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Relation between spin-coherent states and boson-coherent states in the theory of magnetism
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It is shown that the application of both the spin-coherent states and the Holstein-PrimakofF represen-
tation with boson-coherent states leads to the same classical limit for the spin-operator average values, if
the proper procedure for normal ordering is applied. A general expression for the boson expansion is de-
rived, and the first quantum correction is obtained. Consequences of the study of nonlinear excitations
in magnetic systems are presented.

I. INTRODUCTION

Nonlinear phenomena in magnetic systems have been a
subject of interest for nearly 20 years. ' Nonlinear equa-
tions of motion were first studied in detail for classical
systems; so the transition from quantum to classical
spins is a subject of continued interest to theoreticians.
The usual approach is the application of spin-coherent
states (SCS) (or generalized coherent states), while the
other possibility is the "bosonization" of spin operators.
Combined with the application of both of these ap-
proaches is the problem of time dependence due to the
fact that coherent states do not evolve, in time, into
coherent states, in the general case, except for some very
particular forms of the Hamiltonian. This problem is
a very delicate one and it is still the subject of intensive
study.

Our aim here is to study another problem, which is
quite general and not related to any particular form of
the Hamiltonian. The problem concerns the relation of
the boson representation to spin-coherent states; more
precisely, to its degree of accuracy. In the general case,
when studying low-lying excitations, one has well-
developed approaches, but it turns out that the results
should not be used for the classical limit of boson repre-
sentation results.

In this paper we review the relevant standard ap-
proaches [SCS and Holstein-Primakoff (HP) representa-
tions] in Sec. II, then study the classical limit of the bo-
sonization procedure in Sec. III, and finally discuss the
consequences of our results on the results of other studies
of nonlinear excitations in magnetic systems.

II. HOLSTEIN-PRIMAKOFF REPRESENTATION
AND SPIN-COHERENT STATES

The procedure of bosonization in the general case cor-
responds to the determination of functions of the Bose
operators which, acting in the occupation number space,
lead to the same results as spin operators acting in the
standard basis. More precisely, let B„and B~ be opera-
tors that satisfy the Bose commutation relations. We
wish to determine some operator functions' S„(B„,B„)
(ct=x,y, z) which satisfy the angular momentum commu-

tation relations.
We shaH suppose that the ground state of the system of

N spins corresponds to the state with all spins pointing
"up" in the positive direction of the z axis:
M=(S'„)=NS. In this case, the Holstein-Primakoff"
representation is defined as

S'„=S—B„B„,
S+ =&2S 1 — 8 81

n n n

1/2

B„, (lb)

S„=&2S8„1— 8"„8„
1/2

(lc)

This expression is valid in the system of units A= 1. For
the sake of convenience, we shall use it as long as possible
and restore A only when the classical limit is studied.

Problems related to this representation concerning the
appearance of nonphysical states ((8 8 ) )S) and han-
dling the square root of an operator expression are well
known to anyone working with it, especially if one wishes
to apply it to the study of higher excited states.

Our interest is in the low-lying states (8 8 ) (S,
where one can expand the square root to obtain

1/2

1 — B~B1
Il Il

1=1— BtB +O(l/S2) .n n (2)

It is important to stress once more that this equation is
meaningful for low-lying states only, and we shall have to
reexamine it when the classical limit is considered.

The classical limit means A —+0, S~(x) with SA~S,
&

(classical angular momentum). Let us first look at the re-
sults obtained by using SCS. ' We shaH use one of the
possible definitions:

la„)= e'" " lo&, la & =&la„&,(1+la l')'

where lO)=if) 1) denotes the above-mentioned
ground state of the system:

s'„lo&„=slo&„, lo&= ~ lo)„.
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Using this definition, we obtain

(S„)„=lim(a„Ignis„ Ia„),
Pi~ 0

giving

(a„Is'„Ia„&=s —Ia„I' .

Using the parametrization (7), we obtain

~
0„

a =V2S sin en 2

(14c)

(S'„)„=S,1+ a„
Qn(S„),i=2s, i 1+ a„

(S„)1=2S I 1+ a„
and a possible parametrization is

(6a)

(6b)

(6c)

and we arrive once again at the classical expressions for
the average values of the spinors.

Classical equations of motion can be obtained using X
expressed either in terms of a„or a„. We really mean
that, although equations for a„and a„are different after
the parametrization, in both cases the equations for 0„
and P„are the same.

III. BOSONIZATION AND THE CLASSICAL LIMIT
0„

a =tan en (7)

This particular parametrization leads to the representa-
tion of (a„IRS„Ia„)as the components of the classical
vector S„ofthe length S making polar angles O„and P„.

Now we can construct the Lagrangian density of the
system in the form

X=X,—(aIHIa & .

Ia&=g Ia„&, Ia„&=e " " " "I0&, (16)

where IO) is boson vacuum state. Radcliffe has shown
that lims Ia„)= Ia„) and one has

The other possible approach is the use of the HP repre-
sentation (3) from the beginning and combining it with
boson' ' coherent states

Here H denotes the Hamiltonian of the system and iA a a =iAQ(a„a„"—a„a„*).
2 at

(17)
)fc

i&( &
)

2 Br

which gives the classical limit

In order to obtain (aIHIa) in terms of matrix elements
of spin components, it is necessary to expand the square
root in a normal ordered series:

~ )fC ~

X,=is„g 1+ la. I'
(10) 1 — B„B„1

n n

' 1/2

=1+ g C„(S)B„"B"„,
p=1

The phase space in this case is a "nonlinear" one, mean-
ing that the generalized momenta are not linear functions
of generalized coordinates. For example,

az = iS,)aa„"1+ Ia„I'

where

C„(s)=
1

2 1

2S

+O( lr S~+') .

1

2
p+1

1

2S

a„=&2S
(1+ I a„I')'" (12)

This leads to the following expression:

X,(a„)=X,(a„)= g(a„a„*—a„a„*).iA
t n t n (13)

In order to linearize the phase space, we shall follow
Mead and Papanicolaou, ' and use the sterographic pro-
jection

Here 1„is the coefficient of the following expression:

(BtB„)'= g l„B~"B"„.
p=1

(20)

We are now going to derive the above result, but it is
important to notice that the whole derivation is valid
only for the Hamiltonian bilinear in spin components Ino
(S') terms, for example].

Looking at (20), it is clear that l„"=1; l
&

=1 and one
can derive an important recurrent relation

The diagonal matrix elements of the spin operator be-
come

(V+1 $V +(V
v (21)

(a„IS„ Ia„)=&2S a„ 1 — Ia„I2S

(a„Is„ Ia„&= 2s a„— Ia„I'1

1/2

1 1/2

(14a)

(14b)
and this finally leads to

Using mathematical induction, we obtain

P —V P
@Pl~ P ~ p&2

p=0
(22)
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1)n (P
n!(p —n )!

n
t

Now, we can use

P
1 y2

—n v
n=0

(23)

Let us note that some of these results were derived previ-
ously (in a more qualitative way) by Goldhirsch, ' who
developed another boson representation, but only studied
the asymptotic limit for the first 2S+1 terms that coin-
cide with the HP representation.

If one uses the asymptotic expansion (19), one only
needs to know

1 — BIB1
n n

1/2 1

2

v=1

1

2=1+ g Vv=1

2S (B„B„)

I"Bt"B"
p n n

p=l

I&+. 1 P(P+ 1)
2

First of all,

(
B'„~B~

(2S)" (2S)"

(26)

(27)

with

1

2

=1+ g C„(S)Bt"B"„
@=1

(24) and introducing

an

&2S +1+ Ia„l'

0„=sin e
2

(2&)

C„(S)= g l„"

T

1

2

1

n!(p n)!—
@+v

1

2S a,(p),

1

2 P 7l

2S

(25a)

which is S independent, we obtain

8„"B"n

im a„a„=o,„s~ m
" (2S)i'

while the next term isa„,a„= Ia„l "=O(1/S) .(2S)"+'

(29)

(30)

( —1)" +a (p, ) = g (p —n)~
o n!(p —n)!

(25b) Let us use the results to calculate the average value

(n„~~BS„~~a„)=V'2SBa„Bt 2+ X C„(S'|BJ'B„" n„)
p=1

=&2S iiia" 1 — la In 2S n

I2(k —1)

+&2S fi g k k (k —1)(—1)"
k (2S)k

1

fia„*
=2SA'a„*(1—Ia„l )' + g k(k —1)(—1)"Ia

I

'"
k (31)

The classical limit gives

im (a„Itis„ la ) =(S„),i+ S„+O(1/S ), (32)

we obtam

S,1,~ 1 —cosO„
61S„= sin8„e

(1+cos8„)
(35)

n &n
h,s„=s„g k (k —1)(—1)"la„l '"

k=2

=—,'S„a„*la„l —,'( —,
' —l )(1—la„l )

This is the first quantum correction to the classical value
and it is of order 1/S.

s„a„'Ia„l'
S(1—Ia„l')'"

Using the parametrization

On 1 cosOn
cx =sinn

S,a*la I'(1 —la I')'~'

&(I —lal')'
(33)

(34)

IV. DISCUSSIQN

Our aim was to show that classical results can be ob-
tained by two ways: either by using SCS, which leads to
the nonlinear phase space, or by combining the HP boson
representation with Glauber's coherent states, where the
phase space is a linear one. In. the soliton theory of one-
dimensional (1D) magnetic systems, ' these two represen-
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(a„~hS„~a„&=A 2S a„' — „a„*~„l'

=2Sfia„* fiSa„*—
( a„~ (36)

tations lead to the same results. On the other hand, the
calculations presented here are not limited to one dimen-
sion.

Now we must clearly state the advantage of the appli-
cation of the HP boson representation. It enables one to
derive not only classical equations of motion (classical

, limit) but also the quantum corrections of order I/S and
higher, which cannot be obtained with the application of
SCS only. (Of course, nothing prevents us from express-
ing these results in terms of angles defining SCS.)

Finally, we must return to a property of the HP repre-
sentation which has caused many misunderstandings and
produced many misleading results. Our result is an ap-
proximate one and it is the way the approximation is per-
formed that really matters.

If one starts from the approximate expression for the
operator square root (2), introduces it into (1), and aver-
ages the expression over boson-coherent states, one ob-
tains

whose classical limit is

lim (a„~S„~a )=2S,&a„*[1——,'~a„~ +O(~a„~ )j . (37)
R—+0
S~ oo

In fact, this result contains no quantum corrections be-
cause they follow from the procedure of normal ordering.
What we have here is just the expansion of the classical
value (S„),& for ~a„~ && l. It can contribute only to the
linear magnon spectrum. In the soliton theory, it leads to
the nonlinear Schrodinger equation' ' and not to the
classical Landau-Lifshitz equation.

This is an extremely important point for the practical
applications, but we shall not insist on listing various re-
sults which can be obtained with diAerent approaches
which do not respect the procedure proposed here. In
subsequent papers we shall establish the relation between
our approach and the application of Villain's representa-
tion, ' and we shall also show how to use our approach
for the case of a spin chain with a biquadratic exchange
interaction.
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