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Spatial dependence of plasma oscillations in Josephson tunnel junctions
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We report on direct measurements of the plasma oscillations in Josephson tunnel junctions of various

spatial dimensions. The effect of the spatial variation of the Cooper-pair phase difference {the Josephson
phase) on the dynamics of the junction was investigated by application of a static magnetic field thread-

ing the tunneling barrier. We compare measurements where the plasma frequency was tuned either by

applying a magnetic field or by raising the temperature. A crossover from short- to long-junction behav-

ior of the functional dependence of the plasma oscillations was observed in the case of an applied mag-
netic field. Numerical simulations of the governing partial-differential sine-Gordon equation were per-
formed and compared to the experimental results and a perturbation analysis. The theoretical results

support the experiments and allow us to interpret the observed crossover as due to the spatial variation
of the Josephson phase.

I. INTRODUCTION II. THEORY

The main purpose of this work is to study the inAuence
of the spatial dimension on the dynamics of Josephson
tunnel junctions. In order to investigate this spatial
dependence of the Josephson phase, we have applied a
magnetic field in the plane of the tunneling barrier and
carried out experiments on junctions of various normal-
ized lengths. A Josephson junction is called short if both
the length I. and the width 8' of the tunneling area are
short compared to the Josephson penetration depth, A,J.
We have long, quasi-one-dimensional junctions if one of
the physical dimensions is larger than A,J, i.e.,
8'«k~ &.I..

The plasma oscillations in the zero-voltage state were
chosen for the study as a measure of the basic dynamics
of the junction. Plasma oscillations in Josephson tunnel
junctions, first reported by Dahm et al. ,

' involve a reso-
nant exchange of energy between the electric field and the
kinetic energy of the Cooper pairs. With typical junction
parameters the plasma frequency may range from 1 to
100 GHz. The plasma frequency plays an important role
in the study of nonlinear dynamics in Josephson junc-
tions, where the ratio between the frequency of the driv-
ing signal and the plasma frequency is an important pa-
rameter. Some noise properties, such as the lifetime of
the zero-voltage state, are also a6'ected by the plasma fre-
quency of the junction. To keep things simple we will

only be concerned with small amplitude plasma oscilla-
tions. Measurements of large amplitude plasma oscilla-
tions in the nonlinear regime are reported in Refs. 1, 4,
and 5.

In the next section we present the model along with the
theory of plasma oscillations, both for short and long
junctions. The experimental procedure and results are
reported in Secs. III and IV, followed in Sec. V by numer-
ical simulations and comparison with a perturbation re-
sult. Finally we discuss our results.

The theoretical concept of plasma oscillations is based
on the simple and widely used resistor-capacitor shunted
junction (RCSJ) model. The current of Cooper pairs is
modeled by the Josephson equations, while the loss, due
to thermally excited pairs, is represented by a shunt con-
ductance 1/R. A shunt capacitance C is formed by the
geometric overlap of the two superconducting electrodes
(see Fig. 1). Since the impedance of the junction is much
smaller than the impedance of the external circuit both in
the microwave regime and in the dc power circuit, we
may assume that current sources, I ( t), are used to bias

LpdX

dx

FIG. 1. A schematic drawing of the Josephson tunnel junc-
tion is shown in the bottom part of the figure. The equivalent
diagram for a short RCSJ junction, L, 8 ((A.J, is shown to the
right. The transmission-line equivalent for a long one-
dimensional junction, 8'((A,J (L, consists of infinitesimally
small RCSJ circuits connected by the inductance L~dx.
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the junction.
In Sec. II A we will shortly review the theory of plasma

oscillations in short junctions. A simple generalization is
made to cover the case where we have a symmetric varia-
tion of the critical density over the junction. In the next
section we consider longer junctions where the spatial
structure of the junction must be taken into account. A
perturbation result is presented for this case.

A. Short junctions

The equation of motion for the Josephson phase, P, is
obtained by calculating the various current contributions
through the tunneling barrier and using the Josephson
equations

P«+a/, +sing=io+i, cosset . (2)

The frequency unit is here the maximum plasma angular
frequency co o=(2eI,olAC)'~ and the time is normalized
to cop 0 Currents are in units of I,0 and the 1oss parame-
ter a is equal to (co oRC) '. The structure of Eq. (2) is
similar to the equation for a damped pendulum in a grav-
itational field driven by an externally applied torque, i (t).
In the zero-voltage state we can linearize Eq. (2) by as-
suming P(t)=Po+eP, (t), which is valid for a small-
amplitude oscillating driving force, i.e., i, «1. Formally
Eq. (2) now has the same form as the equation of motion
for a driven damped linear resonance circuit:

IJ(t)=I,osing(t), V(t) =
2e

where IJ is the Cooper-pair current, I,p is the critical
current, and Vis the voltage across the barrier. The sub-
script t denotes partial differentiation with respect to
time. The equation for P now becomes

AC
P«+ P, +I,osing =Io +I,coscot,

2e " 2eR

where the externally applied current, I(t), on the right-
hand side is taken to be in the specified form. Using nor-
malized units it is possible to write Eq. (1) on the form

where J,p is the critical current density. Corresponding-
ly, the expression for the plasma frequency becomes

oi = ( co ocosPo(x ) ) .

If the magnetic field H in the barrier is uniform Eq. (4)
reduces to

27TP pdHy
Po(x) =go+ x,

0
(7)

where Po is a constant of integration to be determined by
the dc bias.

Without a great loss of generality we can take J,p to be
symmetric with respect to the x direction. Carrying out
the integration along the y direction we can evaluate Eqs.
(5) and (6) with the use of Eq. (7) and the notation
Js(x) Js( x) IJ o(x~y)dy

2&ppdHy x
Io=singof Js(x)cos

0

turn is denoted by C&o=h/2e. In general, the magnetic
field can either be externally applied or generated by the
Josephson current itself. We assume that the magnetic
field H is in the y direction, so that P depends only on
the x coordinate where x-y defines the barrier plane, see
Fig. 1. Following the analysis by Dahm et al. , P can be
written as a sum of space-dependent and time-dependent
parts P(x, t)=go(x)+eP, (t), where eP, is the small per-
turbation mentioned earlier.

Since the spatial distribution of the Josephson phase is
neglected in the equation of motion for short junctions,
the problem of calculating the plasma resonance frequen-
cy reduces to a matter of proper spatial averaging. This
is equivalent to calculating the center of mass -mo-tion for
a rig&d body in classical mechanics. To account for the
effect of the magnetic field the sine term in Eq. (1) is re-
placed by (J,o(x,y)sin[go(x)+eP, (t) j), where the angu-
lar brackets denote the spatial average over the junction
area. The Josephson current is

Io = ( J~o(x,y)singo(x) ~

«+a/i, +cosPo'Pi=i, cosQt

with the resonance frequency given by

A~ =QcosPo= Ql io—
27TPpdHy x

+cosPo f Js(x)sin dx,
0

2 2e 27' pdHy x
co„= cosPo f Js(x)cos dx

0

(8)

for a « 1 (experimentally, a is typically of the order of
10 ). We will identify 0 with the (normalized) fre-
quency of plasma oscillations in the linear, small ampli-
tude limit.

If a static magnetic field H is present in the barrier, P
will vary spatially in accordance with the equation

—sinPo f Js(x)sin
27TPpdHy x

dx

The last two terms in Eqs. (8) and (9) vanish by sym-
metric and the plasma frequency can be written as

27TPpd
VP= HXn .

40
2ef(H )

AC

Io
f(Hy)

' 2 1/2

(10)

Here the magnetic thickness of the barrier,
d =A, , +k2+t,„, where the A, 's are the London penetra-
tion depths for the two superconductors and t„ is the
thickness of the oxide barrier. The magnetic Aux quan-

where f (H~)= jJs(x)cos(2mpodH~xl@o)dx.
The antisymmetic last term in Eq. (8) describes a circu-

lating current:
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cosPoI„,= J& x sin
27TpodHy x

No
dx

1.0

0.8
Pedersen, Finnegan, and Langenberg have tried to in-

clude the spatial dimension of the junction by keeping the
equation of motion for the short junction and reduce the
magnetic Aux @y by an amount —L,~I„„so
@ =@„—L I„,. Here, the geometrical inductance
L =poLd/W arises from the magnetic energy stored in
the junction. In this model the additional Aux —L I„.„
which depends on the bias current through cosPo, can
affect the plasma frequency [see Eq. (10)], but not the
measured critical current I,(H,„), since I„,=0 for
Io=l, (H,„)(go=+n./2). In the short junction model
self-fields are neglected and the function f is replaced by
I,(H,„),such that H =H,„

For a homogeneous current density we can evaluate
Eqs. (8), (9), and (11). A plot of 0 versus io gives
straight lines in accordance with Eq. (10) for L =0. In
Fig. 2 we show a plot of this type for different values of
Ncx 4y + lp i„„where Aux now is normalized to 40 and
the inductance is in units of @0/I,o. The values of I„
used are relevant for three of the measured samples.

0.6

0 4,

0.2

0.0 0.2 0.4 0.6 0.8 1.0
2

]o

FIG. 2. Short junction model which accounts for the spatial
dimension by introducing the (normalized) transmission line in-
ductance l~. The (normalized) magnetic Aux in the barrier then
becomes @~=N,„—1~i„, where i„, is a circulating current given

by Eq. (11). The three dashed curves are for %,„=0.5 and, from
the bottom and upward: l~ =0.065, 0.22, and 1.82. The induc-
tance values are relevant for samples A, 8, and C, respectively.
The thin solid line is for 1~ =0 and 4,„=0.5, while the thick
solid line represents %,„=0and all three inductance values.

B. Perturbation analysis of long junctions

For long junctions the spatial dimension of the tunnel-
ing structure must be taken into account. This is done by
representing the junction as a lumped transmission-line
equivalent of infinitesimally small RCSJ circuits, see Fig.
1. In the transmission-line model the individual RCSJ
circuits are connected together by the inductance per
unit length L /L =pod/W, see, for example, Ref. 8. The
result is the perturbed sine-Gordon equation, where the
additional term P„„originates from the inductance:

P«
—P„+a/, +sing = io+ ei

&

e' " . (12)

Here the space coordinate x is normalized to
Az =(fi/2epodJ, O)' We have .taken the applied current
to be uniformly distributed along the length of the junc-
tion (overlap geometry). For simplicity we have neglect-
ed the surface losses in the superconducting films (the

PP„„, term). The external magnetic field is accounted for
through the boundary conditions: P„(+l/2, t)= rl
Here, the (dimensionless) quantity il is the external field
in units of J,ol,z and l =L /A, z.

In Sec. II A we treated the dynamics of plasma oscilla-
tions as a center-of-mass problem for a rigid chain of pen-
dula. Since the mechanical analog to a long Josephson
junction is a pappy chain of pendula, the approach is
somewhat different. The purpose is to find the amplitude
of the pendulum oscillations along the x coordinate as a
function of the external field.

The following perturbation analysis is valid for small
values of the magnetic field q and an oscillatory driving
force i,exp(i Qt) The bias .current io is set to zero, which
is suitable for calculating the maximum plasma frequency
in Sec. V. The small sinusoidal drive ei, exp(iQt) will
cause a small perturbation in the Josephson phase, which
we assume to be of the form P(x, t)=go(x)+eP&(x, t) In-.

sertion of this assumption into Eq. (12) yields

—$0„„+sin/0(x) =0, Po„(+I/2)=g,

P, «
—P, +a/„+cosPo(x} P, =i,e'

P, (+I/2, t)=0 .

(13)

(14)

$0(x)
a — 1 —0 +iaO, —e a= —i, ,

a (+I/2)=0 .

This equation is solved to first order by introducing
a (x ) =a0+e a, (x). The equation for a, (x) then becomes

Po(x)
a, —(1 Q+iaQ—)a, = — ao,

ai (+l/2)=0, (16)

where a oi, (/I II +t'aQ), w—hich is the well-known
expression for a driven damped linear resonator. The
final solution to our problem is

To solve Eqs. (13) and (14) we now impose the condition
that rI and therefore Po is of the order e. Equation (13) is
then linearized and the solution is [the corresponding ex-
pression for a short junction is given by Eq. (7)]

sinh(x)
cosh(l/2)

The stationary solution to Eq. (14) has the form

P, (x, t) =a(x)exp(iAt), where a (x) is the complex ampli-
tude of the plasma oscillations along the barrier. The
equation for a (x) can now be obtained by using the ex-
pansion cosPo = 1 —Po/2, Eq. (15) and the above-
mentioned expression for P, :



SPATIAL DEPENDENCE OF PLASMA OSCILLATIONS IN. . . 2241

2

a (x)=ac 1+
2(4 —k )cosh (//2)

sinh(l)cosh(kx) . z 2—sinh x-
k sinh(kl /2)

(17)

Here we have introduced the complex number
k = 1 —0 + iaQ, with k given by

Ik'I+1 —n'
2

Ik'I —1+n'
2

III. EXPERIMENTAL TECHNIQUES

The samples used were 70 X 70 or 800 X 20 pm
Nb-Nb 0 -Pb tunnel junctions incorporated into a 50-0
microstrip structure on a Corning 7059 glass substrate.
The thin film pattern is shown in Fig. 4. The microwave
coupling to the sample was established through coaxial
launchers at the ends of the microstrip. The microwave
current used to stimulate the plasma resonance was pro-
vided from a microwave generator (a frequency syn-
thesizer) connected to one side of the microstrip. In or-
der to suppress microwave resonances, the other end was
terminated by a 50-Q load at helium temperature. For

p, (x) 0.2—
I

[
I

[
l

[
I

Figure 3 shows a typical plot of Ia (x)I and Po(x) together
with the result of a numerical simulation of the sine-
Gordon equation

convenience the plasma resonance frequency was tuned
by varying the bias current, Io [see Eq. (3)], while the fre-
quency of the applied microwave current was fixed. Us-
ing this method the plasma resonance manifested itself as
a dip in the reAected microwave signal as a function of
Io. A circular at room temperature separated the incom-
ing signal from the rejected signal which was amplified
and detected by two low-noise FET amplifiers followed
by a digital spectrum analyzer (SA in Fig. 4).

The sample was placed in a vacuum can immersed in a
pressure-regulated liquid helium bath. A pair of
Helmholtz coils was used to create a static magnetic field.
The current and voltage leads connected to the sample
were carefully shielded and filtered against external noise
sources. The ambient magnetic field was reduced by a
double mu-metal shield and the entire experimental set-
up was placed in an rf-shielded room.

IV. KXPKRIMKNTAL RESULTS

To ascertain that we only stimulated the plasma oscil-
lations in the small amplitude limit, we decreased the mi-
crowave current, I&, until the position of the resonance
dip as a function of the bias current did not change with
any further reduction of I, . With the microwave cou-
pling and detection system used the applied microwave
power ranged from 10 ' W to 10 "W, corresponding
to a normalized microwave current ranging from 10 to
10, see Ref. 5.

From Eq. (3) it is clear that a plot of f~ =(co&/2m)
versus Io should yield a straight line which intersects the

0.0

—0.2

I

0.01 02 —~ r

lo(x) I

0.01 01

0.01 00
I I I I i T I I ) I I

—2 —1 0 1 2
SA

FIG. 3. The magnetic field perturbs the static distribution of
the Josephson phase, noix), which then effects the dynamics of
the plasma oscillations. The small-amplitude plasma oscilla-
tions, a(x)exp(iQt), are to be superimposed on the stationary
background shown in the top part of the figure. Dashed curves
are legend for perturbation analysis and solid curve for full nu-

merical simulation. Thick curves are for g =0.3 and thin cirves
for g=0.2 (no visible difference between perturbation and simu-
lation in the top part of the figure). The horizontal lines corre-
spond to q=O. Other parameters are 0=0.995, 1=6, a=0. 1,
i o =0, and i

&

= 10

0.8 rnrn'::::-':

FIG. 4. Upper part: schematic of the experimental mi-

crowave system (SA stands for spectrum analyzer), including
the thin film microstrip design. The enlarged bottom part
shows the junction geometries (the overlap of the two supercon-
ducting films is indicated by arrows).
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axes in fzo and I o F. igure 5 shows a plot of this kind in
the case of no applied magnetic field for a short junction.
Measurements of the plasma resonance offer a precise
way to determine the critical current and the capaci-
tance. The values of I,o found in this way are always a
few percent larger than the value obtained by a slow
sweep of the I- V characteristics, where premature switch-
ing from the zero-voltage state, induced by thermal noise,
gives a lower value on I,o.

In order to examine the effect of a static magnetic field
on the dynamics of the junction we compared measure-
ments for two ways of reducing I,o—either by applying
an external magnetic field or by raising the temperature
T. For every value of I, (H, ) or I, (T) a plot like Fig. 5
was made in order to find f o and I, (at least four well-
spaced frequencies were used for the least-squares fit).
The results are presented as a plot of f o versus I„where
the theory for short junctions predicts a straight line
through origo. The top graph in Fig. 7 shows the results
for a short junction.

For longer junctions the behavior deviates from that of
the short junction. In Fig. 6 we notice two important
characteristics. First, the measured points to a very good
approximation still lie on straight lines which intersect
the x axis in I, . Second, and most important, the slope of
the these lines changes with the applied field but not with
the temperature. Since the f versus Io data points fall
on straight lines in Fig. 6 we feel justified in making a
least-squares fit and extract informations about fzo and
I, ~ The results are shown in the middle and bottom parts
of Fig. 7. A plot of f o, versus I, (T) should still yield a
straight line through origo for long junctions with a uni-
form current distribution. The I, (T) series of measure-
ments in Fig. 7 supports our assumption of a uniform
current distribution.

There can be up to a 22% difference in plasma frequen-

fp (GHz)

20000

fp (GHz)

'1 000

500

0.0

FIG. 6. Experimental data for the tuning of the plasma reso-
nance frequency by the bias current in a long junction (sample
C). For comparison the critical current was reduced in two
ways —either by applying a magnetic field ( ) or by raising the
temperature (0). All lines are least-squares fits. The open and
closed arrows indicate the critical current obtained by a slow
sweep of the bias current for the I,(H,„) and I,(T) series, re-
spectively.

cy between the cases where the critical current is tuned
either by the magnetic field or by the temperature (bot-
tom part of Fig. 7). In this example the normalized
length was 3.4 and the critical current was decreased to
57% of I,o at 4.2 K. The corresponding reduction of I,o
for a junction of normalized length 1.1 was 7.5%%uo.

V. NUMERICAL SIMULATIONS
AND PERTURBATION RESULTS

Numerical simulations of Eq. (12) with the boundary
conditions p„(+l /2, t) = i7 were obtained using an explicit
difference scheme. A time rigid of 0.005 and a space grid
of 0.02 were typically used in the integration. The loss
parameter o. was set to 0.1, while the amplitude of the
sinusoidal drive i& was 10 to ensure the linear, small
signal limit of the plasma oscillations.

To compare the numerical simulations with the experi-
ments we have to establish a relation between the calcula-
tions and the reflected signal measured by the detection
system. A reasonable representation of the rejected sig-

0.0 0.2 0.4 0.6

TABLE I. Sample parameters at 4.2 K for three Nb-Nb O~-
Pb junctions used in this study. R~ is the normal state resis-
tance.

FIG. 5. Measured tuning of the plasma resonance frequency
by the bias current in a short junction in the absence of a mag-
netic field, here plotted as f vs Io, see Eq. (3). The straight line
is a least-squares fit. The intersections with the axes give I,o (4.2
K)=938.9 pA, f~o=12.67 CxHz, and therefore C =450 pF.
The open arrow indicates the critical current obtained by a slow
sweep of the bias current.

Sample

L xm (qm')
J,o (pA)

f~o (GHz)
& (pF)
R~(O, )

XJ(pm)

71x68
116.2

4.49
443
48.7

220
0.3

71x71
2427

18.38
553

0.51
62

1.1

776 x 18
576.5

5.88
1283

1.98
230

3.4
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current was increased while 0 and g were kept fixed.
The results confirmed the linear dependence shown in
Figs. 5 and 6. The critical current and the maximum
plasma frequency can be obtained as in the experiment by
extrapolating a least-squares fit. A more precise and suit-
able way is to find the point of resonance for (P, ) by
maximizing A with respect to 0 for a given value of the
magnetic field q. Doing this with a standard numerical
procedure for io=0 we found the maximum plasma fre-
quency as a function of g. The critical current was sim-
ply calculated by increasing the bias current until the
phase started to rotate, which corresponds to the voltage
state in the experiment. The value of the critical current
determined in this way was equal to the extrapolated
current value within the numeric resolution. The simula-
tions were performed with the relevant normalized
lengths and the results are presented in Fig. 7.

To use the perturbation result derived in Sec. IIB we
have evaluated 2 = (Re(a) ) + ( Im(a) ) numerically
and maximized A (also numerically) with respect to Q.
This gives Q o and we only need an expression for the
normalized critical current i, (g)=I, (ri)/I, o to make a
plot of 0 o versus i, . We will only compare the perturba-
tion result with numerical simulations for the two limit-
ing cases of very short and very long junctions [we note
that implicit expressions for i, (q) for overlap junctions of
arbitrary lengths have recently been derived, Ref. 9]. The
two limiting expressions are for very short junctions

0
0 200 400 600

I, (p,A)

sin(lq/2)
lq 7J l «1

l g/2

and for very long junctions, '

(19)

FIG. 7. Experimental results plotted as the squared max-
imum plasma frequency vs the critical current for junctions of
various normalized lengths, i [samples 3, B, and C in (a), (b),
and (c), respectively]. The intersections with the axes in a f vs

Io plot were used to determine f„o and I, (see Fig. 5). The criti-
cal current was reduced by either applying a magnetic field ( )

or by raising the temperature (~). All solid lines and the
dashed line in the top part of the figure are least-squares fits.
The crosses ( X) show the results of a numerical simulation of
the perturbed sine-Gordon equation with the relevant normal-
ized lengths.

nal would be the spatial average of the voltage, (P, ),
along the length of the barrier. Throughout the paper
the plasma resonance is defined as a resonance in P and
not in P, . The difference in the resonance frequency in-
troduced by finding the resonance point of P, instead of P
is around a /4 for small a values. For consistency, we
therefore keep the definition of the resonance and calcu-
late the spatial average of the oscillatory part, P„of the
Josephson phase:

(18)

The resonance condition for (P& ) is obtained when the
parameter A in Eq. (18) is maximum. The simulations
were carried out as in the experiment, i.e., the bias

(ri/2) =+1 —i, i, cos 'i,—, l )) 1 . (20)

The critical current equals zero when g is equal to 2~/l
or 2 for short or long junctions, respectively.

VI. DISCUSSION

The theoretical prediction of the RCSJ model for a
short junction reproduced the experimentally measured
tuning of the plasma frequency by the bias current and
thereby confirmed the sinusoidal phase variation of the
Josephson current. Within the available range of mag-
netic field a junction of normalized length i =0.3 (sample
A) was suKciently short, so that the spatial variation of
the Josephson phase could be neglected in the governing
equation of motion.

Two models are proposed to account for the deviation
from the short junction behavior reported in Figs. 6 and
7. The model proposed by Pedersen et al. uses the short
junction model in combination with the total inductance
Lp A Qp versus i o plot using this model is shown in Fig.
2 with the relevant inductances for samples A, B, and C.
In our experiment the critical current was determined by
an extrapolation of the least-squares fit to the f versus
Io data. If we use a similar extrapolation of the data
points calculated from the model, the resulting intersec-
tion, i;, is up to 45%%uo larger than the critical current (e.g. ,
for sample C with l =1.82 and N„/NO=0. 5, i, =0.64
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FIG. 8. A comparison between numerical simulations on the
sine-Gordon system and the perturbation result for the two lim-
iting cases of very short and very long junctions. The maximum
plasma frequency is obtained by maximizing the parameter A in
Eq. (18), while the critical current is taken from Eqs. (19) and
(20). The straight line represents the theoretical result for a
short junction, while the dotted and dashed curves show the
perturbation result for the two limiting cases 1=0.1 and 1 = 10
respectively. Solid squares are numerical simulations with
I =10, o.=0.1, io=0, andi, =10

and i; =0.93). Such a discrepancy was not seen in the ex-
perimental data, where the extrapolation of the f versus
Io data always gave a value of I; which was only a few
percent larger than the I, measured by a slow sweep of
the I-V characteristic (e.g. , I, I,. =—1% of I, for sample
C). As seen from Fig. 2 this model also predicts the ex-
istence of a finite lower limit on the accessible plasma fre-
quency, since the experiments are restricted to the zero-
voltage state (Io(I,). Experimentally, the lower limit
predicted by this model was not seen.

In contradistinction, the model proposed in this paper
includes the inductance L in the governing equation of
motion. The numerical simulations reproduced quite
well all the features seen in Fig. 6. For all three samples
the agreement between theory and experiment in th e~~o
versus I, plot in Fig. 7 is good.

As seen in Fig. 3 the result of the perturbation analysis
gives a reasonable approximation to the spatial variation
of the amplitude of the plasma oscillations. Minor devia-

tions from the results of a full numerical simulation show
up as offsets in the amplitude a (x). The region of validi-
ty of the perturbation analysis is found from 0 o versus
i, (r)) plots. As a criterion for the validity of the perturba-
tion analysis we have calculated the value of the critical
current where there is a 1% difference in frequency be-
tween the results of the simulation and the perturbation
calculations. As seen in Fig. 8, we find that this
difference exceeds 1% for i, (0.955 for the very short
junction and the very long one has i, &0.69. The pertur-
bation analysis is clearly more powerful for longer junc-
tions.

VII. CONCLUSIONS

We have experimentally demonstrated that the func-
tional dependence of plasma oscillations in short tunnel
junctions (I./XJ=0. 3) is very well accounted for by the
resistor-capacitor shunted junction model. This is the
case when the critical current is decreased either by rais-
ing the temperature or by applying a magnetic field. If
the junction is approximately one Josephson penetration
depth long, deviations from the theory for short junctions
start to show up. The deviations become more pro-
nounced for still longer junctions. We emphasize that the
above-mentioned deviation only appears in the presence
of a magnetic field. More specifically, when an external
magnetic field is applied, the square of the plasma fre-

This
quency does not decrease as fast as the critical cu tcurren .

is again means that the plasma frequency is larger in a
1ong junction exposed to a magnetic field than for the
same junction with the critical current decreased by rais-
ing the temperature. An effect like this should show up
as corrections in expressions involving the plasma fre-
quency, for example, in the lifetime of the zero-voltage
state.

N umerical simulations were performed on the govern-
ing sine-Gordon equation. They reproduced the experi-
mental data quite well. This allows us to give the follow-
ing qualitative interpretation of our results: the critical
current is the bias current value, where the Josephson
phase tilts over and starts to rotate. In other words, the
critical current is a static property of the junction,
whereas the plasma oscillation is obviously a dynamical
property of the junction. A short junction can be treated
as a rigid body, and it is not possible to distinguish be-
tween the two properties. For long junctions the static
and the dynamic behavior in the above-mentioned sense
become uncoupled. The critical current is determined by
the amount of magnetic field at the boundaries. Since the
field only penetrates a distance of the order of one
Josephson penetration depth into the junction, the interi-
or of the junction is not affected by the field. This leaves
the plasma oscillations in the main part of the junction
unperturbed by the magnetic field. Thus, as observed
with increasing junction length the detuning of the plas-
ma frequency with applied field becomes smaller.

Finally, in modeling the system we stress that it is im-

J
portant to include fully the spatial dimension f th

osephson phase in the governing equation of motion in
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order to account properly for the plasma oscillation dy-
namics in spatially extended Josephson tunnel junctions.
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