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Short-range Coulomb screening in a dielectric crystal

R. Friedberg and H. S. Zhao
Department ofPhysics, Columbia University, New York, New York 10027

(Received 19 March 1991)

We study the near dielectric screening of the Coulomb repulsion by a lattice of point polarizable ele-
ments. We find that the far screening factor (related to the static dielectric constant) persists even to dis-
tances of one or two lattice spacings. In some configurations the screening factor is enhanced by proxim-
ity, and we exhibit a case (two like charges at body-centered positions one spacing apart in a simple-
cubic lattice) in which the screening factor exceeds 1 by —1%, although the polarizability is still below
the Luttinger antiferroelectric threshold. Thus the dielectric screening overcomes the bare Coulomb
repulsion in this case, and the net effect is attractive. Such considerations may play a part in explaining
the mechanism of short-range pairing in cuprate superconductors. Incidentally we demonstrate that for
the NaCl type of crystal there exists a small range of ratios of ionic polarizability for which a third
configuration is preferred at T =0 K to both the ferroelectric and the Luttinger antiferroelectric spon-
taneous polarization.

I. INTRODUCTION

In any na. ive model of electron or hole pairing in cu-
prate superconductors, the Coulomb repulsion is trouble-
some. The bare Coulomb energy between two electron
charges 6 A apart is about 2 eV, whereas the attractive
energy available for pairing, which is usually supposed to
arise from magnetic effects, is presumably —10 eV,
comparable to kT, . How can the latter overcome the
former?

The problem is softened but not eliminated in the s-
channel model for superconductivity. ' There the net en-
ergy of the paired state is allowed to be positive; but for
reasonable fits to data it should be only —10 eV, so
that we still need a way to cancel or reduce the Coulomb
repulsion. One possibility is a capacitative effect be-
tween planes: The charged boson condensate in one
plane is stabilized by a deficiency of that charge on
another plane.

A different approach is to attribute the formation of
bosons to the pairing of fermionic quasiparticles that car-
ry no charge, as in the resonating-valence-bond (RVB)
model. Such models bypass the Coulomb difhculty in
the insulating phase entirely, but it would seem to reap-
pear in the superconducting phase since the current must
be carried by a charged Quid.

Another way to reduce the Coulomb repulsion is by in-
voking the polarizability of the ions making up the crys-
tal lattice. For two external charges far apart within the
crystal, the effect simply reduces the Coulomb interaction
by a factor equal to the dielectric constant of the crystal,
which may be quite large. It is by no means evident,
however, whether so great a reduction may be expected
when the distance is only one or two lattice periods.

Accordingly we have undertaken to calculate Coulomb
screening in an idealized crystal composed of identically
inducible point dipoles. . We do not take account of the
complications due to ionic heterogeneity, nonpointlike
polarization, and quantum and thermal effects. We take

the naive classical point of view commonly used in deriv-
ing the Causius-Mossotti law, except that we no longer
assume that the polarization is uniform over the lattice.

We realize that the quantity we are calculating may be
partly included in the more sophisticated arguments that
ascribe pairing to the interaction of quantum orbitals, but
such arguments normally do not take account of the self-
interaction of the lattice as a whole. On the other hand,
calculations in which everything is derived from proper-
ties of the phonon spectrum may not take adequate ac-
count of the position of the paired objects in real space.

In the following section we show how the screened
Coulomb potential may be expressed as an integral over
the Brillouin zone, in which the integrand is a simple
nonlinear function of certain sums of Madelung type. In
Sec. III we apply the powerful extensions of Madelung's
methods now available to obtain quickly convergent
transformations of these sums.

In Sec. IV we discuss implications for stability against
antiferroelectric distortion: Briefly, the fact that a cer-
tain function over the Brillouin zone may reach its max-
irnurn at a nonvanishing wave vector implies that the
"polarization catastrophe" can occur nonuniformly even
when the dielectric constant remains finite. For the
homogeneous simple-cubic (sc) lattice the principal insta-
bility is to the mode first described by t.uttinger. We
show, however, that in a sc lattice with two alternating
species there exists a narrow range of relative polarizabil-
ity for which a different nonuniform mode predominates
over both the Luttinger and the uniform mode.

In Sec. V we will present some results of numerical cal-
culations for a simple-cubic lattice of identical point po-
larizable components. The main result is that the
Coulomb potential can be strongly screened even for two
charges in neighboring lattice cells. For some
configurations the screening factor can be even larger
than the bulk dielectric constant. In the last section we
consider some of the sirnplifications we have made and
discuss the implications of some of our more striking re-
sults.
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II. GENERAL FORMALISM AND
GREEN'S FUNCTION

Supposing C(k) given, we may write the solution to
(10) as

Consider a lattice of points

r; =nia +n2a +n3a1 2 3

p(k) =ag(k) E'"'(k),

where

(12)

where n &, nz, n3 are integers.
We assume that each lattice site carries an induced

point dipole

p. =(xEloc

where

Eloc Eext+ ~Ej
l l

l

(2)

(3)

Here El is the field at r; due to p - at r, and E', "' is the
field at r; due to sources other than induced dipoles.

The energy of the system in the given field E';" is

~ Pi'Pi ~ Pipg 12a,.t&.
~

2 Ir; —r.
I

(4)

The notation p;p:VV [1/(r; —r, ) ] means

(p,. V„)(p . .V„)[1/(Ir; —r +r)]I, 0, similarly in later ex-
pressions.

The minimization of c with respect to P,. yields the
equilibrium relation

p(k) =gp, e

Eext(k) QEexte i

in terms of which (4) and (5) become

=E;"'+ g (p, V)Va t~ ) Ir rj

equivalent to (2).
To solve this infinite set of equations, we introduce the

Fourier expansion

g(k) = [1—aC(k)] (13)

Eext( k )Eext( k )
e .p k )

2
(14)

We shall calculate C(k) for the simple cubic lattice in a
later section. Here we point out that, at zero tempera-
ture and in the absence of any external field, the stability
of the system against spontaneous ferroelectric or gen-
eralized antiferroelectric perturbation would require that
t) E(k)/Bp(k)t)p*(k) be positive definite; in view of (9)
this would require that the eigenvalues of C(k) be all less
than a ' for all k. The consequences of this will be dis-
cussed in Sec. IV.

With C(k) given, we may also evaluate the potential
energy of the system plus two external point charges q, q'
at r, r':

I

c =c+tot

1 1=—
q G,&(r, r)+ —

q G,&(r', r')+qq'G(r, r'),

where

G,t(r, r')= —f ag(k):V, i)t(k, r)V, [iIt(k, r')]*
(2~)'

(16)

and

the inverse being taken by regarding the tensor as a linear
operator on three-vectors. The integrand of (8) then be-
comes

E(k) = ——Re[p(k) E'"'(k)*]1

2

d kE= f s(k),
(2m )

where

s(k)= — ——p(k)[p(k)]* C(k)]1 p(k) [p(k)]*
o,'2

(8) G(r, r
I

—'I +Gtmt(r, r') .1

r —r'

The function tti is defined by
ik r,.

P(k, r)=g
Ir —r, I

(18)

and

—[p(k) [E'"'(k)]*+c.c. ]

=E'"'(k)+p(k) C(k),

where

C(k) = g e 'VV—
r,. (%0)

(9)
If we wish to place the point r directly on a lattice site

r;, we shall adopt the convention that G,&
is to be aver-

0

aged over values of r within a small sphere centered at
r; . The effect of this is to remove the term with i =io
from the gradient of (18) and to replace r by r; in all oth-

er expressions. The same is true of r'.

III. LATTICE SUMS
The integrals go over the unit cell in dual (i.e.,

reciprocal-lattice) space: k=k'b, +k b2+k b3, where
sr&(k', k, k )—&m. , b,.a~=5, J. The relation between b's

and a's will be discussed in Sec. III.

We now derive rapidly convergent expressions for the
functions P(k, r), its gradient, and C(k) defined in Sec. II.
We shall assume that the lattice in question is described
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by (1), where a', a, a are fixed vectors not necessarily or-
thogonal. We shall resolve the vector r as

r=r, a'+r2a +r3a (19)

solving (25) as a quadratic in y
To normalize V we integrate (24) through ri=ni.

Substituting the result into (22) we have

and k as

k=k b&+k b2+k b3

—ikr ~ rm~ i "1 im r., fr~=e
Re@

for r& &n&, and

(27)

P(k, r) =gP„(r),
n&

where (suppressing the argument k)
—ik r,.

P„(r)= g r —r.
n2, n3 l

(20)

(21)

For r, Wn„we notice that P„(r)e'"' is periodic.
1

Fourier expansion on the 2,3 plane gives

hatt„(r)=e '"' g V & i(r, )e'
m, m

where

(22)

m=m b2+m b3

with m, m =2m. Xinteger. (From now on we shall use
the shorthand "m" collectively for m, m as in V, for
example. )

Substituting into Poisson's equation

V P„(r)=—4m g e '6(r3 n3)—
2 3

7

X 6(rz n2 )5(r, n, )——(23)

and inverting the Fourier transform on the plane, we get

where b &, b2, b3 are basis vectors for the dual lattice:

a'Xa'
b)= etc. ; 1&.a =ALIIa'(a Xa)

To calculate pk(r), we single out one direction, say the
1-direction, and write

n ~r(=e
Rey

(28)

1 1 1
V = ——(r V)V

/r/ 2 /r/

VV = ——(r V)VV
1 1 1

Changing r to r —r;, we find

for r, (n, . As long as r, Wn „the series in m is exponen-
tially convergent on account of (26). Thus, if r is not on a
lattice site, we may obtain V,P(k, r) (from now on we
shall write V for V,) by analytically difFerentiating each
term of (27) or (28), summing over n, —this sum is
analytic! —and finally over m. [Note that the choice of
the 1-direction in (20) was arbitrary. As long as r is off
lattice, we can single out a j direction for which
r %integer. ]

If r is on a lattice site (say r =0 without loss of general-
ity) then we define P by omitting the singular terin from
(18). But then, for n, =0, P„(r) is no longer periodic and
(22) does not hold. This is a serious difficulty.

It is absolutely necessary to confront this difhculty, be-
cause even if r, r' are not on lattice sites we cannot find
G(r, r') without computing C(k) [see (16) and (13)] which
by (11) is just the double gradient of P(k, r) at r=0, with
the singular term omitted.

To this end we use a device introduced by Mackenzie.
Notice that the Coulomb potential has the unique proper-
ty

1 1= —(r V)

a
b)

E

where

a
i K ~ b, — i K V—= 4n5(r, n—), —

r)

(24)
But from (19) we have

K =k —m.
—y (r) —nl)

Obviously V (r, ) has the exponential form e
m(n&

—rl ~

for r, )n„but e ' ' for ri (n„where y (with
real part greater than 0) and —y* are the roots of the
equation

a ==a' V,
BrI

and hence

r V=gr,

(29)

(30)

(b,y +i K ) ~ (biy +iK ) =0 . (25)
so that

This equation is satisfied by putting

Xb, l

—iK. b,
7m b 1 1

as seen by direct substitution or, more laboriously, by

y(k, o)=y yn,
1

l

(31)

In this sum we are still supposed to omit the term
ri=0. But now that causes no embarrassment because
for each l the whole layer n&=0 drops out of the sum.
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Hence by choosing the special direction in (20) to be the 1

direction instead of the 1-direction we obtain P in the
form

But this quantity vanishes if r lies in the plane rI =0.
It follows that we can return to (21) [not (31)]and write

$(k, O) =g g n(
a {1)

n {wo)
(32) a

, P(k, r) = g, P„(r)a
Br p {~p) Br

(40)

where P'„" is given by a sum like (27) or (28) with bi sin-
I

gled out in (26) instead of b„and with m orthogonal to a'
instead of to a'.

Similarly we get

since

, P„(r)= g e
Br

n&

~n, a'+n2a +n3a
~

(41)

Vy(k, o) = —g g n, VP'„", ,
, {~O)

C(k) = —g g n I VVp'„", ,

(33)

(34)

which vanishes for n
~
=0.

The individual terms on the right side of (40) can be
written with the help of (27) and (28) as

where it is understood that r is set equal to 0 after the
gradients are taken. In all these expressions the "bad"
layer nr=0 does not enter.

This is a powerful method of great generality. It leads,
however, to a large computation. For P we must do three
independent Madelung sums, each consisting of summing
an expression like the summand of (27) over nI (analyti-
cally) and over m (numerically). Likewise we must do
nine Madelung sums to get the three components of VP,
and 15 Madelung sums to get the five independent com-
ponents of C= VVQ.

(We say that C has five components because its 3 X 3
components are subject to the three constraints of sym-
metry and one of tracelessness. For an oblique lattice
these four constraints, though still present, are less con-
venient to apply since symmetry holds for the matrix ele-
ments C" =a P/arlari. , whereas tracelessness holes for

(lfll
the "mixed" matrix CI'=+I-b~.bl-C' ' . Thus one might
find it convenient to ignore the symmetry constraint and
calculate independently eight components C&' ', this would
require 24 Madelung sums. )

We therefore have sought to reduce the number of
sums to be performed, while still omitting the "bad" lay-
er from the calculation. Let us note that the gradient
operator can be written not only as

V =+bi a
(35)

c}
, P„ (r)ar" ~ , p

m Re@

(42)

—ik r,. ()
—

n&

arq ar ' „ „ a&q [n, a +n2a +n3a [

&
P„(r)= g e

"2"3

(43)

which also vanishes when n, =0. Therefore we can write

, (b(k, r) = g, P„(r)
r~p

(44)

for n&)0, and the same with —y* replaced by y for
n, &0. (Note that b, .m=O for rectangular lattices but
not in general for oblique ones. )

This whole procedure can be repeated for l =2, 3 in-
stead of l = 1, and in this way the three quantities
aP(k, r)/ar'~, 0 can be calculated by performing only
three Madelung sums instead of nine.

The off-diagonal components of C can be found in a
similar manner; for example,

consistent with (19), but also has

V =pa'la
1

where we define

a = = a
br V=gb& bi

Then we have

a (r )=2r, ,ar'

as easily seen by substituting into (27). Hence

a
Brl r r3

(36)

(38)

(39)

and similarly for other Cl', IXI' Thus we ob. tain the
off-diagonal components from only three instead of nine
Madelung sums if the lattice is rectangular, or 6 instead
of 18 if it is oblique and we do not use the symmetry con-
straint.

For the diagonal components, we observe first that

a a

, Br, gp'' (45)

and so

cf =(a/ar, .)(a/ar')y

is traceless because V /=0. It therefore suffices to calcu-
late two differences, for example, C& —C2 and C', —C3.

We now consider the quantity
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a a a 1 a a
r) =r&

ar, ar, ar' lrl ar, a.2 lrl'
T

a
r(

ar)
a a

ar, ar2

a a a a 1"'
a», ar, ar' ' ar, ar, ar'

Since the second term is symmetric under interchange of
1 and 2, we have

homogeneous quadratic form in the p, . If this form is
not positive definite (i.e., if it has even one negative eigen-
value) then the configuration with all p;=0 is not the
ground state, and the system (considered ideally at zero
temperature) will polarize spontaneously until it is stabi-
lized at some nonzero configuration of p s by nonlinear
restoring forces not considered here.

By translation symmetry the quadratic form in ques-
tion is diagonal in k, and so its eigenvalues are those of
the matrices

Q(k) =-,'[u 'I —C(k)]

a+ a 1

a r& a+

a2

ar, ar' (47)
ar2ar 2 Ir

~

"2
(48)

This and a similar formula for O', —C3 enables us to find
all the diagonal elements CI' by means of four Madelung
sums instead of six.

Since for any vector q=g&q&a' we have C.q=gttta',
where t&

=g& C& q&, can regard the Ct as matrix elements
l' I'

of a linear operator. Hence the inversion indicated in (31)
can be carried out as a matrix inversion using these ele-
ments. This means that (suppressing the argument k)

g=Xgi abi
I, 1'

Replacing r by r —r; and summing over r; we find on
setting r=0

a2C', —C2= gn, a-
ar2ar

1

for individual values of k. Hence the polarization catas-
trophe arises whenever any C(k) has an eigenvalue
greater than 1/a.

For k~O we have C~4m( —,'I —kk) for any cubically
symmetric crystal. [The term 4nkk—is t. he result of re-
placing (11) by an integral, while —,mI is the Clausius-
Mossotti correction; the latter becomes anisotropic in
crystals of lower symmetry. ] Since the highest eigenvalue
is 4~/3, one might conclude that at zero temperature a
cubically symmetric crystal will develop spontaneous fer-
roelectricity if 4ma/3) 1. In fact, the threshold value of
u is just that which makes the dielectric constant
jr= 1+4ma/(1 ——', ma) infinite.

This simple conclusion must, however, be modified in
two ways. First, there may be values of kAO for which
C(k) has an eigenvalue greater than 4ir/3. This holds for
the simple cubic lattice, in which the maximum eigenval-
ue is attained for k=(m, m, O). The eigenconfiguration is
that in which each dipole points along the z axis in the
same sense as its z neighbors, but in the opposite sense
from its x and y neighbors. The eigenvalue was first cal-
culated as 2X2.676=5.352 by Luttinger in 1946; we
find (see (Table I) 4m. X0.42602=5. 3533. This is greater
than the positive eigenvalue of C(0), 4m /3 =4.18879.

One would thus expect a crystal of this type to become
antiferroelectric rather than ferroelectric at zero temper-
ature. Moreover, by setting 1/4ma=0. 42602 we obtain
the critical value of the dielectric constant,

where gI' are given by

gg, (5t tzC& )=-—5i
I" I' I' I'

(50)
8m'

3
1 — =11.789 .

3

We may then write (16) as

G~,i(r, r')= —f f f &
ag& a .adk dk dk i t i" a a

(2') ar' ar'
(51)

In Sec. V we shall discuss an explicit computation of
(51) for the simple cubic lattice.

IV. STABILITY AGAINST SPONTANEOUS
POLARIZATION

The eigenvalues of C(k) are connected with the well-
known "polarization catastrophe". Suppose that there
is no external field (E;"'=0, all i) Then (9) bec. omes a

Simple cubic crystals not antiferroelectric at zero temper-
ature, one would expect, must have a dielectric constant
less than this number. By contrast, for the face-
centered-cubic lattice there is no eigenvalue higher than
4m/3. Such a crystal could be ferroelectric at zero tem-
perature, and the critical dielectric constant is infinity.

But second, the above reasoning assumes that all the
atoms are equally polarizable, and for typical ionic crys-
tals this is not true. If, for example, alternate sites have
two different polarizabilities, a& and a2, the three-vector
p(k) is replaced by a six-component pair (pi(k), pz(k)),
and Q by a 6X6 matrix. Nevertheless, many of the
above conclusions remain true qualitatively.

In particular, for the NaC1 type of crystal, (52) be-
comes
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e2 I—C+
=(.rr, ~, vr )

0 0

C+ =4~@+ 0 0

0 0 1

where from Table I

] 1 +a I—C —C
(Q)(k)=—

2 —C
L

where C+ =
—,'C(k)+

2 C(k+ m ),
k=(m. , m, 0), k+m=(0, 0, m), we have

(53)

For

(54)

the condition for L stability is

DL =l 1Y2 c+ ('Yl+y2) s )0, (61)

where s =c —c+.
One could arrange y, and y2 so that both D& and DL,

vanish, and thus describe a hypothetical crystal
representing a "boundary" between H- and L-polarizing
substances. It may be seen, though, that this boundary
does not really exist because there is a third configuration
L' which preempts both H and L within a narrow range
of the parameters. The L' configuration corresponds to
the x or y sector of (56). The condition for L stability is

2c+ =0.42602+( —0.77090) .

Since C+ and C are simultaneously diagonal, (Q) can be
reorganized as

(55)

(y)+ —,'(c)

(Q) =2~

where

C+ C

(y )+—,'(c)

(y) —(c)

(56)

(c)=
C+

(57)

and

yi 0
(y) =

() y2.

y; =(4ma;)

(58)

(59)

Da =y iy2 ,—'(y i+y—2—)» (60)

Let us now designate by H the configuration in which
all dipoles point in the same direction and by L the alter-
nating configuration described by Luttinger, which cor-
responds to the z sector of (56). As discussed above, if
the two species of ion are identical the favored instability
is to L polarization, but if one species is totally unpolariz-
able than the other will form a fcc lattice which prefers to
undergo H polarization. The condition for H stability is
4na/3 ( 1 where a =

—,'(a&+ a@), or

Di =yiyz+ lc+(yi+yz) .'—»—0. (62)

To exhibit the existence of a region dominated by L', we
choose y, and y2 so that

yly2= —(3 1+3 2) =—,'s

this is possible since s )—', by (55). We now have

DH =0, DL =s (
—

—,
' —3c+ ),

Dl.=s( —,'+ —', c+ )= ,'Dl——

(63)

(64)

V. NUMERICAL CALCULATION OF GREEN'S
FUNCTION FOR A SIMPLE CUBIC LA'I"j.'ICE

We have carried out a sample calculation of G,I for
the simple cubic lattice. The basic formula (16) involves
an integral which we have done by fast Fourier transform
(FFT); in this way we obtain the values of G~,~

simultane-

But from (55) we see that 2c+ = —0.34488 & —
—,', so that

DL )0 and DI ~ &0. Thus this crystal would be stable
against L polarization but unstable to L' polarization.
By increasing either y; slightly we could render it also
stable against H polarization. Therefore there is a finite
region in the y&-yz plane representing ionic crystals of
the NaC1 type which (if they exist) should be H and L
stable but L' unstable at zero temperature.

TABLE I. For the simple-cubic lattice, we show a11 six components of c=C/4m for all k&0 having all three components divisible

by m/2.

2

2
0

2
0

2
77

&xx

—0.718 96

—0.191 34

0.000 00
—0.77090
—0.468 48

—0.276 18

—0.213 01
—0.10405

0.00000

0.359 48

—0.191 34

0.00000

0.385 45

0.062 71

0.13809
—0.213 01
—0.10405

0.00000

&zz

0.359 48

0.382 69

0.00000

0.385 45

0.405 77

0.13809

0.426 02

0.208 09

0.00000

Cxy
—

Cyx

0.00000

—0.275 34

—0.143 84

0.00000

0.00000

0.000 00

0.00000

0.00000

0.00000

Cyz =C

0.00000

0.000 00

—0.143 84

0.00000

0.000 00

—0.064 05

0.00000

0.000 00

0.00000

zx xz

0.00000

0.000 00

—0.143 84

0.000 00

0.00000

0.00000

0.000 00

0.00000

0.000 00
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ously for a whole family of positions r' =s+n, where s is
fixed and n is any lattice vector in (1).

For simplicity we have restricted ourselves to the case
s=r, r'=r+n; then P(k, r')=e '"'"P(k, r), and (16) can
be written

where

F(k, r) =aQgk):V„QV„Q' —,$(k, O) .4~+
1+

3
&EX

Combining (68) with (17) we have

(69)

G,i(r, r+n)
d'k= —J e' "ag(k):V„P(k,r)V„P(k, r)* .(2'�)' (65)

G(r, r+n) = 1 —4~a

1+—', o.

where we recognize

1 d k
(2~)'

(7O)

The FFT requires us to evaluate ag:VQVQ* on a set of
(2~) points evenly spaced in the k cube —m. (k; (m. ,
where q is some integer. We find, however, that there is a
singularity at k~0. In fact, we have P-4m /k,
V„P-4mi k/k, and C=4m( —,'I —kk/k ) by the
Clausius-Mossotti argument. [The continuum approxi-
mation gives 4rrkkj—k, and the lattice correction is
—', rrI; note that C is strictly traceless by (11).] Hence

1+—', era

1 —4~+

as the long-range dielectric constant.
The quantity F remains finite at k —+0, and therefore it

is more suitable for FFT. It is, however, discontinuous.
To establish this, we may write (for r&0)

ag:V,PV„P"—, 2
as k~O .a (4m)

1+—,'~n (66) P(k, r) =e '"' +ri(k, r)4m
(71)

This singularity does not spoil the convergence of the in-
tegral in three dimensions, but it makes it impossible to
sample the integrand at k —+0. Even if the k mesh is stag-
gered so as to miss the origin, the result will be unreli-
able.

We resolve this difficulty by noting that the singularity
arises from the distant behavior of G,&, which is already
known from the C1ausius-Mossotti law. Therefore we
can mitigate the singularity by subtracting a known term.
From (18) we have

(72)

+
z [ i k(V „+ik—)g*+(V„—ik)haik]

where g is finite and well behaved at all k, and

g( —k, r)=g*(k, r) .

Then

4 2

V„PV„P*= kk

G,l(r, r+n) =— 4m+ 1

I+-,'~a /n/

d k F g r eik'n
(2')'

d kj d k
y(k O) ikn-

(2m )

for any lattice vector n. Hence we may rewrite (65) as

(67)

(68)

+7'„gV'„g* . (73)

When substituted into (69), the first term of (73) yields

(4~)'k' /1 ',
1+—', m.a

which cancels the singularity in the second term of (69).
The second term of (73) does not give rise to any infinity
-k jk2, because V„g is real at k=O on account of (72).

TABLE II. Gp. l and G for on-site charges. For three values of 4~a and for several values of the separation vector n=r —r' we

show the continuum shielding function G",",'= ~n~ '4na j(1+—'ma) and the true lattice shielding function Gi„i. The charges are at

the on-site position in a simple-cubic lattice of polarizability a at each site.

G cont
po1

4~a = 1.75
Gp, ) G cont

pol

4+a =2.00
Gp, ) G cont

pol

4+a =2.25
Gp, )

(o,o,o)
(0,0,1)
(o,o,2)
(o,o,3)
(0',0',4)
(0,1,1)
(o,2,2)
(0',3',3)
(0 4 4)
(1,'1',

1)
(2,2,2)
(3,3,3)
(444)

1.00000
0.500 00
0.333 33
0.250 00
0.707 11
0.353 55
0.235 70
0.176 78
0.577 35
0.288 68
0.192 45
0.144 34

0.807 69
0.403 85
0.269 23
0.201 92
0.571 13
0.285 56
0.19037
0.142 78
0.466 32
0.233 16
0.155 44
0.11658

1.669 90
0.759 81
0.370 12
0.252 56
0.193 92
0.579 75
0.285 91
0.19052
0.142 92
0.482 33
0.236 38
0.156 54
0.11708

0.857 15
0.428 57
0.285 71
0.214 29
0.606 09
0.303 04
0.202 03
0.151 53
0.494 87
0.247 44
0.164 96
0.123 72

1.787 67
0.809 68
0.392 93
0.265 61
0.203 61
0.613 39
0.303 06
0.201 96
0.151 57
0.509 82
0.250 73
0.166 12
0.124 26

0.900 00
0.450 00
0.30000
0.225 00
0.636 40
0.31820
0.212 13
0.159 10
0.51962
0.259 81
0.173 20
0.129 91

1.893 99
0.854 54
0.415 37
0.276 43
0.210 56
0.640 28
0.318 10
0.211 75
0.158 95
0.532 96
0.263 04
0.174 38
0.13046
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However, if we write

V„i)=Mc+ik M, +0[k ], (74)

where MM &
are real, then we get a finite term

4m.(k/k )M k in (73), leading to a discontinuous term
—M,kk/k in F. The other terms in (73) behave
smoothly in F; but the expansion of Qgk) has the form

ggk) =g(0)+g 2
'.kk+ (75)

and this leads to a finite discontinuity -g ~2 '.kkkk/k in
F. For the case r=0 the result is the same, since we
define V„P by averaging in the neighborhood r&0.

To avoid the ambiguous value of F at k=0, we stagger
our FFT mesh by giving each k' the values
2'�/2 + ', 3 X 2ir /2 + ', 5 X 27r /2q ~+ ', . . . . Nevertheless,
because of the discontinuity we should not expect our er-
ror to diminish exponentially in the parameter 2~ as
would be usual in integrating a periodic function. In fact,
we may predict the error as follows.

Our choice of mesh k space ensures that the Fourier
transform of I'", as we calculate it, will be antiperiodic in
n, with antiperiod 2~ in each Cartesian direction. In
fact, if F= J [d k/(2~) ]e' "F is the true transform,
then what we are calculating is really

11 1+1l~+Pl3g„,( —1) ' ' 'F(n+2in'). Therefore the error con-
sists of the n'WO terms. For fixed n and increasing 2~,
the error will diminish essentially as F(2,0,0).

But F(n) is the difference between G(r, r+n) and its
continuum approximation. For general r, r' this
difFerence should decrease as 1/~n ~, since each charge in-
duces nearby dipoles that affect the other charge to this
order. When, however, r' =r+ n, then the environment
of one charge is the inversion of that of the other. Hence
(taking two equal charges without loss of generality) they
induce opposite dipole moments, and the leading effects
cancel, leaving a discrepancy —I/~n~ due to induced
quadrupole moments in the near environment. Dipoles
at r" far from both r and r' contribute to 6 in proportion

to 1lr, r2, where r, =~r —r"
~, r2=~r' —r" ~. The

discrepancy between this and the result of spreading the
dipole into a continuous cube is down by another factor
1Ir, or 1/r2 T.herefore the "far" contribution to F is of
order f (d r"/r ir2) —1/ n~ also.

We conclude that the error in our calculation should
diminish as the cube of 2~. This was confirmed by com-
paring our value of F(0) for different values of q.

From the definition we see that F is real [as expected
since G(r, r+n) is even in n] and that F is even in k (as
expected since G is real). Hence there are really only
(2q ') real quantities in the FFT, related moreover by
permutation of axes. By transforming one layer at a
time, we are able to profit partly from the permutation
symmetry and the fit the FFT into —,'(2~ ') words of
double precision, or 2 ~ ' bytes (where 1 byte—=2 binary
digits) .

In evaluating sums of the type (27) and (28), we kept 25
terms, those having all

~
m '~ (2. This yielded an accura-

cy of —10 . Since the sums must be repeated for each
k, we saved computer time by tabulating the required ex-
ponential functions in advance, and by avoiding various
redundancies associated with permutations of axes. For
q = 6 the computation (error —10 ) required about
400 X 10 bytes and 4 min. CPU time (Digital Equipment
Corporation VAX 11-780 computer) for each value of r.
Typical results are shown in Tables II and III.

VI. DISCUSSION

We have presented in Sec. III a system of calculation
applicable to any three-dimensional lattice, but our nu-
merical results (Sec. V) pertain only to the simple cubic.
Hence we can answer our original questions (Sec. I) only
in a way which indicates roughly what may be expected
in other lattices.

We find that the dielectric screening is indeed effective
at distances of the order of a lattice spacing. In the most
unfavorable case studied, where the two charges are on

TABLE III. Gp, 1 and G for off'-site charges. For three values of 4ma and for several values of the separation vector n=r —r' we
show the continuum shielding function G~;",'= ~n~ '4vra/(1+ 8 era) and the true lattice shielding function G~,|.The charges are at
the body-centered position in a simple-cubic lattice of polarizability n at each site.

G cont
po1

4m' = 1.75

Gp, 1 G cont
pol

4+a=2.00
Gp, 1 G cont

po1

4mo.'= 2.25

Gp, 1

(0,0,0)
(0,0, 1)
(0,0,2)
(0,0,3)
(0,0,4)
(0,1,1)
(0,2,2)
(0,3,3)
(0 4 4)
(1,1,1)
(2,2,2)
(3,3,3)
(4 4 4)

1.00000
0.500 00
0.333 33
0.25000
0.707 11
0.353 55
0.235 70
0.176 78
0.577 35
0.288 68
0.192 45
0.144 34

0.807 69
0.403 85
0.269 23
0.201 92
0.571 13
0.285 56
0.19037
0.142 78
0.466 32
0.233 16
0.155 44
0.11658

1.669 90
0.900 12
0.390 91
0.263 78
0.19797
0.580 86
0.287 42
0.19083
0.142 99
0 AHA 49
0.235 82
0.15645
0.11705

0.857 15
0.428 57
0.285 71
0.214 29
0.606 09
0.303 04
0.202 03
0.151 53
0.494 87
0.247 44
0.164 96
0.123 72

1.787 67
0.957 81
0.412 05
0.279 67
0.209 53
0.61698
0.305 11
0.202 41
0.151 70
0.472 47
0.250 32
0.16605
0.124 23

0.900 00
0.450 00
0.300 00
0.225 00
0.636 40
0.31820
0.212 13
0.159 10
0.51962
0.259 81
0.173 20
0.129 91

1.893 99
1.008 99
0.403 06
0.293 70
0.219 37
0.648 58
0.320 30
0.212 38
0.15921
0.496 68
0.262 75
0.174 31
0.13045
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adjacent lattice sites (0,0, 1 of Table II), the screening is
94—95% of that expected in a continuous dielectric. In
the most favorable case, where the two charges are at ad-
jacent body-centered positions (0,0, 1 of Table III), the
screening is 11—12% greater than in the continuum.
This is sufficient, when 4~a=2. 25, to make the screening
stronger than the bare repulsion, so that from classical
electrostatics alone one can actually obtain an attractive
force between two like charges. We note that the Lut-
tinger instability discussed in Sec. IV comes into play
only at 4m a = 1/0. 42602=2. 347.

This result is extremely encouraging for the possibility
of short-range pairing mechanisms between electrons or
holes leading to boson formation, as it suggests that un-
der favorable circumstances the Coulomb repulsion
might be wholly or nearly nullified by dielectric effects.

Our other striking result (Sec. IV) is the existence of

the L' configuration as the ground state of binary simple
cubic crystals in a narrow range of polarizabilities. In
view of Eqs. (63), one species of ion should have 4@a near
3 and the other near —,'. Since the preference for L' de-

pends on the inequality 0.34488& —,', we may estimate a
tolerance of a few percent in the tuning of ionic polariza-
bilities to obtain this ground state. We note that negative
ions normally have much greater polarizabilities (on ac-
count of greater volume) than positive ones, and so the
needed ratio of 15—20:1 might not be impossible.
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