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We present results of theoretical studies of tracer diffusion in a lattice-gas model that has been pro-
posed to explain the anomalous diffusion anisotropy of H adatoms on a W(110) surface. This study com-
plements our previous calculations of collective diffusion within the model (Ala-Nissila et al., preceding
paper). We first perform extensive Monte Carlo random-walk simulations of tracer diffusion including
only the intracell hard core interactions. We then use the Green's-function method to develop an analyt-
ic mean-field theory for the tracer-diffusion coe%cients. We also present a derivation of an improved
solution to second order in the Green s-function expansion. The range of validity of these analytic re-
sults is examined by comparison with the simulations. Finally, we compare the properties of tracer
diffusion with collective diffusion.

I. INTRODUCTION

In the case of a single particle performing a random
walk on an inert, empty lattice, the corresponding
diffusion constant can trivially be written down as Ia /z,
where z is the coordination number of the lattice, I is the
(microscopic) jump rate, and a the lattice constant (i.e.,
the length of each jump). ' However, in the presence of
other particles, the diffusion process becomes correlated,
which usually leads to a difference in the behavior of sin-
gle particle or tracer diffusion and that of collective or
chemical diffusion processes. Namely, even in the case
of only single-site hard-core interactions, collective
diffusion is independent of coverage, while tracer
diffusion shows strong interparticle correlation effects. '

In the preceding paper (hereafter referred to as I), we
have presented a detailed study of the properties of col-
lective diffusion in a model of diffusion in a deformable
lattice. The model we have studied is a two-step lattice-
gas model which was recently introduced to explain the
observed anomalous diffusion anisotropy of H adatoms
on a W(110) surface. ' The two-step model is character-
ized by a branching ratio r =M/I, which is the ratio of
intracell-to-intercell diffusion rates M and I, respectively.
The existence of an intracell diffusion jurnp has been pos-
tulated on the basis of a hydrogen-induced local distor-
tion of The W(110) surface. ' As a consequence of this,
the model includes an additional in-cell hard-core ex-
clusion interaction which makes the collective diffusion
nontrivial even without other adatom interactions, as we
have shown in I.

In this work we have undertaken a systematic and
comprehensive study of tracer diffusion within the
lattice-gas model. This complements our previous calcu-
lations of collective diffusion. ' Following I, we will con-

centrate on the case of where the double occupancy of
each cell is strictly forbidden. A detailed study of both
tracer and collective diffusion in the presence of realistic,
finite adatom interactions is planned to be presented in a
subsequent publication. ' Here we begin by presenting
results of extensive Monte Carlo random-walk simula-
tions as a function of coverage for various values of r.
Then, using the Green's-function method, we obtain an
analytic mean-field solution of tracer-diffusion
coefficients. To improve upon the mean-field approxima-
tion, we present a derivation of a solution to second order
in the Green's-function expansion. Both of these analytic
solutions are compared with Monte Carlo simulations.
Finally, we contrast the behavior of tracer diff'usion to
collective diffusion in the model and discuss the relevance
of our results with respect to the H/W(110) system.

II. MONTE CARLO SIMULATIONS

The surface of the W(110) plane forms a centered rec-
tangular lattice, with adatoms adsorbed on the long
bridge sites within the "hourglass" potential of Fig. 1(a)
of I. The principal axes of diffusion are along the (110)
and (001) directions, denoted by y and x, respectively.
Assuming a locally distorted surface, we have shown
within the random-walk picture that the diffusion prob-
lem can be described by a lattice-gas model with rates M
and I for intracell and intercell diffusion jumps, respec-
tively. ' The branching ratio r =M/I then determ—ines
the value of the diffusion anisotropy, which, in the zero
coverage limit, is given exactly by

(2.1)D r+2 a

Here ao and bo denote the dimensions of the underlying
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unit cell, and (b /a ) =2 for W(110).As we have shown in
I, this simple result gives a reasonably accurate finite-
coverage description of the true collective-difFusion an-
isotropy for branching ratios r 1, where interparticle
correlations are relatively weak. In the limit r~co,
where the effect of the in-cell exclusion vanishes, (2.1) be-
comes exact for collective diffusion, and all coverage
dependence of D and D vanishes. However, for
tracer diffusion, such is no longer the case. We can see
this from the well-known results of tracer diffusion for
simple, isotropic lattices where the tracer-diffusion
coefficient can be written as D (c)=Do(1 c)f (c)—, where
Do(1 —c) defines the mean-field diffusion coefficient with

Do D(c =——0), c is the background density (coverage),
and f (c) ~ 1 is a tracer-correlation factor. Thus, in
contrast to the collectiue-diffusion case, we expect the

1 . 1D =—lim —g ( R ' (0)—R '
( t)

~ ),t,.

CX =X~g
(2.2)

corresponding tracer-correlation factors for our model to
exhibit highly nontrivial behavior for all values of r and
reduce to the known isotropic lattice results ' in
the limit r —+ ~.

To study the properties of tracer diffusion within the
lattice-gas model, we have first performed extensive
Monte Carlo (MC) random-walk simulations as a func-
tion of coverage, for several values of the branching ratio
r. Following I, we will concentrate here on the case of in-
tracell hard-core interactions. To obtain D and D, we
have used the definition
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FIG. 1. Tra er-diffusion simulations (open squares) for the geometry of Fig. 3 of paper I, where 2a =b . The magnitude of the
overall rate constant v is arbitrary. For comparison, the MF results of Sec. III A are also shown by a solid line. (a) D„„and (b) Dyy

for r =3, (c) D „and (d) D» for r =
—,'o. The error bars for MC results are smaller than the size of the points.
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where N is the number of particles, R ' (t) denotes the
spatial component of the position vector of the ith parti-
cle at time t, and ( ) denotes configuration averaging. In
the random-walk algorithm, each diffusing particle is
tagged and the displacements are averaged over all of the
N particles to improve statistics.

Typically, in the simulations we have used systems of
the sizes 30 X 30, 60 X 60, and 100X 100, with fully
periodic boundary conditions. Most of the results
presented here are for 60X60 lattices. Depending on the
coverage, times up to of 200—5000 MC steps per particle
were used in evaluating (2.2). The product of the particle
number X and configuration averaging over repeated
time intervals was typically of the order of 10 —10 . Par-
ticular care was taken to ensure that the simulations have
reached the proper hydrodynamic limit by performing
test runs to very long times. However, in most cases the
hydrodynamic limit seemed to set in just after each parti-
cle had moved a few lattice spacings on the average. To
obtain good accuracy, least-squares fitting was done at
various parts of the displacement curves and the final re-
sult was chosen to be the average of these fits. In our
simulations finite-size effects were very weak, and the log-
arithmic term present in two dimensions' ' was not
detectable in the data.

In Fig. 1 we show the results of MC simulations as a
function of coverage for r =3 and —,'„corresponding to
the geometry of the W(110) surface. As expected, both
D and D „are now monotonically decreasing functions
of c, in contrast to the collective diffusion case (cf. Fig. 2
in I). For r =3 the qualitative behavior of diffusion is
similar to the isotropic lattice limit of r —+ ~. However,
for r =

—,
' diffusion in the y direction is strongly

suppressed and varies rather slowly as a function of c. To
quantitatively unravel this nontrivial coverage depen-
dence of tracer diffusion, in the next section we will de-
velop an analytic theory to calculate D.

III. GREEN'S-FUNCTION METHOD
FOR TRACER DIFFUSION AT ALL COVERAGES

To calculate the effect of interparticle correlations to
tracer diffusion of noninteracting lattice-gas particles, an
equation of motion method based on Green's-function
formalism has been developed by Tahir-Kheli and El-
liott" (TKE) and further refined by Tahir-Kheli and oth-
ers. ' ' As we have demonstrated in I, the TKE for-
malism can be easily generalized for our lattice-gas mod-

I

el, where the new feature is the intracell exclusion in-
teraction in addition to the usual single-site hard-core in-
teraction. In this section we will further apply the TKE
formalism and develop an analytic theory for the tracer-
diffusion case. Although formally somewhat more com-
plicated, this case shares several common features with
the derivation of the collective-diffusion theory in I, to
which we will frequently refer at the appropriate stages.

The general lattice-gas model we consider is geometri-
cally identical to the collective-diffusion case (Fig. 3 of I).
It now consists of a single tracer particle in a sea of back-
ground particles. We will consider the most general case
where the background particles can be different from the
tracer particles, in the sense that their corresponding
hopping rates are distinct. The diffusing particles jump
between neighboring lattice cells, which have sublattices
A and B. Double occupation of a cell by either the tracer
and a background particle, or two background particles,
is forbidden. We let p(t) be the stochastic occupancy
variable of the tracer particle, while n (t) refers to the
background particles. If at a time t, a site A in cell g is
occupied by the tracer, ps"(t)=1; otherwise, ps"(t)=0
Similarly, ns"(t) =1 or 0, according to whether or not one
of the background particles sits on sublattice 3 in cell g.
Using these variables, we can write down the following
rate equation for the tracer particle occupying sublattice
3 at cellg:

A AO A
p "(t)= Mp "—(r)+M p (t)

—+ps (t)I" (gf)[1—n&(t) —n&"(t)]
f

+g p&(t)I '(fg)[1 —n,"(r)—n, (r)] .
f

(3.1)

The corresponding equation for sublattice B follows by
interchanging labels for A and B. M is the jump rate
associated with the tracer particle hopping from A to B
within the hourglass, while M denotes the rate in the
opposite direction. I (gf) and I (gf) are tracer hop-
ping rates associated with an intercell jump from cell g to
cell f. Following I, I" (gf)=I for f —g=5, or 5z,
I (fg)=I for f—g= —5, or —52, and both are zero
otherwise. Here 5, = (a, b ) and 52 = ( a, b) connect a—dja-
cent cells, as shown in Fig. 3 of I.

The background particles are governed by similar
equations of motion. Taking into account that a back-
ground particle can be blocked by other background par-
ticles as well as the tracer, we find

A Ans"(t)= M "n "(t)+M—n (t) Q I "(gf)n —(t)[1 n&(t) n&"(t) ——p&(t) —p&"(t)]-
f

+ QI (fg)n&(t)[l —n (t) —nz(t) —
p~ (r) p~(t)], —

f
for a background particle on sublattice A in cell g. Again, the corresponding equation for sublattice B follows trivially.
The hopping rates M, M, I",and I of the background particles correspond to M", M, I, and I in (3.1), but
they need not be identical. However, the detailed balance condition must be obeyed by both the tracer particle and
background particles.

The background occupancy variables can be written in terms of fiuctuations u~ (t) =ns (t) cs on sublatt—ice S =—A or
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B. The components of the tracer-diffusion tensor can be extracted from the pole of the retarded Green's function for
the tracer:

Ggg (t. ) = 2ir—iB(t)(ps(t)p, (0)), (3.3)

where B(t) is the Heaviside step function and the angular brackets denote a statistical average. The corresponding four
next-higher-order Green's functions are given by

(3.4)

for S,S'= 2 or B. To obtain an equation of motion for G ~ (t), we make use of the corresponding rate equation (3.1).
The equajk-time term from the derivative of the step function is given by

—2mi5(t)(pg(t)pg" (0) ) = 2r—ci5(t)(pg (0) )5gg 5s „
1= —2rri5(t) —5g .5s „,Rg

where X is the total number of lattice sites. Using the double Fourier transforms defined in I, we can write the corre-
sponding equations of motion for Gk (co) and Gk (co) in reciprocal and frequency space as

[ ico+—M" +uJ (0)]Gk (co)—[M +uJ ( —k)]6k(co)= ——+I g —g [e'i' Gk „„(co)+e'" Gk '„„(co)]
5 p

1IBoy y ik 5[ —.ip 5GBB ( )+e —ip 5GBA ( )]k p, p k —p, p
5 p

(3.5)

[ —ico+M +uJ (0)]6k(co)—[M +uJ" ( —k)]Gk (co)

IBo Q g [e iP 5GBB— (co)+e iP 5GBA —
(co)] I Ao Q g e

—ik 5[eiP 5G AA (co)+eiP sG AB
( )]

1 1
k p, p k —p, p k p, p CO

5 p 5 p

(3.6)

Here p is summed over the first Brillouin zone, 5 is summed over 5, and 52, and the vacancy factor
u=(1 —c)—:(1—c —c ). The quantity J (0)—:gfI (gf) and

JAo(k) y IAo(gf )
—ik(g —t)

I;—f

AO
~k.Si ilk 52

—ik.5&
—ik 52

Similarly, J (k) =I (e '+e '). We also note that the detailed balance conditions needed to derive (3.5) and
(3.6) are

M 20180 MBOI AO (3.7)

for the tracer particle rates, stand identical to those given in I for the background particles, i.e., c "M"=c M and
c "J"(0)=cJ (0)

To solve for the tracer-diffusion tensor, we proceed formally in the same way as in I. To this end we must derive ad-
ditional equations of motion for the second-order Green s functions in (3.4). However, we will first present the mean-
6eld theory for the tracer-diffusion case.

A. Mean-6eld solution

Within the mean-field (MF) approxiination, we neglect all second-order Green s functions in (3.5) and (3.6), which, in
addition to the tracer occupancy variable, also involve a density-Auctuation field for the background particles. This
leads to the set of equations

[ ico+M"—+uJ" (0)] —[M +uJ ( —k)]
—[M" +uJ" ( —k)] [ —ico+M +uJ (0)] G (co)

—i/X
(3.&)



MODEL FOR DIFFUSION ON DEFORMABLE. . . . II. 2137

We observe that the background particles enter only
through the vacancy factor v in (3.8). We can obtain the
elements of the diffusion tensor from the fact that the
diffusive pole of the Green's functions occurs at
co= —ik D k in the limit k~O, co —+0. The result is

for large enough coverages the correlations can no longer
be ignored. Thus, to improve upon the MF solution, in
the next section we will present a derivation of an
enhanced solution to second order in the Green's-
function expansion.

2VIBO(M AO+ 2VI AO)
D a

M AO+MBO+2V (IAO+IBO)
(3.9) B. Second-order solution

and

M A0IB0
D b2

+MB +2V (I +I )
(3.10)

To make the connection to our original model of
diffusion of identical particles, we set M =M =M,
I A =IB0 I, and c A=c =c/2, which gives

The mean-field approximation can be systematically
improved by including higher-order Green s functions in
the equations of motion (3.5) and (3.6). In this section we
will follow I and derive second-order corrections, which
are obtained from the equations of motion for the
Green's functions Gstg (t) We. get

erg (t) = —2+5(t)(pg(0)ui (0)pg. (0) )

and

D =uI a

uI M b2
0 0

(M'+2vI')

(3.11)

(3.12)

r

+ pSt ulS t pAO

(3.14)

For the diffusion anisotropy we then obtain, in terms of
the branching ratio r =M /I,

'2
r

D r+2u a
(3.13)

Although (3.13) exactly coincides with the result we ob-
tained for the collective-diffusion case in I, both D and
D differ from their collective counterparts by an addi-
tional multiplicative factor u. Interestingly enough, this
latter result applies for the isotropic lattice cases as well,
where collective diffusion is constant for all coverages
c ( 1 and is given simply by Do =D(c =0), as we men-
tioned in Sec. II . As in I, our results correctly reproduce
the simple zero-coverage limit of an independent random
walker. It is also interesting to note that while the cover-
age dependence of D„„ in (3.11) is identical to the usual
isotropic MF result with D0 —=I a, D y reduces to this
simple functional form only in the limit r ~~.

In Fig. 2 we show results of comparisons of the MF
theory with the MC simulations. For the x direction the
coverage dependence of D„ is given by a straight line
and the MC results lie below this line. For r= —,', the
discrepancy between the two results becomes quite large.
However, for Dyy the unusual form of coverage depen-
dence in (3.12) yields a better agreement for very small
values of r, where diffusion in the y direction has a rather
weak coverage dependence. This result may be explained
as follows. Namely, for small r and low coverages, the
rate of motion of the tracer and background particles
within the cells becomes very small, while background
particles can still move relatively fast in the x direction.
This fast motion may cause the correlations of the tracer
particle to the background density-Quctuation field to
weaken, which would improve the MF approximation. A
similar effect in the case of a square lattice with fast back-
ground particles has been originally pointed out by
Tahir-Kheli. ' We also note that f for the case of col-
lective diffusion exhibits similar behavior in I. However,

C Gk 'pp=F Gk" +R pk . (3.15)

The matrix elements of C, F, and R are, of course,
different from I and can be found in the Appendix. In
Eq. (3.15),

(2)

AA
k p, p
BB

Gk p],
AB

BA
k p, p

(3.16)

a11d

G(&)——k

GA

GB (3.17)

The vector pk is given by

Pk

pj

pi6

(3.18)

with components p&
—p&6.

.

L

where the different combinations of SS' give a set of four
equations. In the absence of static spatial ordering, the
first term on the right-hand side of (3.14) vanishes. How-
ever, it is important to note that when g = l, variables pg
and u& can be contracted and G~& becomes proportional
to the Green's function Gg~. We also note that terms
proportional to ((pg(t)u&(t)ui (t);pg" (0))) are neglected
only if gWlWl'; otherwise, they are contracted.

From (3.14), we proceed exactly as in I by inserting the
previous equations of motion and transforming to the
Fourier space. Correspondingly, for the second-order
Green's functions, we recover a matrix equation which is
formally identical to that for collective-diffusion case:
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Pl Pk (~l ) P2 Pk (~2)

P3=Pk'( —&1» P4=Pk "(—&2)

Ps=Pk '(~1» Ps=Pk '(&2»

P7=Pk'( —&1» Ps=Pk"( —~2)

P9 Pk ( ~1) & P10 Pk ( ~2)

Pl 1 Pk (51) P12 Pk (~2)

(3.19)

and

D =uIa f, (3.21)

where the sum over p goes over the first Brillouin zone,
and 5 is. either 5, or 52.

To solve for the second-order equations of motion in
(3.15), we follow the procedures outlined in I. In the fully
symmetric case I" =I =I, M" =M =M, and
c =c =c/2, we obtain

uI M
M'+2uI' (3.22)

Following I, we have defined

(3.20)

where the tracer corr-elation factors f„and f represent
corrections to the previous MF results (3.11) and (3.12).
The diff'usion anisotropy can then be written as a function
of ras
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FIG. 2. Comparisons of results for the correlation factors f„and f» from the second-order solution of Sec. III B (circles) with MC
simulations (crosses). In each case the MF result f„=f =1 is shown for reference by a horizontal dashed line. (a) f„and (b) f» for
branching ratio r =3, (c) f„and (d) f» for r= —,

' . Error bars in the MC results are smaller than or about the size of the crosses.



MODEL FOR DIFFUSION ON DEFORMABLE. . . . II. 2139

2
r b I"y

D„„r+2v a f (3.23)

C)
0
G5

These results (3.21) and (3.22) are again formally identical
to the collective-diffusion case multiplied by the vacancy
factor v; however, the behavior of the tracer-correlation
functions is quite different from the collective case, as we
will show below.

The numerical integrals over p were calculated using a
20X20 grid of Gaussian points, which was enough to
guarantee convergence. To verify the correctness of our
theory, we first computed the correlation functions in the
limit of a very large branching ratio e &) 1. As expected,
f and f become identical and the theory in this limit is
similar to previous results of Tahir-Kheli and Elliott. "
Also, in the limit c ~0, we find that the correlation func-

tions correctly approach unity. In Fig. 2 we present re-
sults of calculations for the correlation factors in the
cases r =3 and —,

' . In each case the MF results are given
for comparison by straight horizontal lines. For large
values of r, the second-order solution gives a much better
agreement with the simulations than the MF theory, as
expected. However, as r 5 1, for f the theory starts to
deviate from MC results at large coverages. More
dramatically, for f the deviation becomes large already
for small coverages where the second-order solution
shows an overall downward curvature, while the MC re-
sults approach mean-field-like behavior for small cover-
ages. Similarly to the collective-diffusion case, the
second-order solution does not seem to converge to the
correct limit as c~1, which again is due to terms pro-
portional to (1 —c ) and (1 —c ) present in the neglected
higher-order correlation functions.

Finally, in Fig. 3 we present results for the anisotropy
ratio D /D „ for the two branching ratios studied here.
Even for r =3, the ratio is not described by the analytic
theory as accurately as in the case of collective diffusion
(see Fig. 5 in I), and the discrepancy as compared to MC
results becomes quite large for r =

—,', . For the latter case,
the inaccuracy of the correlation factors within the
second-order approximation is rejected in the anisotro-
py, which is well below its correct value of 2 at c~1.

IV. SUMMARY AND CONCLUSIONS
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FIG. 3. Anisotropy ratio D»/D„ for (a) r =3 and (b) r= —,

'

corresponding to the geometry of the W(110) surface in Fig. 3 of
paper I. Solid line denotes the MF result (3.23), while crosses
denote MC simulations and open circles the analytic second-
order solution.

In this work we have presented a detailed theoretical
study of tracer diffusion in the two-step lattice-gas model
with single-site and intracell hard-core interactions. This
work complements our preceding paper on collective
diffusion in the model. We have first presented accurate
MC simulations, which reveal the presence of unusual
correlations in the diffusion process of a tracer particle in
the sea of identical background particles. To better un-
derstand these correlations, we have used the Green's-
function method of Tahir-Kheli and Elliott" to analyti-
cally compute the elements of the tracer-diffusion tensor
for the model. Following our previous work, we have
first obtained an analytic solution for D within the mean-
field approximation. Remarkably enough, these results
are formally identical to the collective-diffusion case ex-
cept for a multiplication by the vacancy factor U. We
have also derived an improved solution to second order
in the Green's-function expansion, which leads to an ex-
pression for D in terms of the MF result multiplied by the
corresponding tracer-correlation factors. Our calcula-
tions indicate that the interparticle correlations for the
tracer-diffusion case are more pronounced than for the
collective case. Correspondingly, the second-order solu-
tion derived for both cases becomes less accurate for the
tracer-diffusion process as r diminishes. However, al-
though the coverage dependence of D for tracer and col-
lective diffusion is very different, the anisotropy vatio

D„ /D behaves in a very similar fashion, at least for the
physically interesting cases of branching ratios r 1.
This is evidenced by a comparison of Fig. 3 with Fig. 5 of
I, both of which show Dyy/Dzz fof p 3 and ]p for the
two modes of diffusion. Although the Green's-function
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theory is again quantitatively less accurate than in I, even
the MF result (3.13) describes the overall coverage depen-
dence of the ratio correctly in the limit c ~0 and c —+1.
Finally, we would like to mention that it may be possible
to considerably improve the analytic theory presented
here by a self-consistent renormalization of the second-
order solution. ' ' However, this is outside the scope of
the present work.

Our results for the diffusion anisotropy of collective
diffusion in I have shown that the experimentally ob-
served anomalous anisotropy ratio of about 1.2 of the
H/W(110) systems can be qualitatively explained by the
symmetry breaking of the cell and the two-step model
studied here. At high temperatures and coverage less
than c (0.5, where no phases with long-range order are
present in the system, ' we then expect a relatively weak
coverage dependence in the anisotropy ratio of collective
diffusion, which result is corroborated by the experi-
ments. The additional results presented in this work in-
dicate that this anisotropy is a universal property of the
underlying lattice for branching ratios r +1. However,
for r= —,', our results indicate that Dyy/D&z for tracer
diffusion is overall somewhat larger than for the collec-
tive case. Obviously, it would be very interesting to. ex-
tend the experimental studies of surface diffusion' to in-
clude the coverage dependence of tracer diffusion in an-
isotropic systems such as the W(110) to study the range
of validity of such universal behavior.
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[vA(p)+cBJB(p) c AJA(Q)]

C3 ~= —v (k —p),
C3 3=[ i—co+v" +v +c "J"(0)—c J (p)],
C3 4=0,
C4

&

= —v" (k —p),
C = —[v (p)+c "J"(p)—c J (0)]

C43 =0,
C4~=[ iso+—v +v"+c J (0) cJ—(p)],

(Al)

where we have defined v =M +vJ (0) and v (k)
—=M +vJ ( —k) for all sublattice indices S.

The (4X2) matrix Fhas elements

F, , =c "[ico v" —+J"(p)+vJ," (
—p)] —c J (0),

A~BO
1,2 C

B~AO
2, 1 C

F22=c [iso v+—J (p)+vJ (
—p)] —c "J"(0),

(A2)
F =c [ice v" +J (—p)+UJ" (

—p)] —c J"(0)

F 2=CM3, 2 C

A~ AO
4, 1

F42=c "[ice v+J "(p—)+UJ (
—p)] —c J (0) .

For the (4X16) matrix R, all elements appear in pairs.
The elements R;2 (i =1,2, 3,4; j=1,2, 3, . . . , 8) follow
from the preceding elements R;2~ 1 by letting 5,~52.
Below, this is shown for the pair R, , and R, 2 ..

APPENDIX

This appendix contains expressions for the elements
within the matrix equation (3.15). First, the elements of
the (4X4) matrix C are given by

C, , =[ ico+v" +v—"+c J (0)—c J "(p,)],
0

C, 3= —[v (p)+c "J (p) —c J (0)],

C, ~= —v (k —p),

R, = —c IAe ' —c I —vI1, 1

R, z=R, , (5,~5z),
AIBO '

1 '~ l IBO 1

1,3

AI A+( A)I AO

R 7=c I e 'eik5 —

ipse

1,7

R& 9=(c I +vI )e

R1 11=0
ip5

1, 13

R1 1g
=0

C2~=[ ico+v +v—+c "J (0)—c J (p)],

AO(k

[ A( )+cBJB(p) c AJA(Q)]

B AO '(P —k) 5& AO
—ik 5&R21=C I e —vI e

BIBO '
1 BIB I A

2, 3

R BI AO i(P —k).5lR25=c I e
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Rz 7= c—I +(v c—)I e

R29=0,

R, „=(c"I"+uIe)e

R2 13 =0,

2, 15

R3, =[(v c)I— +c I"+uI ]e

aIao33=C e

( AIR BIA0)

R37=( uI +—c I e ')e

R3 9= —(uI "+c I )

R3 11 =0

= —c'I'
3, 13

R3 15 =0

41 —C e

R4 3=[(u —c )I +c I +uI "]e
IAO '

1 AIAO ' IR45= —UI e +c I e

R47=(c I c "I—)e

R49=0,
R4ii= (uI +c I )

R4 13 =0
AIA

(A3)
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