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The Fermi-surface-averaged electron-phonon interaction (I2) has been computed for 12 hexagonal-
close-packed transition metals in the 3d, 4d, and 5d series. The calculations were first done with a
quasiorthogonal tight-binding formalism based on Fréhlich’s modified tight-binding wave function. This
method employed accurate Slater-Koster fits to scalar-relativistic augmented-plane-wave band struc-
tures, and scaling laws to determine gradients of Slater-Koster parameters. The second method em-
ployed the rigid-muffin-tin approximation and the augmented-plane-wave band structures. The two
methods gave the same systematic trends across the series and good agreement between computed values
for most elements. Differences in some cases are attributed to sensitivity of the calculation to band-
structure parameters and different approximations employed. The two results were compared with
empirically deduced values and other theoretical calculations. Single-atomic character, crystal struc-
ture, and the area and complexity of the Fermi surface have been found to be important in determining

the behavior of (I2).

1. INTRODUCTION

There has been considerable interest in predicting and
calculating the superconducting transition temperature,
T., for simple metals, transition metals, and their com-
pounds since the BCS theory' and the more general
Eliashberg-Nambu  strong-coupling  theory>®  were
developed. Both of these theories relate closely proper-
ties of the superconducting state to those of the normal
state (e.g., phonon spectrum, electron-phonon interac-
tion, etc.). Therefore, the calculations of T, depend sen-
sitively on the properties of a material, and more accu-
rate treatment of these normal-state properties gives a re-
liable determination of T,.

T,, in strong-coupling theory, is determined simply by
solving the linearized Eliashberg equation to obtain the
point where the nonzero solution of the gap function
A(w) just appears. This is usually accomplished by an
iterative numerical solution of Eliashberg’s gap equation
from knowledge of the Eliashberg electron-phonon cou-
pling function, a*(@w)F(w), and the Coulomb repulsive
potential, U.. For simple metals falling in the weak-
coupling regime, a*(w)F(w) can be written in terms of
pseudopotential form factors* and then the problem can
be solved from the deduced gap edge A(Ay)=A, by using
the BCS relation Ag=1.76kyT,. Alternatively, McMil-
lan has done a detailed study of the dependence of 7, on
the electron-phonon interaction in metals.” He used an
iterative technique to improve the accuracy of an as-
sumed analytic solution to the Eliashberg equation and
found a simple formula for T, in terms of three normal-
state parameters:
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In this equation, 6 is the Debye temperature, and A and
p* are the electron-phonon and electron-electron cou-
pling constants, respectively. Allen and Cohen® have per-
formed pseudopotential calculations for A and hence T,
from McMillan’s equation (1) for 16 simple metals and
the alkaline earths, Ca, Sr, and Ba. They concluded that
the electron-phonon interaction mechanism does a com-
pletely adequate job of explaining 7, in these metals. For
transition metals McMillan showed that the electron-
phonon coupling constant, A, can be written in the form
of an electronic term divided by a phonon term:’

_ n(Ep)<IZ)
M{w?)

where n (Ef) is the density of states at the Fermi level
Ep, (I*) is the square of the electronic transition matrix
element averaged over the Fermi surface, M is atomic
mass, and (w?) is the renormalized phonon frequency.
By using Egs. (1) and (2), and known values of n (Ey), M,
and (w?) for a given material, we can either determine
an empirical value of {(I2) through the empirical value of
A obtained via the experimentally measured value of T,
or determine 7, through the value of A by calculating the
quantity (I?). The determination of the theoretical
value of (I?) is therefore the major part of the task to
determine T, theoretically. The purpose of this paper is
to obtain (I?) for hcp elements. Two basic techniques
which have been used in calculating (I?) are the rigid-
muffin-tin approximation (RMTA) and the modified-
tight-binding approximation (MTBA). Both are used
here to provide not only values of (I2), but also esti-
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mates of their accuracy obtained by comparing the two
results.

The RMTA was proposed by Gaspari and Gyorffy,’
and is based on the Bloch formulation® of the electron-
phonon interaction in which the transition matrix be-
tween two electron states is taken between eigenfunctions
of the periodic potential. The systematic study of 3d, 4d,
and 5d transition-metal series using the RMTA has been
done by several previous researchers in cubic struc-
tures.” 12 The MTBA technique was first implemented
by Mitra!® and Barii¢ et al.!* All the effects of the
electron-phonon interaction are represented by an
electron-phonon interaction matrix taken between
Frohlich’s modified-tight-binding bases.!>!¢ In the case
of transition metals the electrons are tightly bound, with
wave functions describable by localized orbitals having
nearly vanishing overlap with their nearest neighbors,
and the transitions are between two states on the Fermi
surface. These two approaches are identical to first order
in the ion displacement.!” 18

Frohlich’s modified-tight-binding basis leads'>!# to the
expression of transition matrix elements in terms of a gra-
dient of Hamiltonian matrix elements in atomic bases
V{4, (r—R;)|H|¢,(r—R;)). This allows use of the
Slater-Koster (SK) simplified linear combinations of
atomic-like orbitals (LCAO) scheme!®?° to describe the
variation of energy integrals due to lattice vibrations. By
employing scaling laws for the SK bond parameters the
gradient calculation may be simplified. Results for some
cubic transition metals using the MTBA were given by
Varma et al.;?! Fry et al.? reported a systematic study
of the cubic transition metals, and Fletcher et al.** com-
puted {(I?) for several bce transition metals and alloys.

While there is general agreement between values com-
puted using the RMTA and the MTBA, some differences
have been found which are thought to be due to the sensi-
tivity of some of the calculations to numerical procedures
and the details (shapes, sizes) of the Fermi surface. Since
the RMTA and MTBA are both approximations, the re-
gions of validity for these two may overlap but not be
congruent. Direct comparison of computed values of
(I?) has been possible. Experimental values deduced
through Eq. (1) are made uncertain by lack of reliable
values of (w?) and u*, so the agreement between the
RMTA and MTBA is perhaps a better indication of the
reliability of theoretical estimates of (I?).

Until now the MTBA has been limited to cubic sys-
tems only. This paper reports calculations of (I2) for 12
hep transition metals using the MTBA and RMTA
methods. The plan of this paper is the following. In Sec.
II, we describe the quasiorthogonal, tight-binding formu-
lation of the electronic transition matrix in an LCAO
representation using the modified-tight-binding bases.
The final MTBA expression for {I2) in terms of transi-
tion matrix elements is presented. In the same section we
also give a brief account of the RMTA approach. In Sec.
IIT we present our computed values of (I2?), compare
with previous estimates, and discuss the variation of (I2)
across the 3d, 4d, and 5d transition-metal series of the
Periodic Table. Section IV contains the concluding re-
marks.
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II. METHODS OF CALCULATION

The form of McMillan’s representation for A given in
Eq. (2) is still valid for the hcp structure (two atoms per
unit cell) if M is the mass of a single atom and n(Ey) is
the total density of states per unit cell. It is our purpose
to calculate the quantities {I2) for hcp metals. We now
describe two methods of calculation which are used in
this work.

A. The modified-tight-binding approximation

Frohlich’s assumption suggests that the tight-binding
wave function corresponding to the ions slightly dis-
placed with distance u;, from their equilibrium position
R; +7 can be written in modified-tight-binding form,!>16

«(R;+7)

@, .(k, r)—(l/\/N)z ¢ (r—R;

—T_ui'r) .

(3)

Assuming that the atom’s displacements u;, are small and
the quasiorthogonality relation for the atomic-like bases
remains valid,

<¢m(r_Ri—T—uir)l¢n(r_Rj_T'_uj‘r’)) zsijs‘rr’smn .

4)
We can write the Bloch-like electron state in the de-
formed lattice as

Wy, (r)= z L(K)D, (k,r) (5)

N
where A,,(k) are eigenfunctions and &, (k,r) are
Bloch-like sums defined in (3). The electron-phonon in-
teraction is normally described by the scattering of an
electron in one of the above states by the lattice vibra-
tions, leading to a transition to another such state. Using
(3), (4), and (5), one can show that the electronic transi-
tion matrix which is required in the calculation of {I?)
can be written in each Cartesian direction a as'>?°

:’p.',kuz z Ymn(k,)]A (6)

m,n

A,’;u(k)[q/f‘nn(
where

Vinn(K)= [V, (r—

hj

R;—7)|H|¢,(r—R;—7))]

ik«(R.+7—R.—7)
Xe T TR 7)

The energy integrals in (7) are sums of terms that are
products of angular parts (functions of the direction
cosines /,m,n of R; +7) and radial parts (SK bond param-
eters, which are functions of distance between two
atoms). Therefore, to calculate (7) we shall write the gra-
dient operator V,, in terms of derivatives of the energy in-
tegrals with respect to radial distance and direction
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cosines. For the evaluation of the radial derivatives one
must know the bond length dependence of each of the
bond strength parameters. In this study, we have used
the empirical scaling laws obtained by Harrison,?* where
one expresses the variation of the bond strength as an in-
verse power of the bond length, with the power depend-
ing only upon the angular symmetry of the orbitals in-
volved. This has been found to be quite accurate, partic-
ularly in the vicinity of the equilibrium atomic position.
A detailed analysis of the validity of this scaling law can
be found in Ref. 24. According to Harrison’s scaling law
the ss, pp, and sp bonds are taken to vary as D ~2, the dd
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(8)

Substituting (6) and (7) into (8), and using symmetry rela-
tions like Y5 =—v%,,, we find the final expression for
(I?*) in an LCAO representation

bonds as D ~3, and the sd and pd bonds as D ~ 33, where 43 Yan, +22 b,
D is bond length. For hcp structures, the work to evalu- ([?y=-—2<"¢ — 9)
ate (6) and (7) is very tedious, so we have used artificial Sk
intelligence programming to carry out this task accurate- % f FS |Vk Ek,u‘
y.
The quantity (I?) can be written as where
Ay (k) A, (k k)ydh(k Ay (k')A, (k'
B ST IvkEkp [ 3 AR A B0y R0 3 f lvk,Ek, T At () Ay (')
Ap(kK)A4,,,(k k A (K A (K )y 5 (K 10
Est |VkE AR A R >2f . Ivk,Ek, T3 A A7 K W ) (10)
and
dSk d K’ 2
b, = —k Ax (KA, K)y %, (k) —' .k"
" 2 fFS |VkEku| m'zn'a m#( ) n#( 7 (R V 3 % fFS’ |Vk’Ek'u'| Am”( :
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In order to do the numerical evaluation of these surface
integrals, we have divided the 5 th irreducible Brillouin
zone (IBZ) into 384 tetrahedra. By checking the relation
between Fermi energy and those energies of k points at
four vertices of each tetrahedron, we have constructed
the Fermi surface in the hcp Brillouin zone and have per-
formed surface integrations over the Fermi surface using
the analytic tetrahedron method (ATM).?

B. The rigid-muffin-tin approximation

The assumption that the muffin-tin potential moves
rigidly with the atom as it vibrates is known as the rigid-
muffin-tin approximation (RMTA). The RMTA was ap-
plied by Gaspari and Gyorffy’ to derive a now widely
used formula for the electron-ion matrix element (I2),
ie.,
8RR+, (12)

2E; _
(1*)= nED) 2{ (I +1)sin*(§; 4, —

2
(11)

where §, is the scattering phase shift at E; and R, is the
ratio
nl(EF )

R,=—LZF (13)
Y onfU(ER)

where n;(Ey) are the angular momentum components of
the density of states (DOS) at Er within the muffin-tin
sphere and n/'(Ey) is the single scatterer DOS which
can be computed from the radial wave functions. The
above equation is exact to / =1, but for / =2 and higher
it involves nonspherical corrections. These corrections,
as shown by Butler et al.,*® are small for cubic elements.
For the hcp elements we also expect the nonspherical
corrections to be small and hence we have neglected them
in this work.

The necessary input to the Gaspari-Gyorffy formula
was generated as follows: (a) the phase shifts §, were
found from the logarithmic derivatives of the radial wave
functions that correspond to the self-consistent crystal
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potential that we found from an APW calculation of each
element. (b) The DOS n(Eg) and n;(E) were computed
by the tetrahedron method? based on APW results for 45
k points in the irreducible hcp Brillouin zone. (c) The
free scatterers n}')(Ey) were calculated using the radial
wave functions of the above crystal potential.

Finally, the accuracy of the RMTA has been ques-
tioned, especially for the new high-temperature ionic su-
perconductors. However, in the hcp d-like elements that
we examine here the RMTA should work well. Compar-
ison with tight-binding results, where the RMTA is not
necessarily made, provides a test of both approximation
methods, and is given in the next section.

III. RESULTS AND DISCUSSION

A. Band structures

The MTBA and RMTA formulas for (I?) have been
applied here to all hcp metals in the 3d, 4d, and 5d
transition-metal series. The first-principles band struc-
tures were self-consistent, scalar-relativistic calculations
performed by the APW method at the equilibrium lattice
constants. The SK fits to these band structures may be
found in Ref. 27. In the MTBA work we employed only
the two-centered (2C) orthogonal parameters in order to
simplify the process, so comparison of computed quanti-
ties for RMTA and MTBA methods must be made with
this fact in mind. The 2C-nonorthogonal SK parameters
are more accurate, with a typical rms error of 5 mRy
over the APW bands, while the rms error using orthogo-
nal parameters is approximately 10 mRy. The SK pa-
rameters, band structures, and n (E) plots are presented
in Ref. 27, along with rms errors of the various fits.

Results for the calculation of the electron-phonon in-
teraction sometimes depend sensitively upon the shape of
bands, the Fermi energy and Fermi surface, and n (Ey),
so accurate determination of these quantities is impor-
tant. Table I shows Ep and n(Eg) for the orthogonal-
tight-binding (OTB), nonorthogonal-tight-binding
(NOTB), and APW band structures for each element con-
sidered here. Integrals with the OTB and NOTB band
structures were computed here using the ATM with 384
and then 1536 tetrahedra in the IBZ. The APW results
were obtained using only 45 k points in the IBZ, since
generation of many points was not practical for a sys-
tematic study of the hcp elements. Because of this, some
of the computed values were not stable and are left blank
in Table I in the APW columns. Ej and n (Ej) have also
been computed independently with a different ATM pro-
gram and 3078 tetrahedra in the IBZ.2® In view of the
different numbers of tetrahedra used, we consider agree-
ment between the two NOTB results excellent (see Ref.
28 for more details).

The Fermi energies computed by all these methods
agree well, but n (E) is a rapidly varying quantity near Ep
for some of the hcp metals, so greater differences occur
for n(Ep) with the different band structures. Using the
NOTB values as a standard (better ATM calculations,
better fit to first-principles band structures), the average
absolute difference is about 15% for both the OTB and
APW values of n(Ep), with a maximum difference of
about 36% for Y, where the APW DOS may not be reli-
able due to the small number of k points used. Since
values of (I?) quoted below were obtained with APW
and OTB band structures, a significant comparison is the
corresponding n (Ey) values for each element obtained
from these bands. The average absolute difference is 17%
between APW and OTB computed n (Ey), with a max-
imum difference of about 70%, again for Y.

TABLE 1. Fermi energy and density of states for hcp elements. The second column gives the ¢ /a ra-
tio for each metal, the third through fifth columns show the computed Fermi energies for the
orthogonal-tight-binding (OTB), nonorthogonal-tight-binding (NOTB), and augmented-plane-wave
(APW) band structures of Ref. 27 of the text, and the sixth through eighth columns give the corre-
sponding values for the density of states at the Fermi energy, n(Er). The ninth column gives n(Ey)

computed independently in Ref. 28 of the text for the same NOTB band structures used here.

Er (Ry) n(Ep) (states/Ry unit-cell)
Element c/a OTB NOTB APW OTB NOTB APW Ref. 28
Sc 1.59 0.429 0.430 0.427 57.1 61.4 74.7 61.0
Ti 1.59 0.590 0.590 0.592 26.7 23.4 28.9 24.0
Co 1.62 0.683 0.683 0.681 85.2 78.6 74.4
Zn 1.86 0.404 0.386 9.1 10.3
Y 1.57 0.395 0.398 0.394 52.0 60.1 82.0 60.8
Zr 1.59 0.544 0.545 0.542 26.9 22.1 22.7
Tc 1.61 0.747 0.740 0.737 22.5 25.6 24.4 25.4
Ru 1.59 0.762 0.758 0.754 25.4 22.1 24.3 22.0
Cd 1.89 0.190 0.250 12.4 15.1 11.4
Hf 1.58 0.574 0.575 0.575 25.1 17.4 21.7 17.2
Re 1.62 0.800 0.786 0.783 17.7 19.0 18.3 20.0
Os 1.58 0.850 0.834 0.833 18.6 17.1 18.4 16.8
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B. Computed values of {I2)

Calculation of (I?) in the MTBA is more expensive
than calculation of n (Ez) since matrix elements are com-
plicated and whole zone integration is required. Conse-
quently the ATM was limited to 384 tetrahedra in each
of the 24 IBZ, i.e., 9216 tetrahedra in the whole zone. On
the other hand the RMTA calculation of {I?) employed
the same 45 k points as the n (E) calculation. We report
in Table II our results for (I2)using both MTBA and
RMTA methods, together with the empirical values for
some of the elements from the studies of Hopfield?® and
Butler.” The empirical values were obtained by multiply-
ing empirical values of A (which required experimental
estimates of T, and u*) by M{w?) and dividing by
n(Eg). Consequently, substantial uncertainty is associat-
ed with the empirical values of (I?) because they depend
upon the poorly known values of the Coulomb pseudopo-
tential u*, and on estimates of {w?). Details of the pro-
cedures used in estimating these quantities may be found
in Refs. 9 and 29. Also listed in Table II are other
RMTA calculations, including those by Butler’® (4d) and
Papaconstantopoulos et al.'° (3d and 4d) for hcp metals
in equal density fcc or bee structures and John et al.!l
(5d) in the hcp structure. The latter work included spin-
orbit corrections to the Gaspari-Gyorffy RMTA formula,
but was based on non-self-consistent band-structure cal-
culations.
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The principal results of this paper are contained in the
second and third columns of Table II. Both are theoreti-
cal calculations of (I?) for hcp metals using no adjust-
able parameters, but employing the MTBA and RMTA,
respectively. Even if the MTBA and RMTA approxima-
tions were identical in principle, the limited numerical
convergence and some different approximations being
made in deriving the final expressions of {I?) of the two
calculations would be expected to produce some
differences. Thus we feel that reasonable agreement be-
tween the two techniques has been achieved, and note
that the same systematic trends through the Periodic
Table have been found. In fact a comparison of the %
difference between RMTA and MTBA values of n(Ey)
and the % difference between corresponding values of
(I*) shows a strong correlation. We note that on the
average {I?)rmya is about 25% less than (I?)yrpa-
Thus there are noticeable systematic differences. The
largest discrepancies for {I2) occur near the first of each
transition series: 55% for Sc and Y, followed by 25% for
Ti, Zr, and Hf, where sharp structure of the DOS near
E; makes the RMTA results less reliable because of the
limited number of k points used. These follow the same
pattern as the corresponding n (E). We can offer no ex-
planation for the systematic shift at this time, but attri-
bute the correlated larger discrepancies to the numerical
sensitivity of the calculations in some of the elements.

TABLE II. Fermi-surface-averaged electron-phonon interaction, (I2), for hcp transition metals.
The second and third columns give {(I?) for the modified-tight-binding (MTBA) and rigid-muffin-tin
(RMTA) approximations obtained here. The fourth column shows empirical estimates made elsewhere,
and the sixth and seventh columns show the corresponding theoretical values for bee and fcc phases of

the metals obtained from earlier RMTA calculations.

(I*) (Ry*/a.u.?)

hep hcp Empirical bee fcc
Element MTBA RMTA estimates RMTA RMTA
Sc 0.0032 0.0014 0.0042°
Ti 0.0050 0.0038 0.0077% 0.0080°
Co 0.0026 0.0022 0.0060°
Zn 0.0058 0.0052¢
Y 0.0033 0.0015 0.0008" 0.0021° 0.0044°¢
Zr 0.0061 0.0046 0.0098? 0.0070°
0.0082° 0.0122¢
Tc 0.0135 0.0111 0.0244° 0.0189° 0.0212¢
Ru 0.0122 0.0110 0.0167° 0.0116° 0.0141°
0.0181°¢
Cd 0.0032 0.0030°¢
Hf 0.0076 0.0056
0.0074¢
Re 0.0183 0.0143
0.0124¢
Os 0.0189 0.0170
0.0123¢

“Hopfield, Ref. 29.

“Butler, Ref. 9.
‘Papaconstantopoulos et al., Ref. 10.
9¥ohn et al., Ref. 11.
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C. Systematic trends of { 7?) in the Periodic Table

It is interesting and important to understand, at least
in a qualitative way, how (I?) varies from one metal to
another across the transition-metal series. The general
trends for cubic metals have been established in previous
studies® 1221723 for the 3d, 4d, and 5d series. For the
cubic metals there is good agreement between computed
values of (I?) using RMTA and MTBA methods,? so,
to reduce clutter, only RMTA cubic results are shown in
the figures. A suggestive curve representing (I?) as an
atomic property has been drawn in Fig. 2 for the 4d cubic
transition metals to show the trends with atomic number.
It is drawn through the points Y, Zr, and Ru where we
believe from our calculations that the single atomic na-
ture dominates the band features. This curve has been
superimposed without change into Figs. 1 and 3, reveal-
ing approximately the same trend in each series: (I?) in-
creases to a maximum as the d bands and overlapping s
band become half-filled, followed by a corresponding de-
crease as both bands fill. The distribution is approxi-
mately symmetric about the half-filled configuration in
the solid, nd*(n +1)s! (i.e., Cr,Mo,W).

While (I?) data are more sparse for hcp metals,
RMTA and MTBA points computed here may be inter-
preted approximately with the same universal curve used
for the cubic transition metals. As a rule, hcp values of
(I?) appear to be lower than cubic values, with the ex-
ception of some of the 5d transition metals. This may re-
sult from spin-orbit corrections employed in Ref. 11 or
simply reflect the lack of self-consistency in the band
structures in that calculation. It is difficult to deduce
from formulas as complicated as Egs. (9)-(11) (MTBA)
or (12) and (13) (RMTA) how the observed trends occur,
but we offer the following suggestions.

In the MTBA, band effects enter most strongly
through the Fermi-surface shape and the density of states
at the Fermi level [see Eq. (9)], while the atomic-like
character is displayed through the gradients of 2C SK pa-
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FIG. 1. {I?) in 3d transition metals. Open and solid circles
are the results of the present hcp MTBA and RMTA studies, re-
spectively. Solid squares are the cubic RMTA values from Ref.
10 of the text.
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FIG. 2. (I?) in 4d transition metals. Open and solid circles
are the results of the present hcp MTBA and RMTA studies, re-
spectively. Solid squares are the cubic RMTA values from Ref.
9 of the text.

rameters which contain implicitly the effective atomic po-
tentials. Unless unusual Fermi-surface-averaging effects
occur, which may be the case for Tc, e.g., the electron-
phonon coupling trends will be dominated by the gra-
dients of the SK parameters which are expected to reflect
the electron-hole symmetries about the atomic number
corresponding to a half-filled shell. A similar separation
of (I?) into band and atomic contributions occurs in the
RMTA: Band effects appear in the partial and total
DOS, while the scattering phase shift and single scatterer
DOS may be dominated by the muffin-tin (atomic-like)
potential.

Comparing our hcp results with the results of cubic
RMTA calculations in cubic structures, we find several of
the elements showing their (I?) values behaving as

<1%>(Ry/a.u.)?

FIG. 3. (I?) in 5d transition metals. Open and solid circles
are the results of the present hcp MTBA and RMTA studies, re-
spectively. Solid squares are the RMTA values for hcp metals
reported in Ref. 11 of the text.
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atomic in nature, since there is very close agreement be-
tween hep and cubic values. Butler?® has done calcula-
tions for Ru both in bcc and fcc structures using the
RMTA. The (I?) values of his calculations are 0.0116
and 0.0141 Ry?/a.u.? for bee and fec phases, respectively,
which are close to our hcp value of 0.0122 Ry?/a.u.?
This suggests that (I?) for Ru is strongly of single atom-
ic character. The largest discrepancy found between our
MTBA and RMTA bece values is for Tc. This may be a
consequence of the importance of band effects, as suggest-
ed in Ref. 30. We found the area of the Fermi surface of
Tc to be the largest among the transition metals and very
complicated, a factor which may account for the ob-
served differences.

Since superconducting transition temperature T, is
influenced directly by the value of A given by Eq. (2) it
should be emphasized that the product n(Ep){I*) is
more directly connected to T,. At this level the atomic
in nature quantities (I?) are modulated by n (Ez) which
bring into the picture the different band-structure effects
for different elements and crystal structures.

IV. CONCLUSION

We have computed the Fermi-surface-averaged
electron-phonon interaction in hcp transition metals us-
ing the MTBA and RMTA expressions. While there is
acceptable agreement between the two results, especially
considering the various numerical constraints placed
upon the calculations, the RMTA values were systemati-
cally lower by about 25%. Both methods found the same
systematic trends across the Periodic Table which appear
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to be similar to the trends seen in the cubic metals. Ex-
ceptions to the trends are attributed to special Fermi-
surface or band effects. Scalar-relativistic effects were in-
cluded in the band structures, but explicit corrections to
the RMTA and MTBA formulas were not made. The
basic assumptions of the RMTA and MTBA are not
necessarily the same. One uses a muffin-tin potential
which is assumed to move rigidly during a lattice vibra-
tion, while the other makes no assumption about the
form of the potential, but assumes scaling laws for the
change in integrals of the potential. Additional computa-
tional details make it remarkable that the level of agree-
ment found in Table II is possible, and suggest that we
may have fairly reliable (£25%) theoretical estimates of
(I?) for the transition metals. Since the MTBA method
may more easily be extended to crystals with arbitrary
numbers of atoms and arbitrary symmetry, agreement
with the RMTA for hcp, bee, and fcc metals suggests it
as a method of choice for future studies in complex sys-
tems. New techniques’! for measuring (I2) directly may
further serve to check existing calculations and provide a
better theoretical understanding of the electron-phonon
interaction in metals.
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