.

In Sec. IV we discuss implications for stability against
antiferroelectric distortion: Briefly, the fact that a cer-
tain function over the Brillouin zone may reach its max-
imum at a nonvanishing wave vector implies that the
“polarization catastrophe” can occur nonuniformly even
when the dielectric constant remains finite. For the
homogeneous simple-cubic (sc) lattice the principal insta-
bility is to the mode first described by Luttinger.5 We
show, however, that in a sc lattice with two alternating
species there exists a narrow range of relative polarizabil-
ity for which a different nonuniform mode predominates
over both the Luttinger and the uniform mode.

In Sec. V we will present some results of numerical cal-
culations for a simple-cubic lattice of identical point po-
larizable components. The main result is that the
Coulomb potential can be strongly screened even for two
charges in neighboring lattice cells. For some
configurations the screening factor can be even larger
than the bulk dielectric constant. In the last section we
consider some of the simplifications we have made and
discuss the implications of some of our more striking re-
sults.
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II. GENERAL FORMALISM AND
GREEN’S FUNCTION

Consider a lattice of points
r,=n;a'+n,a’+nya’, (1)

where n,n,,n; are integers.
We assume that each lattice site carries an induced
point dipole

p;=aEX°, (2)
where
E{-"“:E?’“-%-EE{ . (3)

J
Here E/ is the field at r; due to p; at r;, and E{* is the
field at r; due to sources other than induced dipoles.
The energy of the system in the given field ES*' is

P:'P; P:P; 1
e= — :VV - B 4)
?’ 2a iz’j) 2 Ir;—r1;l ;p, !
The notation p:p;:VV[1/(r; —1;)] means

(p;*V, )p;-V,)[1/(|r;—r;+1)]|,—0, similarly in later ex-
pressions.
The minimization of £ with respect to P; yields the
equilibrium relation
P: 1
—=E+ 3 (p;"V)V——r
a iG Iri 1]

(5)

equivalent to (2).
To solve this infinite set of equations, we introduce the
Fourier expansion
kr;

p(k)=3pe ", (6)

E(k)=SE™e T, (7

in terms of which (4) and (5) become

= (8)
f 217.)3
where
. * Ed
e(k)=% “‘)[a“‘” —%p(k)[p(k)]*:C(k)]
— (p[E™(K)]* +c.c. ) ©)
and
P(ai)zEe’“(k)+p(k)-8(k) , (10)
where
Er= 3 o *tyyl . (an
r; (0) Ti

The integrals go over the unit cell in dual (.e.,
reciprocal-lattice) space: k=k!b;+k?,+k>b;, where
—m<(kk%Lk?) <, b,a’=38,/. The relation between b’s
and a’s will be discussed in Sec. III.

Supposing C(k) given, we may write the solution to
(10) as

k)=a§’(k)-Ee"‘(k), (12)
where
gk)=[1—aCk)]"!, (13)

the inverse being taken by regarding the tensor as a linear
operator on three-vectors. The integrand of (8) then be-
comes

e(k)=— —;Re[p(k)-EC"t(k)*]

=— %Ee"t(k)Ee’“(k)*:‘g"(k) . (14)

We shall calculate C(k) for the simple cubic lattice in a
later section. Here we point out that, at zero tempera-
ture and in the absence of any external field, the stability
of the system against spontaneous ferroelectric or gen-
eralized antlferroelectric perturbation would require that
d%e(k)/dp(k)dp*(k) be positive definite; in view of (9)
this would require that the eigenvalues of C(k) be all less
than a™! for all k. The consequences of this will be dis-
cussed in Sec. IV.

With C(k) given, we may also evaluate the potential
energy of the system plus two external point charges g,q’
atr,r’:

’

Etot=5+%—
lr—r'|
= 242G (5,0 + 242G (1) +4g G (rr) ,  (19)
where
3
Gpa(r,r)=— [ (‘;T’; aBlk):V,6(k, 1)V, [$(k,r')]*
(16)
and
Glr,r)=— +G,(r,r) . (17)
l[e—r'| 7P
The function ¢ is defined by
lkl’
dk,r)=3 Ir s (18)

If we wish to place the point r directly on a lattice site
T, We shall adopt the convention that G, is to be aver-

aged over values of r within a small sphere centered at

T The effect of this is to remove the term with i =i,
from the gradient of (18) and to replace r by r, in all oth-

er expressions. The same is true of r'.

III. LATTICE SUMS

We now derive rapidly convergent expressions for the
functions ¢(k,r), its gradient, and C(k) defined in Sec. II.
We shall assume that the lattice in question is described
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by (1), where a',a% a? are fixed vectors not necessarily or-
thogonal. We shall resolve the vector r as
r=ra'+r,a’+rja’, (19)
and k as
k=k'b;+k,+k’b;,
where b,,b,,b; are basis vectors for the dual lattice:
a’Xa’

b=—2 X8 _
I alia?xa®)

etc.; b;-a'=§, .

To calculate ¢,(r), we single out one direction, say the
1-direction, and write

=36, (1), (20)
m
where (suppressing the argument k)
e —ik-r;
¢n1(r)=n2%3 E‘:_—;:l— . (21)

ik

For r,7n,;, we notice that ¢n1(r)e is periodic.

Fourier expansion on the 2,3 plane gives

ciJ,,l(r)Ze_”"r b sz,ms(rl)e"“‘", (22)
mz,m3
where

m=m?b,+m?>;,

with m?2, m3=2mXinteger. (From now on we shall use
the shorthand “m” collectively for m?,m?> as in V,,, for
example.)
Substituting into Poisson’s equation
—iker,
Vi, (r)=—47 3 e 8(ry—n;y)
! nz,n3
X8(r,—n,y)8(r;—ny) (23)

and inverting the Fourier transform on the plane, we get

o) , d
bl'ar—l—le . blgT—lK V,=—4mwb(ri—n,),
(24)
where
K, =k—m .
(ry—ny)

TVm

Obviously V,, (rl) has the exponentxal form e
for r,>n,, but e Ymlm=n) for r, <n,, where v,, (with

real part greater than 0) and —y}, are the roots of the
equation

(byy,, tiK,,)-(byy,, +iK, )=0. (25)
This equation is satisfied by putting
IK,, Xb;|—iK,, b,
= , 26
Ym b, b, (26)

as seen by direct substitution or, more laboriously, by

solving (25) as a quadratic in y,,,.
To normalize V,, we integrate (24) through r,=n,.
Substituting the result into (22) we have

R S > Rer e Tmn T gime @7)
for r, >ny, and
— —y¥*ny—rp)
¢ (r)_ tkrz Ym' Vgimr (28)
Reym

for ry <n,. Aslong as r;¥n,, the series in m is exponen-
tially convergent on account of (26). Thus, if r is not on a
lattice site, we may obtain V ¢(k,r) (from now on we
shall write V for V,) by analytically differentiating each
term of (27) or (28), summing over n;—this sum is
analytic!—and finally over m. [Note that the choice of
the 1-direction in (20) was arbitrary. As long as r is off
lattice, we can single out a j direction for which
r;7integer.]

If r is on a lattice site (say r=0 without loss of general-
ity) then we define ¢ by omitting the singular term from
(18). But then, for n; =0, ¢,(r) is no longer periodic and
(22) does not hold. This is a serious difficulty.

It is absolutely necessary to confront this difficulty, be-
cause even if r,r’ are not on lattice sites we cannot find
G (r,1') without computing C (k) [see (16) and (13)] which
by (11) is just the double gradient of ¢(k,r) at r=0, with
the singular term omitted.

To this end we use a device introduced by Mackenzie.
Notice that the Coulomb potential has the unique proper-

ty

7

U O
Ir| |r|
1 1 1
vi——livvl,
|r| 2 |r]
vl =—liywy-Ll .
Ir] 3 Ir]

Changing r to r—r;, we find

—tkr 1
k r)’,_,o Ze lr‘—r I
r—0
But from (19) we have
d !
LS A 29
ar, a-v, (29)
and hence
d
U= 2 30
r-vV erl arl N ( )
so that
$k,0)=3 Sn2 1 31
I arl |ri|

In this sum we are still supposed to omit the term
r;=0. But now that causes no embarrassment because
for each [ the whole layer n;=0 drops out of the sum.
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Hence by choosing the special direction in (20) to be the /
direction instead of the 1-direction we obtain ¢ in the
form

#(k,0=3 3

)
ny—— ¢ s (32)
T n, (#0) a’I

where ¢‘,,’I) is given by a sum like (27) or (28) with b; sin-

gled out in (26) instead of b, and with m orthogonal to a’
instead of to al.
Similarly we get

Vek,0)=~3 Mo v¢“>, (33)
2 ! n (#0)
=iz s n,—vv¢‘”, (34)
3 1 n (#0) aI

where it is understood that r is set equal to O after the
gradients are taken. In all these expressions the ‘“bad”
layer n; =0 does not enter.

This is a powerful method of great generality. It leads,
however, to a large computation. For ¢ we must do three
independent Madelung sums, each consisting of summing
an expression like the summand of (27) over n; (analyti-
cally) and over m (numerically). Likewise we must do
nine Madelung sums to get the three components of V¢,
and 15 Madelung sums to get the five independent com-
ponents of C=VYV¢.

(We say that C has five components because its 3X3
components are subject to the three constraints of sym-
metry and one of tracelessness. For an oblique lattice
these four constraints, though still present, are less con-
venient to apply since symmetry holds for the matrix ele-
ments C""=0324/dr,0r;, whereas tracelessness holes for
the “mixed” matrix C}'=3,.b,;-b,.C""". Thus one might
find it convenient to ignore the symmetry constraint and
calculate independently eight components C/; this would
require 24 Madelung sums.)

We therefore have sought to reduce the number of
sums to be performed, while still omitting the “bad” lay-
er from the calculation. Let us note that the gradient
operator can be written not only as

oy 8
v ;bz ar, (35)
consistent with (19), but also has
d
V=a'— (36)
; ar!
where we define
B b, V=3b,b, - (37)
arl ! I e arlr )
Then we have
9
——( H=2r,, (38)
ar r r,
as easily seen by substituting into (27). Hence
a1_ n
orl r 43 (39)
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But this quantity vanishes if r lies in the plane r, =0.
It follows that we can return to (21) [not (31)] and write

d d

—o(k,r) = — ¢, (1) ) (40)
or! plor r—0 nl%m ar! oy o

r—

since
ik-r, n

5, 1(zs,,lm— e

n2,n3

|n,a'+n,a2+n;a’|® ’

which vanishes for n; =0.
The individual terms on the right side of (40) can be
written with the help of (27) and (28) as

57¢n1(r)

r—0

—ik- . 27 —vEng .
=e kTS p,(—y, b, —iK, )=——e '™ leimT
% 1 m©v1 Re'}/m

(42)

for n, >0, and the same with —y}, replaced by y,, for
n; <0. (Note that b;-m=0 for rectangular lattices but
not in general for oblique ones.)

This whole procedure can be repeated for / =2,3 in-
stead of . /=1, and in this way the three quantities
d¢(k,r)/dr!|,_o can be calculated by performing only
three Madelung sums instead of nine,

The off-diagonal components of C can be found in a
similar manner; for example,

9 —ikr; 3 —m
e ’
ary ¢"1 -2 on, |n,al+n,a’+n;a’l?

nyny

(43)

which also vanishes when n;=0. Therefore we can write

3 3 _ s 8 3
ar2 ar1¢(k,r) 2 arz ar1¢nl

r—0 n, (#0)

(r) (44)

r—0

and similarly for other C/, I7I'. Thus we obtain the
off-diagonal components from only three instead of nine
Madelung sums if the lattice is rectangular, or 6 instead
of 18 if it is oblique and we do not use the symmetry con-
straint.

For the diagonal components, we observe first that

45
=33, ar, ar 45)

and so
Ccl'=(3/3r.)3/0r")¢

is traceless because V2¢=0. It therefore suffices to calcu-
late two differences, for example, C} —C3 and C} —C3.
We now consider the quantity
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3 9 8 1

arl arz ar [rl

a I
ar, Il‘|3

e,
larl

Since the second term is symmetric under interchange of
1 and 2, we have

L8 @ 3 2 |1

Yor, ar,ar  20r, oror! | Il

_, 0
lE')r1

arl arz ] |l’|3 ’
(46)

d 3] 1
= | — — 4+ —_— ] —
[ "o, ’Zarzlw
9 n .3 rn

ar, |rl3

ory [r?
? 1
or,or'  or,or? | Ir|

(47)

Replacing r by r—r; and summing over r; we find on
setting r=0

CI—C2=—2n _a___éz__ (1)
T e anar?
d 3?2
+ —_— (2). (48)
2 23" ar,or!

This and a similar formula for C! —C3 enables us to find
all the diagonal elements C/' by means of four Madelung
sums instead of six. -

Since for any vector q=3,g,a’ we have C-q= >,tal,
where t;=3,C}q,, can regard the C/ as matrix elements
of a linear operator. Hence the inversion indicated in (31)
can be carried out as a matrix inversion using these ele-
ments. This means that (suppressing the argument k)

g=3glab,, 49)
L

where g/’ are given by

gln(sl:' aCI"' )_811, . (50)
1 I
I

We may then write (16) as

pol(rr)__fff dk_dk”dk agj-a’-a’

i) 3
(2m7)? arl¢ar1' ¢.

(51)
In Sec. V we shall discuss an explicit computation of
(51) for the simple cubic lattice.
IV. STABILITY AGAINST SPONTANEOUS
POLARIZATION

The eigenvalues of C(k) are connected with the well-
known “polarization catastrophe”.® Suppose that there
is no external field (E*=0, all i). Then (9) becomes a

homogeneous quadratic form in the p,. If this form is
not positive definite (i.e., if it has even one negative eigen-
value) then the configuration with all p;=0 is not the
ground state, and the system (considered ideally at zero
temperature) will polarize spontaneously until it is stabi-
lized at some nonzero configuration of p;’s by nonlinear
restoring forces not considered here.

By translation symmetry the quadratic form in ques-
tion is diagonal in k, and so its eigenvalues are those of
the matrices

Qk)=1[a"T-C(x)] (52)

for individual values of k. Hence the polarization catas-
trophe arises whenever any C(k) has an eigenvalue
greater than 1/a.

For k—0 we have C— 4 ( 1I kk) for any cubically
symmetric crystal. [The term —47kk i is the result of re-
placing (11) by an integral, while —1rI is the Clausius-
Mossotti correction; the latter becomes anisotropic in
crystals of lower symmetry.] Since the highest eigenvalue
is 47 /3, one might conclude that at zero temperature a
cubically symmetric crystal will develop spontaneous fer-
roelectricity if 4ma /3> 1. In fact, the threshold value of
a is just that which makes the dielectric constant
k=1+47a/(1—%ma) infinite.

This simple conclusion must, however, be modified in
two ways. First, there may be values of k70 for which

C(k) has an eigenvalue greater than 47 /3. This holds for
the simple cubic lattice, in which the maximum eigenval-
ue is attained for k=(m,,0). The eigenconfiguration is
that in which each dipole points along the z axis in the
same sense as its z neighbors, but in the opposite sense
from its x and y neighbors. The eigenvalue was first cal-
culated as 2X2.676=5.352 by Luttinger® in 1946; we
find (see (Table I) 47X0.42602=5.3533. This is greater
than the positive eigenvalue of C(0), 47/3=4.18879.

One would thus expect a crystal of this type to become
antiferroelectric rather than ferroelectric at zero temper-
ature. Moreover, by setting 1/47a=0.42602 we obtain
the critical value of the dielectric constant,

4ra
1_____
3

87Ta

3 =11.789 .

=

Simple cubic crystals not antiferroelectric at zero temper-
ature, one would expect, must have a dielectric constant
less than this number. By contrast, for the face-
centered-cubic lattice there is no eigenvalue higher than
41 /3. Such a crystal could be ferroelectric at zero tem-
perature, and the critical dielectric constant is infinity.

But second, the above reasoning assumes that all the
atoms are equally polarizable, and for typical ionic crys-
tals this is not true. If, for example, alternate sites have
two different polarizabilities, a; and a,, the three-vector
p(k) is replaced by a six-component pair (p;(k), p,(k)),
and Q by a 6X6 matrix. Nevertheless, many of the
above conclusions remain true qualitatively.

In particular, for the NaCl type of crystal, (52) be-
comes
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[ T6 —C (53)
(Q)(k)—z _&. o T-&, |
where C,=1Ck)+1C(k+w), w=(mmm). For
k=(m,m0), k+7=(0,0,7), we have
-1 0 0
C.=4mc, |0 -1 0], (54)
0 0 1
where from Table I
2¢4+=0.42602+(—0.77090) . (55)

Since C 4 and C_ are simultaneously diagonal, (Q) can be
reorganized as

(y)+4(c) 0 0
(Q)=27 0 (y)+1e) 0 , (56)
0 0 (y)—C(c)
where
cy c_
(=1, c. | (57)
71 O
(y)= 0 7,|° (58)
and
y;=4ma;)” . (59)

Let us now designate by H the configuration in which
all dipoles point in the same direction and by L the alter-
nating configuration described by Luttinger,® which cor-
responds to the z sector of (56). As discussed above, if
the two species of ion are identical the favored instability
is to L polarization, but if one species is totally unpolariz-
able than the other will form a fcc lattice which prefers to
undergo H polarization. The condition for H stability is
4ma /3 <1 where a=1(a;+a,), or

44
the condition for L stability is
Dr=vv,—ci (v tyy)—s>0, (61)
where s =c% —c?.

One could arrange ¥, and ¥, so that both Dy and D,
vanish, and thus describe a hypothetical crystal
representing a “boundary” between H- and L-polarizing
substances. It may be seen, though, that this boundary
does not really exist because there is a third configuration
L' which preempts both H and L within a narrow range
of the parameters. The L’ configuration corresponds to
the x or y sector of (56). The condition for L’ stability is

Dy =y v, +ie iy +yy)—1s>0. (62)

To exhibit the existence of a region dominated by L', we
choose 7, and 7, so that

Y12 =5(r1tr)=3s; (63)
this is possible since s > Z by (55). We now have

Dy=0, D;=s(—1-3cy),

(64)
DLIZS(%'*_%C_F ): ‘%DL .

But from (55) we see that 2¢ ; = —0.34488 < — 1, so that
D; >0 and D;.<0. Thus this crystal would be stable
against L polarization but unstable to L’ polarization.
By increasing either y; slightly we could render it also
stable against H polarization. Therefore there is a finite
region in the y,-y, plane representing ionic crystals of
the NaCl type which (if they exist) should be H and L
stable but L' unstable at zero temperature.

V. NUMERICAL CALCULATION OF GREEN’S
FUNCTION FOR A SIMPLE CUBIC LATTICE

We have carried out a sample calculation of G for
the simple cubic lattice. The basic formula (16) involves
an integral which we have done by fast Fourier transform

Dy=v1v,—+y1+v)>0; (60) (FFT); in this way we obtain the values of G ol simultane-
TABLE 1. For the simple-cubic lattice, we show all six components of €= C /4 for all k#0 having all three components divisible
by 7/2.
k, k, k, Cxx Cyy C, Cry =Cyx €y =Cy Cox =Cxz
% 0 0 —0.71896 0.35948 0.35948 0.000 00 0.000 00 0.000 00
% -’21 0 —0.191 34 —0.19134 0.382 69 —0.27534 0.000 00 0.000 00
—’21 % % 0.000 00 0.000 00 0.000 00 —0.143 84 —0.143 84 —0.143 84
T 0 0 —0.77090 0.38545 0.38545 0.000 00 0.000 00 0.000 00
T 12[ 0 —0.468 48 0.06271 0.405 77 0.000 00 0.000 00 0.00000
T % -;L —0.276 18 0.13809 0.13809 0.000 00 —0.064 05 0.00000
T ™ 0 —0.21301 —0.21301 0.42602 0.000 00 0.00000 0.000 00
T T % —0.104 05 —0.10405 0.208 09 0.00000 0.000 00 0.000 00
T T T 0.000 00 0.000 00 0.000 00 0.000 00 0.00000 0.000 00
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ously for a whole family of positions r'=
fixed and n is any lattice vector in (1).

For simplicity we have restricted ourselves to the case
s=r, r'=r+n; then ¢(k,r')=e ~*¢(k,1), and (16) can
be written

Gpol(r,r+n)

_ o d%
h f(217')3

The FFT requires us to evaluate ag:V@¢Vo* on a set of
(29)} points evenly spaced in the k cube —w <k, <,
where ¢ is some integer. We find, however, that there is a
singularity at k—O0. In fact, we have ¢~4n/k?
V,p~4mik/k? and Cmd4n(lI—kk/k? by the
Clausius-Mossotti argument. [The continuum approxi-
matjon gives ;47rkk/k2, and the lattice correction is
47I; note that C is strictly traceless by (11).] Hence

a (47)?
1+&7a k2

s+n, where s is

e "agk):V,(k,1)V,$(k,1)* . (65)

ag:V,¢V,.d* ~ as k—0 . (66)
This singularity does not spoil the convergence of the in-
tegral in three dimensions, but it makes it impossible to
sample the integrand at k—0. Even if the k mesh is stag-
gered so as to miss the origin, the result will be unreli-
able.

We resolve this difficulty by noting that the singularity
arises from the distant behavior of G, which is already
known from the Clausius-Mossotti law. Therefore we
can mitigate the singularity by subtracting a known term.
From (18) we have

1
(k,0)e’*m=-—- (67
=t nl
for any lattice vector n. Hence we may rewrite (65) as
4ra 1
G ,r+n)=———"F"—-—"—-
pot (6711 l+§1ra [n]
— [ LK Fk,peikn, (68)
(2m)
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where
F(k,1)=agk):V, ¢V, ¢* — Tﬁ%—-—g&(k 0. (69
Combining (68) with (17) we have
I—47a | d3k .
G(r,r+n)= | —— |—— Fe'x™ (70)
1+3a | |nl J (2m)?
where we recognize
1+§Tra _ 41
1— %7 1—3%7a

as the long-range dielectric constant.

The quantity F remains finite at k—0, and therefore it
is more suitable for FFT. It is, however, discontinuous.
To establish this, we may write (for r0)

4
— +n(k,r)

k, —, —ikr
o(k,r)=e .

> (71)

where 7 is finite and well behaved at all k, and

n(—k,r)=n*k,r) . (72)
Then
v,¢v,¢*=@kk
+‘;(—7T[——zk(V Fik)* +(V, —ik)nik]
+V,nV,n* . (73)

When substituted into (69), the first term of (73) yields

1_*_—3(4 w2k /k4

which cancels the singularity in the second term of (69).
The second term of (73) does not give rise to any infinity
~k/k?, because V,7 is real at k=0 on account of (72).

TABLE II. G, and G for on-site charges. For three values of 4ma and for several values of the separation vector n=r— r' we
show the continuum shielding function G5of* = |n|"Y47a/(1+8 $ma) and the true lattice shielding function Gy,. The charges are at

the on-site position in a simple-cubic lattice of polarizability a at each site.

4ra=1.75 47ra=2.00 4ra=2.25
n |llI ! ;?)l]" Gpol ;(())?t Gpol ;?ﬁ“ Gpol
(0,0,0) 0 © 1.669 90 0 1.787 67 © 1.89399
0,0,1) 1.000 00 0.807 69 0.759 81 0.85715 0.809 68 0.900 00 0.854 54
(0,0,2) 0.500 00 0.403 85 0.37012 0.428 57 0.39293 0.45000 0.41537
(0,0,3) 0.33333 0.26923 0.25256 0.28571 0.265 61 0.30000 0.27643
(0,0,4) 0.25000 0.20192 0.19392 0.214 29 0.203 61 0.22500 0.21056
0,1,1) 0.707 11 0.57113 0.57975 0.606 09 0.61339 0.636 40 0.64028
(0,2,2) 0.35355 0.28556 0.28591 0.30304 0.303 06 0.31820 0.318 10
0,3,3) 0.23570 0.19037 0.19052 0.20203 0.201 96 0.21213 0.21175
(0,4,4) 0.176 78 0.14278 0.14292 0.15153 0.15157 0.15910 0.15895
(1,1,1) 0.57735 0.466 32 0.48233 0.494 87 0.509 82 0.51962 0.53296
(2,2,2) 0.288 68 0.23316 0.236 38 0.247 44 0.25073 0.259 81 0.263 04
(3,3,3) 0.19245 0.15544 0.156 54 0.164 96 0.166 12 0.17320 0.174 38
(4,4,4) 0.144 34 0.11658 0.11708 0.12372 0.12426 0.12991 0.13046
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However, if we write
V,n=M,+ik-M,+0[k2], (74)

where MQ_,)ﬁ, are real, then we get a finite term
4m(k/k*)M-k in (73), leading to a discontinuous term
~Mkk/k? in F. The other terms in (73) behave
smoothly in F; but the expansion of g(k) has the form

Ek)=g0)+g¥kk+ - -, (75)

and this leads to a finite discontinuity ~g%":kkkk /k* in
F. For the case r=0 the result is the same, since we
define V,¢ by averaging in the neighborhood r=-0.

To avoid the ambiguous value of F at k=0, we stagger
our FFT mesh by giving each k' the values
20 /293X 27 /291 5% 27 /2q1 *1 ... Nevertheless,
because of the discontinuity we should not expect our er-
ror to diminish exponentially in the parameter 27 as
would be usual in integrating a periodic function. In fact,
we may predict the error as follows.

Our choice of mesh k space ensures that the Fourier
transform of F, as we calculate it, will be antiperiodic in
n, with antiperiod 27 in each Cartesian direction. In
fact, if F= [[d’k/(27)*]e’*™F is the true transform,
then  what we are calculating  is really

’

S (=" "2 E(n+2%"). Therefore the error con-
sists of the n'#0 terms. For fixed n and increasing 29,
the error will diminish essentially as F(29,0,0).

But F(n) is the difference between G(r,r+n) and its
continuum approximation. For general r,r' this
difference should decrease as 1/|n|2, since each charge in-
duces nearby dipoles that affect the other charge to this
order. When, however, r'=r-+n, then the environment
of one charge is the inversion of that of the other. Hence
(taking two equal charges without loss of generality) they
induce opposite dipole moments, and the leading effects
cancel, leaving a discrepancy ~1/|n|® due to induced
quadrupole moments in the near environment. Dipoles
at r’’ far from both r and r’ contribute to G in proportion

to 1/rir3, where r,=|r—r1"|, r,=|r'—r"’|. The
discrepancy between this and the result of spreading the
dipole into a continuous cube is down by another factor
1/r2 or 1/r3. Therefore the “far” contribution to F is of
order [(d’r"/r{r3)~1/|n|? also.

We conclude that the error in our calculation should
diminish as the cube of 29. This was confirmed by com-
paring our value of F(0) for different values of g.

From the definition we see that F is real [as expected
since G (r,r+n) is even in n] and that F is even in k (as
expected since G is real). Hence there are really only
(29713 real quantities in the FFT, related moreover by
permutation of axes. By transforming one layer at a
time, we are able to profit partly from the permutation
symmetry and the fit the FFT into %(2‘1_1)3 words of
double precision, or 237 7! bytes (where 1 byte=23 binary
digits).

In evaluating sums of the type (27) and (28), we kept 25
terms, those having all |m‘|><2. This yielded an accura-
cy of ~1075. Since the sums must be repeated for each
k, we saved computer time by tabulating the required ex-
ponential functions in advance, and by avoiding various
redundancies associated with permutations of axes. For
g =6 the computation (error ~107°) required about
400 X 10° bytes and 4 min. CPU time (Digital Equipment
Corporation VAX 11-780 computer) for each value of r.
Typical results are shown in Tables II and III.

VI. DISCUSSION

We have presented in Sec. III a system of calculation
applicable to any three-dimensional lattice, but our nu-
merical results (Sec. V) pertain only to the simple cubic.
Hence we can answer our original questions (Sec. I) only
in a way which indicates roughly what may be expected
in other lattices.

We find that the dielectric screening is indeed effective
at distances of the order of a lattice spacing. In the most
unfavorable case studied, where the two charges are on

TABLE III. G, and G for off-site charges. For three values of 4 and for several values of the separation vector n=r—r' we
show the continuum shielding function G =[n| " '4ma/(1+ %ﬂ'a) and the true lattice shielding function G,,. The charges are at
the body-centered position in a simple-cubic lattice of polarizability a at each site.

4ra=1.75 47ra=2.00 4ra=2.25
n |n| -! fféﬂ" Gpol ‘]:Jg,l.lt Gpol ;gxl‘t Gpol
(0,0,0) © © 1.669 90 © 1.787 67 © 1.89399
(0,0,1) 1.000 00 0.807 69 0.900 12 0.857 15 0.957 81 0.900 00 1.008 99
(0,0,2) 0.500 00 0.403 85 0.39091 0.428 57 0.41205 0.45000 0.403 06
(0,0,3) 0.33333 0.269 23 0.26378 0.28571 0.279 67 0.30000 0.29370
(0,0,4) 0.25000 0.20192 0.19797 0.21429 0.209 53 0.22500 0.21937
0,1,1) 0.707 11 0.571 13 0.580 86 0.606 09 0.61698 0.636 40 0.648 58
0,2,2) 0.35355 0.285 56 0.28742 0.303 04 0.30511 0.31820 0.32030
(0,3,3) 0.23570 0.190 37 0.190 83 0.202 03 0.20241 0.21213 0.212 38
(0,4,4) 0.17678 0.14278 0.14299 0.15153 0.15170 0.159 10 0.15921
(1,1,1) 0.577 35 0.466 32 0.444 49 0.494 87 0.47247 0.51962 0.496 68
(2,2,2) 0.288 68 0.233 16 0.23582 0.247 44 0.25032 0.259 81 0.26275
(3,3,3) 0.19245 0.15544 0.15645 0.164 96 0.166 05 0.17320 0.174 31
(4,4,4) 0.144 34 0.116 58 0.11705 0.12372 0.12423 0.12991 0.13045
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adjacent lattice sites (0,0,1 of Table II), the screening is
94-95% of that expected in a continuous dielectric. In
the most favorable case, where the two charges are at ad-
jacent body-centered positions (0,0,1 of Table III), the
screening is 11-12 % greater than in the continuum.
This is sufficient, when 4ma=2.25, to make the screening
stronger than the bare repulsion, so that from classical
electrostatics alone one can actually obtain an attractive
force between two like charges. We note that the Lut-
tinger instability discussed in Sec. IV comes into play
only at 4ra=1/0.42602=2.347.

This result is extremely encouraging for the possibility
of short-range pairing mechanisms between electrons or
holes leading to boson formation, as it suggests that un-
der favorable circumstances the Coulomb repulsion
might be wholly or nearly nullified by dielectric effects.

Our other striking result (Sec. IV) is the existence of
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the L' configuration as the ground state of binary simple
cubic crystals in a narrow range of polarizabilities. In
view of Eqgs. (63), one species of ion should have 47a near
3 and the other near }. Since the preference for L' de-
pends on the inequality 0.34488> 1, we may estimate a
tolerance of a few percent in the tuning of ionic polariza-
bilities to obtain this ground state. We note that negative
ions normally have much greater polarizabilities (on ac-
count of greater volume) than positive ones, and so the
needed ratio of 15-20:1 might not be impossible.
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