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We present results of theoretical calculations of collective diffusion in a lattice-gas model of a deform-
able lattice, which has been proposed to explain the anomalous-diffusion anisotropy of adatoms on a de-
formable lattice, such as H on W(110). This model contains a competition between intercell and intracell
diffusion jumps. The latter occur through a barrier created by a local distortion of the underlying sub-
strate. The central parameter of the model is the branching ratio r, which is defined as the ratio of
intracell-to-intercell diffusion rates. We perform extensive Monte Carlo random-walk simulations of
diffusion as a function of coverage for several values of r, for a model including only intracell hard-core
interactions. Using the Green s-function method, we obtain an analytic mean-field solution for the
diff'usion tensor. We also present the derivation of a higher-order solution in the Green s-function ex-
pansion. We study the validity of the analytic solutions by comparison with the simulations. Finally, we

remark on the relevance of our results to diffusion experiments for H/W(110).

I. INTRODUCTION

Perhaps the simplest example of a diffusive process
consists of classical particles executing isotropic random
walks on an inert lattice. In the case of only one particle,
the corresponding diffusion constant can trivially be writ-
ten down as Ia /z, where z is the coordination number of
the lattice, I is the jurnp rate, and a the lattice constant
(i.e., the length of each jump). ' However, in the presence
of other particles, the diffusion process becomes correlat-
ed and nontrivial. Additionally, a distinction has to be
made between single particle or tracer and collective- or
chemical-diffusion processes. The interparticle correla-
tions play a particularly important role in two-
dimensional systems. A substantial amount of analytic
work and numerica1 simulations have been done in simple
lattice-gas systems in order to study these correlation
efFects as a function of the coverage c (0 c 1).' So
far, complete analytic solutions for all coverages exist
only in cases where interactions between particles can be
neglected, except for the double-occupancy or site-
exclusion hard-core interaction. ' Most of the current
work has concentrated on tracer diffusion, since with
only an on-site hard-core interaction present the
collective-diffusion tensor is independent of coverage,
while tracer diffusion shows complicated dependence on
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Surface diffusion of adatoms on a substrate provides
an important realization of classical diffusion in two di-
mensions, which has frequently been modeled by lattice-
gas systems. ' However, in reality, the adsorption of
an adatom is often accompanied by a local substrate re-
laxation or distortion. ' Recently, it has been pro-
posed that this local distortion can have signi6cant effect

on the surface-diffusion tensor. A novel lattice-gas
model was introduced which incorporates the essence of
such a distortion with respect to diffusion. This model
has been proposed to explain the observed diffusion an-
isotropy of H adatoms on a W(110) surface. The essence
of the model is to recognize that the binding energy of a
H adatom can be lowered if it is displaced locally from
the original adsorption site along the (110) direction and
accompanied by the shift of surrounding substrate atoms
in the same direction (see Fig. 1). Obviously, the same is
true if the displacements of both the adatom and sur-
rounding substrate atoms are reversed. This results in a
"dynamical" double-well-type adsorption potential,
which is imposed on the surface unit cell by each
diffusing particle. When these distortions start to corre-
late mutually for higher coverages, a global surface
reconstruction may occur, such as has been observed for
H on W(110) around c =0.5.'

An important feature of the model is that, even
without direct adatom interactions, double occupation of
an adsorption site is not favorable. This happens because
of the opposing substrate distortions of two adatoms
within the same cell that leads to a large local increase in
the energy. Since the time scale for the adatom motion is
much longer than a typical time sca1e for the substrate
response, the effect just described can be approximately
modeled by splitting the original single adsorption site
into two symmetric sites. When this is done, an energy
barrier exists for the motion from one subsite to another.
Moreover, a simultaneous occupation of the two subsites
is then forbidden; i.e., the hard-core repulsion applies
within each cell. In the context of a simple random-walk
theory, the diffusive motion of the adatoms can then be
considered to consist of two separate steps on a static lat-
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tice. The first is an intracell jump across the barrier orig-
inating from the local distortion, while the second is an
intercell jurnp across the barrier due to the usual periodic
arrangement of the substrate atoms. The competition be-
tween these two processes can be parametrized by a
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branching ratio r, which is the ratio of the intracell-to-
intercell diffusion rates. In realistic adsorption systems,
additional direct or indirect interactions exist between
adatoms on different adsorption sites, as evidenced by the
appearance of many distinct ordered phases of the ad-
layer. ' However, even without these interactions, the
presence of both intracell and intercell jumps as well as
the exclusion of double occupancy within a cell already
leads to a very complicated coverage dependence and
causes strong correlation effects to appear for both tracer
and collective difFusion in the model. Having said this, a
note of caution must also be added: The assumption of a
static substrate renders the model physically applicable
for H/W(110) only in the regime where no global recon-
struction of the substrate occurs.

To explore fully the effects of a local lattice distortion
on diffusion, we have undertaken a comprehensive study
of the collective-diffusion process within our lattice-gas
model. In this paper we shall concentrate on the case of
a hard-core repulsion which applies to both sites in a
given cell. This implies a strict exclusion of a double oc-
cupancy in each cell. The behavior of the tracer-diffusion
tensor under the same constraint, as well as the effect of
full adatom interactions, is planned to be presented in
other subsequent publications. "'

We start this work by presenting results of extensive
Monte Carlo random-walk simulations as a function of
coverage for various values of the branching ratio r.
These results extend and generalize the earlier study of
Kjoll, Ala-Nissila, and Ying for r =3. Our results
demonstrate how the diffusion anisotropy depends on
coverage and r. Using the Green's-function method, we
then construct an analytic mean-field solution for the
collective-diffusion tensor D. This solution turns out to
be moderately accurate for r 2 1, in particular as far as
the behavior of the diffusion anisotropy D„ /D is con-
cerned. Additionally, in the limit r —+ Do, it reduces
correctly to the trivial, coverage-independent solution.
We also construct an improved solution by including
some of the higher-order terms beyond mean-field theory.
This leads to a set of self-consistent equations, which we
solve numerically for all coverages as a function of r.
Next, we present comparisons of these two solutions with
the results obtained from Monte Carlo simulations. Fi-
nally, we remark on the relevance of our results to experi-
ments on the H/W(110) system.

II. MONTE CARLO SIMULATIONS
OF COLLECTIVE DIFFUSION

FIG. 1. (a) Geometry of an undistorted W(110) surface (from
Ref. 7). The hourglass adsorption sites of adatoms (cells) are
denoted by I., while S denotes the saddle points of the surface
potential. (b) A schematic figure of a local distortion caused by
an adsorbed H adatom (shaded circle) (Ref. 7). Arrows denote
the displacements of the outmost atomic layer, which causes a
local symmetry breaking of the hourglass sites. (c) A simplified
lattice-gas model or diffusion which takes into account the effect
of the distortion. Each hourglass now contains two equivalent
sites, denoted by circles. Diffusion consists of two steps, name-
ly, intracell jumps with rate M and intercell jumps with rate I.

As discussed in the Introduction, the physical motiva-
tion behind the diffusion model introduced by Kjoll,
Ala-Nissila, and Ying is based on the anomalous-
diffusion anisotropy of H adatoms on a W(110) surface.
On an ideal surface, the underlying surface forms a cen-
tered rectangular lattice, with adatoms adsorbed on the
long bridge sites within the "hourglass" potential [see
Fig. 1(a)]. The principal axes of diffusion are given by the
(110) and (001) directions denoted by y and x, respective-
ly. When H is adsorbed on the surface, this local symme-
try is broken by a uniform shift of the adatoms [Fig.
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proved to be important for higher coverages and small
values of the branching ratio. Our results and test runs
showed virtually no noticeable finite-size effects beyond
systems of the size 30 X 30 within our statistics.

In Fig. 2 we show results of our simulations for two
branching ratios r=0. 1 and 3, corresponding to the
geometry for the W(110) surface of Fig. 1. First, D„„,
which is shown in Fig. 2(a), is a relatively slowly varying
function of coverage for branching ratios r ~ 1. For r =3
it is already rather close to the coverage-independent lim-
it of r~ ~. D shows stronger coverage dependence
even for r =3 evident in Fig. 2(b). However, for both
quantities the correlation effects remain rather weak for
c 0.5, which indicates that Eq. (2.1) is a relatively good
approximation of the anisotropy ratio for these branching
ratios. To understand the nature of these correlation
effects, in the next section we will develop an analytic
theory to calculate D.

III. GREEN'S-FUNCTION METHOD FOR
COLLECTIVE DIFFUSION AT ALL COVERAGES

In the presence of more than one particle, the in-cell
hard-core interactions cause nontrivial particle-particle
correlations to appear, as we have seen in the MC results.
In the case of only a single-site hard-core interaction, it
can be shown rigorously for collective diffusion that these
correlations cancel out and the single-particle random-
walk results apply for all coverages c & 1. However, the
additional hourglass site exclusion of the two-step model
being considered here invalidates this simple result. To
calculate the effect of correlations for the case of tracer
diffusion, an equation-of-motion method based on
Green's-function formalism has been developed by
Tahir-Kheli and Elliott' (TKE) and further refined by
Tahir-Kheli and others. ' ' The TKE method has been
applied with very good results to a variety of lattice-gas
systems, where only the on-site blocking interaction is
present. %'ithin the TKE method, one derives a formal-
ly exact equation of motion for the frequency- and wave-
vector-dependent fluctuation correlation Green's func-
tion, which then can be solved using various decoupling
schemes. This method can be generalized to treat the
case of collective diffusion as well, as we use it below to
derive an analytic solution of D for our lattice-gas model.

Let us consider diffusion on the somewhat more gen-
eral lattice-gas model of Fig. 3 with two distinct sublat-
tices A and 8 in a given unit cell. In addition to the
single-site hard-core exclusion, we shall impose the condi-
tion that only one of these sublattice sites can be simul-
taneously occupied. Clearly, each cell of this generalized
model then corresponds to the hourglass adsorption sites
of our surface model. Let n (t) denote a stochastic occu-
pancy variable of the diffusing particles, which are all as-
sumed to be identical. If at a time t a particle is on sub-
lattice A in cell (i.e., the hourglass) labeled g, then
n (t) = 1; otherwise, n "(t)=0. A corresponding
definition nI (t) is adopted for a particle on sublattice B.
Using these variables, we can write an exact rate equation
for a particle occupying sublattice A in cell g:

FIG. 3. Geometry of the generalized two-step model which is
used for the theoretical calculations of Sec. III. DiFusion rates
and concentration of particles on sublattices 2 (circled dots)
and B (dots) can be diFerent, as discussed in the text. The vec-
tors 5, and 5& connecting periodic cells are also shown schemat-
ically. L and S refer to the original surface model of Fig. 1.

An "(t)= M "n (t)—+M n (t)

—g I"(gf)n (t) [1—nI~(t) —n&"(t) ]
f

+ Q I (fg)nI ( t) [1—
n~ (t) ng (t) ] —.

f
(3.1)

The corresponding equation for a particle on sublattice B
can simply be obtained by interchanging A and B in (3.1).
Here M is the intracell jump rate associated with the
particle hopping from sublattice A to sublattice B within
the hourglass, while M is the rate for a jump in the op-
posite direction. I"(gf) and I (gf) are hopping rates as-
sociated with an intercell jump from cell g to cell f origi-
nating from either A or B sublattice, respectively. We re-
strict ourselves to the case where only nearest-neighbor
jumps are allowed, i.e., I"(gf)=I, when f—g=5, or
52, and is zero otherwise, whereas I (gf)=I for
f—g= —5, or —52, and zero otherwise. Here 5, =(a, b)
and 5z = ( a, b) denote ve—ctors connecting the lattice
periodically from one hourglass to another (see Fig. 3).

The occupancy variables can be written in terms of the
fluctuations in the stochastic occupancy variables and the
coverage on the specified sublattice as n (t)=ug(t)+c .
(To simplify the notation, from here on we use the super-
script S to denote A or B, while SS' can be any of the
four combinations A A, AB, BA, or BB.) The statistical
averages of n "(t) and n (t) denoted by c"and c are the
coverages on sublattices A and B, respectively. The total
coverage c =c +c is the sum of the coverages on the
two sublattices, which, for convenience, is normalized to
unity corresponding to the maximum allowed occupancy
of one particle in each hourglass.
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Given the rate equations for the particle fluctuations,
the TKE method consists of finding an equation of
motion for the retarded Green's functions of the Quctua-
tion correlated functions. From the solution of these
equations, we can then extract the elements of the
diffusion tensor from the pole of the Green's functions.
To this end we first define the retarded density-density-
Auctuation Green's function. It refers to the probability
that when a fluctuation on the A sublattice of cell g'is
present at t =0, another fluctuation at sublattice S of cell
g will occur at a later time t:

[ —itv+P (k)]Gk = —ic (1—c")+a (k)gkB

A y [p
4A

(5 ) +p
AB

( 5 ) ]

Bye (k5[pBB(5)+pBA(5)]
5

(3.9)

and

[ —itv+P (k)]gk =ic c +a (k)gkA

Gs (t) = —2m. i6)(r) & ugs(t)u, A(0) )

—= « ~;(t);~,"(0))),
where B(t) is the Heaviside step function,

(3.2)

+I g [Pk (
—5)+Pk "(—5)]

I A y
—ik 5[ AA(5)+ AB(5)]

+1, for t &09t =' 0, otherwise .
«

(3.3)

We also need the four next-higher-order Green's func-
tions which refer to triple density Auctuations:

GS,'(t)= «uS(t)u, S'(t);u "(0))) . (3 4)

To derive the equation of motion for Ggg (t), w. e use the
rate equations (3.1). This gives

(3.10)

Here the sum over 5 covers both 5, or 52. We have also
suppressed the explicit frequency dependence of the
Green's functions for simplicity. The quantities a (k)
and P (k) are defined by

a (k)=M +vJ ( —k) —c J (0)+c J (k) (3.11)

P (k)=M +vJ (0)+c J (0)—c J (k), (3.12)
G .(t) = —2~i5(t) & u (t)ug" (0) )S

dt

—2«i(((((( «( )««(«". (0() . (3.5)
dt

The first term on the right-hand side is an equal-time
term which results from the time derivative of
the Heaviside function. Using the result that (n ) = n

and n n =0 for SXS', we obtain the

result &u (t)u ~ (0))=5 .c "(1—c ) for S=A and

& ug (t)ug". (0) ) =
5gg c c— for S =B. As mentioned

above, the second term is calculated by inserting the
equation of motion (3.1), which in turn leads to terms in-
volving the higher-order Green's functions (3.4).

To proceed further we next define the Fourier trans-
forms of the Green's functions in frequency and recipro-
cal space as

where S,S' denotes A, B or B, A. The quantity pk (5)
which depends on k and 5 is defined by the expression

SS'(5 )
— g g SS' t((l.5

k ~ k p, p
P

(3.13)

Using the identity G i, (t) =Gi, (t), we are led to the im-
portant symmetry relation

SS'(5)—eik 5 S'S( (3.14)

c 'M'=c'M' (3.15)

where 5 can be either 5i or 52. The symmetry relations
play an important role in the analytic theory of Sec.
III B. It should be mentioned, however, that in obtaining
Eqs. (3.9) and (3.10) we have also used the detailed bal-
ance conditions

(3.6)G s
( t ) d ~ G s( tv )e i ~te i k (g g )—. —'(X)

k c "J"(0)=cJ (0) (3.16)

GSS'(t) —
1 d y gSS'

( )
—tt«t

k), k2

Xe
ik (g —g')+ik .(1—g')

(3.7)

J(q)g I (gf )e tq(g f)

g
—f

(3.8)

Using these definitions, we arrive at the following equa-
tions of motion for the density-density Green s functions:

The corresponding Fourier transforms for the jump rates
are

Hence the diffusion rates M", M, J"(0), and J (0) are
not all independent parameters, but are constrained by
the relations (3.15) and (3.16).

In order to obtain a complete solution for the Green's
functions G in Eqs. (3.9) and (3.10), one has to solve for
the quantities p& . The equation of motion for the
Green's functions G contained in them in turn depends
on yet higher-order Green's functions through an infinite
hierarchy of equations. However, as we will discuss in
the next sections, it is possible to truncate this hierarchy
and obtain solutions for 6 in a well-defined manner.
The simplest of these solutions is the ilhean-field solution,
which is the subject of the following section.
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A. Mean-field solution

[ —ico+P (k)]Gq —a (k)GI, = ic—"(1—c")
and

(3.17)

Within the mean-field (MF) approximation, the triple-
density-fluctuation propagators are assumed to be negli-
gible in comparison with the density-density Green s
functions. The MF approximation is thus obtained by
dropping the nonlinear higher-order propagators to ob-
tain a linear set of equations:

ages. In particular, near c =1 the MF theory gives poor
results for D and D for r ~ 1, although for Dyy the
theory is rather good for coverages c 50.6—0.8. Never-
theless, the anisotropy ratio (3.23) is always guaranteed to
be correct at c =0 and 1, since blocking of intercell jumps
corresponds to r~020 for c~l and thus D„~/D ~2.
Before presenting a more detailed comparison of the MF
anisotropy ratio with simulations, we will study the
correlation effects in detail in the next section by treating
the fluctuations more accurately through a higher-order
approximation.

[ —ico+P (k)]Gk —a "(k)Gi, =ic "c (3.18)

The diffusive pole of the Green's functions occurs at
co= —ik-D k in the limit k~O, co~0. We find from
(3.17) and (3.18) that

v (I M"+I"M )+4v I"ID„= 2c I + a
M +M +2v(I +I )

(3.19)

and

v (M "I'+M'I')+2c 'I '(M '+M')
D bM"+M +2v (I +I )

B. Higher-order solution

In the mean-field approximation, we neglected all
higher-order terms. To study the effect of interparticle
correlations in more detail, in this section we shall take
into account the next-higher-order terms in the dynamic
density-fluctuation expansion. This means neglecting
terms only of type ((usu& u&,'ug" )) (and of higher or-
der) where all three particles are on different lattice sites.
To this end we derive an equation of motion for G~&g. (t).
This can be obtained by differentiating with respect to
time:

(3.20)

By symmetry, the off-diagonal elements Dzy Dyz 0.
Equations (3.19) and (3.20) are the main results of this
section. We note that the global symmetry of the
diffusion constant is preserved by (3.19) and (3.20), which
are symmetric under the interchange of labels A and B.
When the parameters of the two sublattices are equal,
i.e., M"=M, I =I =I, and c =c =c/2, these ex-
pressions can be further simplified to correspond to our
original surface model of Fig. 1 as

D =Ia (3.21)

and

IM
I+2 I (3.22)

In terms of the branching ratio r =M/I, the diffusion an-
isotropy is then given by

(3.23)
D „r+2U a

We note that even in the mean-field limit, the y com-
ponent of the diffusion tensor has nontrivial coverage
dependence. In the limit r —+ (x), the diffusion tensor be-
comes constant as required by the rigorous result in this
limit. The anisotropy ratio (3.23) also reduces to the
correct geometric limit, which for the W(110) surface is
(bla) =2 For values .of r of unity or larger, the MF
result provides a reasonably good description of the
collective-diffusion case, as evidenced by a comparison in
Fig. 2 of the MF results with the Mc simulations. How-
ever, for smaller values of the branching ratio, the inter-
particle correlations play a significant role at high cover-

Gsis (t)= 2vri6(t)—(u ui,'ug" (0))

—2«(8(t)( «t««t«;ut". (0))dt

—2«(8(t)(u utu;u", (0)) . (3.24)
Qt

C-Gk 'p p
=F Gk '+R pk, (3.25)

where matrices C, F, and R are of the order (4X4),
(4X2), and (4X16), respectively, and depend on k —p
and p. The explicit expressions for the matrix elements
can be found in the Appendix. In Eq. (3.25),

Here the fiuctuations u (t) can be on either sublattice in
each cell, giving a set of these equations for all possible
combinations. To proceed further we note that the
equal-time terms ((ug(0)ui (0);ug" (0))) can be dropped
in our calculations for all four combinations of the cell in-
dices g and i. Terms of type ((ug(t)u& (t)ui (t);uz" (0)))
are neglected only if all three subscripts refer to different
cells. All possible contractions leading to lower-order
Green's functions which occur when the summation vari-
able l' is identical to either g or l are taken into account.

Next, on the right-hand side of (3.24), we insert the
first-order equations of types (3.1)—(3.24). To extract the
diffusive behavior, we again transform the consequent set
of equations into Fourier space, where the results can be
written in terms of the functions G~((o) and Gk & &(co).
The combined set of four equations of motion is compact-
ly expressed in terms of the matrix equation
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AA

BB

AB

BAGk

(3.26)

6(&)——k

GA

GB
k

(3.27)

pi6

(3.28)

The quantities p&
—p, 6 are as follows:

Pi=pk (&i» Pz=pk (&2»

~1) P4 =Pl ( &2)

Ps=pk'(&i» p6=P~"(&z»

P7=pk'( —~i» P&=pk'( —~2),

p»=«( —&i» pi4=pk (
—&z»AB AB

(3.29)

D =— b fIr
r+2v (3.30)

D„=Ia f (3.31)

where the correlation factors f„and f represent correc-
tions to the previous MF results. The diffusion anisotro-

The equations of the motion (3.1) for the Green's func-
tions G~z" together with the equation of motion (3.25) for
the Green's functions Gk '„„constitute a closed set of
equations. To proceed, we can formally solve the matrix
equation (3.25) to obtain Gk 'z z in terms of Gk". Using

the definition (3.13) for the PP (5)'s, we can generate all
of them from (3.25) by multiplying with the appropriate
phase factors and integrating JM, over the 6rst Brillouin
zone. The resulting numerical values for p&

—p&6 then al-

low us to solve for Gz ' from (3.25). Finally, inserting
these results back into (3.1) allows us to obtain the
density-density-fluctuation Green's functions and extract
the elements of the diffusion tensor in the limit k —+0,
o)—+0.

To avoid the complexity of the most general model, we
have again solved for collective diffusion in the sym-
metric case where M =M =M, I =I =-I, and
c =c =c/2. The elements of the diffusion tensor can be
written in a simple form as

py then becomes equal to the MF result multiplied by the
ratio of the correlation factors:

D».

D„, r+2U a f (3.32)

In the low-coverage limit c —+0, we found in Sec. IIIA
that the MF result reproduces the correct random-walk
result for the diffusion tensor. For our solution to be
correct, in this limit f and f must become identical to
unity. In the high-coverage limit, the MF result (3.23) is
again exact and the ratio f If must approach unity.
Additionally, in the limit r —+ ~, both correlation factors
must again approach unity in accordance with the van-
ishing of all correlations.

In order to obtain the correlation factors, the numeri-
cal integrations over the Brillouin zone were done using
two one-dimensional Gaussian integrals, each utilizing up
to 96 Gaussian points. The reason for this high number
is that the integrand is a very complicated, rapidly vary-
ing function of the wave vector. As a measure of the nu-
merical convergence, we monitored how well the symme-
try relations of Eq. (3.14) between the p's were satisfied.
In fact, by using the symmetry between sublattices A and
8, it is possible to reduce greatly the number of indepen-
dent terms needed in the calculations. For our 96 Gauss-
ian points the symmetry relations were in general
satisfied to 1 part in 1000. The numerical convergence
was worst for small branching ratios and coverages close
to unity, where we expect the correlations to be very
strong.

In Fig. 4 we show results of comparisons of the analyt-
ic results for f and f with MC simulations, for r = 3
and —,

' . For reference, we also display the MF results,
which are trivially given by f:f» =1. We—can see that
the second-order solution is considerably more accurate
than the MF result for r =3, but that it becomes quanti-
tatively rather inaccurate for r =

—,', . In particular, the
second-order solution apparently fails to converge toward
the correct result in the limit c ~1. The reason for this is
that the higher-order Green's functions we have neglect-
ed contain terms proportional to (1—c")or (1 —c ), nei-
ther of which vanish in this limit. Physically, this means
that when r diminishes, the intercell jumps cause strong
multiparticle correlations to appear, which cannot be in-
cluded in our higher-order solution. Thus the theoretical
solution we have developed is not guaranteed to become
exact for c ~1.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a detailed theoretical
study of collective diffusion in a two-step lattice-gas mod-
el. We have performed extensive random-walk MC simu-
lations to study the behavior of the diffusion tensor and,
in particular, the diffusion anisotropy in this model.
Moreover, we have demonstrated that the Green's-
function method of Tahir-Kheli and Elliott' can be gen-
eralized for a model of collective diffusion with two
different sublattices in each cell, and the diffusion tensor
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can be calculated analytically for all coverages. We note
that our results for the general model of Fig. 3 can be uti-
lized to incorporate a variety of different geometries to
study other similar models of diffusion. Within the
mean-field approximation, we have obtained an analytic
solution which describes the diffusion anisotropy quite
well for branching ratios r ~ 1. We have also studied the
effect of interparticle correlations in more detail by con-
structing a higher-order solution. Although more accu-
rate than the MF result, this solution fails for smaller
branching ratios in the high-coverage limit. In principle,
it could be improved upon by taking into account even
higher-order Green's functions. Unfortunately, such a
solution becomes exceedingly tedious to construct.
Another possibility which has been suggested' ' would
be to self-consistently renormalize the existing solution to
incorporate approximately the effect of the neglected

terms. Such a solution is outside the scope of the present
work, however.

Our results demonstrate clearly that the experimentally
observed anomalous anisotropy of collective diffusion
D /D„„=1.2 of H adatoms on a W(110) surface can be
qualitatively explained by the syrnrnetry breaking associ-
ated with the hourglass adsorption sites. In Fig. 5(a) we
show results for the anisotropy ratio corresponding to
r =3, which give D»»/D„=1. 2 at c =0. For reference,
we also show the corresponding result for r =

—,', in Fig.
5(b). An important feature of our model is that in the re-
gime c SO. 5, where the W(110) surface remains unrecon-
structed, the diffusion anisotropy is a rather slowly vary-
ing function of coverage. Furthermore, our preliminary
results for the anisotropy in a model including additional
adatom interactions indicate' that as long as ordered
phases are not present, the results do not significantly
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differ from those presented here. Thus we expect that
even the noninteracting model studied in this work ap-
plies qualitatively to the H/W(110) system at high tem-
peratures and low coverages.

Finally, we would like to mention an interesting con-.
nection of our lattice-gas model to percolation theory. '

To this end we consider the case c =1—I/N, where all
but one of the N cells on the lattice are occupied. Then
the collective-diffusion tensor remains nonzero for r )0.
The diffusion process occurs via the motion of a hole
which occupies both sites of the one empty cell simul-
taneously. If the hole resides at a cell g, it can move to an
adjacent upper (lower) cell g' if and only if the particle in
that cell is in the lower B (upper A) sublattice. One can
then assign bonds between the cells, such that a bond is
closed if the hole can jump from g to g' and is open other-
wise. Obviously, the hole can then only move through a
sequence of closed bonds. This problem is similar to
current flowing in a random network of superconductors
and insulators' or can also be considered as a bond per-
colation problem on a lattice with square geometry. ' '

Namely, since the positions of the particles within each
cell are random, there is on average an equal number of
open and closed bonds for each fixed configuration, when
intracell jumps are frozen. In this limit, which corre-
sponds to r =0, the lattice is at its percolation threshold

p, =—,', where conductivity vanishes. '

If we next consider the motion of the hole in the frozen
lattice, it is well known that diffusion at this percolation
threshold is anomalous. ' In our model this means that
D =0 for r =0. However, for any finite r, the bonds are
fluctuating and D & 0. We could then expect the
collective-difFusion coefficient of the particles (which is
proportional to the mobility of the hole) to vanish near
the percolation threshold following a power law D=r

for r~0, where x is an unknown exponent. To study
this we have performed additional simulations of the col-
lective diffusion in the "one-hole" limit between r= —,

'

and —,
' . Our preliminary results indicate that there

indeed exists a regime where power-law behavior and a
rather well-defined exponent x can be found. Fitting to
our best data, we find x =0.47+0.03, suggesting that x
may be close to —,. In this interesting limit, to clarify the
relation of this "dynamical" percolation model, where
the bonds are fluctuating in time, to the usual static per-
colation problems, more work is necessary.
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APPENDIX

This appendix contains the explicit expressions for the
matrix elements in Eq. (3.25). In the corresponding equa-
tions of motion for the second-order Green's functions,
there is a full symmetry between exchanging the sublat-
tice indices 2 and B because of corresponding symmetry
in the rate equations. The elements of the (4X4) matrix
C are given by
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C» =[—ico+2v"(0)+2c J (0)—c J"(p)—c J"(k—p)],

C, 3= —{[M —c J (0)]+uJ ( —p)+c J"(p)j,

C, ~= —{[M —c J (0)]+uJ ( —k+p)+c "J"(k—p) j,

C~ ~
= [ —ico+2v (0)+2c "J"(0)—c J (p) —c J (k —p)],

C~ 3
= —{[M"—c "J (0)]+uJ "( k+p—)+c J (k p) j-,

Cz4= —{[M —c J"(0)]+uJ"(—p)+c J (p, )j,
C3, ={[M"—c "J"(0)]+uJ ( —p)+c J (p)j,
C3&= —{[M —c J (0)]+uJ "(—k+p)+c J"(k—p)j,
C3 3=[—ico+v (0)+v (0)+c"J"(0)+c J (0)—c J (k —p) —c J (p)],

C3 4=0,

Cq i
= —{[M —c J"(0)]+uJ "(—k+p, )+c J (k —p) j,

C4 z
= —

{[M —c J (0)]+uJ ( —p)+c "J"(p)j,
C43=0,

C44=[ iro+v (0)+v—"(0)+c J"(0)+c J (0)—c J (k —p) —c J"(p)] .

The quantities v "(0)=M +2uI" and v (0)=M +2uI .
The (4 X2) matrix Fhas the following elements:

(A 1)

F, , = iso(1——2c")+2[M "(1—c")+J (0)(u —c "+c"c )]+c "c J (p)

+c "u[J "(—p)+J "(—k+p)]+c "c J (k p), —

F, z=2c "[M cJ (—0)]+c "c [J (p, )+J (k —p)],

Fz, =2c [M"—c "J"(0)]+c "c [J"(p)+J"(k—p)],

F~ ~=(l —2c ){ iso+2[M +uJ—(0)]+2c "J"(0)j+2c "[M" c "J"(0—)]

+c "c~[J (p)+J (k p)]+c u[J (
——p)+J ( —k+p)],

E3, = {inc —c [v"(0)+v (0)+c J"(0)+c J (0)]—[M"—c "J"(0)](1—2c ) j

+uc J ( —p) —c "(1—c ")J"(k—p) —c (1 c)J (p), —

(A2)

F3 z={icoc"—c "[v"(0)+v (0)+c"J (0)+c J (0)]—[M —c J (0)](l—2c )j

+uc "J ( —k+p) —c "(1—c")J"(k—p) —c (1—c )J (p),

F4, ={in)c c[v"(0—)+v (0)+c J"(0)+c J (0)]—[M"—c "J"(0)](1—2c")j

+uc J"(—k+p) —c (1 c)J (k p) —c "(1—c"—)J"(—p),

F„z= {inc —c "[v"(0)+v (0)+c J"(0)+c J (0)]—[M —c J (0)](1—2c ) j

+uc "J ( p) c(1—c—)J (k p) c "(1——c")J (p—) . —



2132 ALA-NISSILA, KJOLL, YING, AND TAHIR-KHELI

For the (4X16) matrix R, all elements appear in pairs.
The elements R; z (i =1,2, 3,4; j= 1,2, 3, . . . , 8), with an
even second index, follow from the preceding elements

R;zj &
simply by letting 5,—&52. For clarity, this is

demonstrated below for the pair R1 1 and R1 2.

R, , = —uI —c I"+c (I I"—)e
R, 2=R, , (5,~52),

R, 3= (uI —+c I")e ' —c (I I )—e

R AIR+ IA '& 1

LP 5
1,7

2, 13 7

AIR
'

1

2, 15

R3, =[(c" 2c—)I"+(c —2c")I ]e

R3 3=0,

R» =(2c —1 c)—I "e

R37= —(1—c")I e

R~ 9=(c —1)I

R3» =(2c —1 —c )I e

(cBIB+ AI A ' '
1)

R111=C "I e
—p-6

R, , =c~I~e lP-5
1, 13

Rz &=c (I" I )e —' —(uI "+c I )e

R =+c (I" I )e —' c I uI"—, —

R25=c I e
lP '5

R27 I +UI

R29=c I"e11M.5

R2 11=—g

R315 0,
R41=0,

R~ 3
= r(c —2c ")I +(c" 2c —)I "]e

B)IA

R47=(2c —1 —c")I e

—(2 A
1 B)IA

R4 ii =(c 1 )I

R4 13 =0

R4$5 ———(cAI +c I e ') .
(A3)
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