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This paper reports neutron-difFraction results on a single icosahedral quasicrystal of Al-Cu-Fe. The
basic properties of the structure have been extracted using six-dimensional (6D) Patterson analysis from
219 independent orbits of reflections. Described in 6D space, the structure has hyperspace group
Fm35 and is defined by the three atomic surfaces located at special points with full icosahedral sym-

metry of the F lattice. These points are the two inequivalent nodes of the underlying primitive lattice
plus one of the two inequivalent body centers, the remaining one being empty. The atomic surfaces are
embedded in perpendicular space and are well approximated by polyhedra bounded by two-fold planes.
These are a large triacontahedron located at the origin, a triacontahedron of the same size truncated
along the five-fold directions at the other node, and a small polyhedron bounded by twofold planes at the
occupied body center. Although no speculation has been made for distributing the atomic species within
these atomic surfaces, the raw reliability factor between experimental and calculated diffraction intensi-
ties is already 0.20 with no fitting parameters and the density is found only 2.9~o lower than the experi-
mental one. The model presented here can be considered as a zero-order structure to be used for subse-

quent modeling. The atomic surfaces generate no unacceptably short distances between atoms. Both in-

teratomic distances and coordination numbers of the three first shells are in good agreement with the
most recent extended x-ray-absorption fine-structure results. The atomic surfaces are connected togeth-
er by 3D pieces embedded in the parallel space. They define a partition of the 6D space in hyperprisms,
which can be decomposed in direct products of 3D facets located in perpendicular and parallel spaces
similar to the oblique cell decomposition of the 3D Penrose tiling. Phasons can propagate along the
five-fold and two-fold directions by atomic jumps of 0.1705 and 0.179 nm, respectively.

I. INTRQDUCTIGN

Since the discovery' of an icosahedral phase with
long-range order in a rapidly quenched Al-Mn alloy
called a quasicrystal (a structure with a quasiperiodic
diffraction pattern), numerous investigations (see for in-
stance ) have shown that this kind of structure is also
found in other metallic systems as an equilibrium phase.
Hence, shortly after the initial discovery, an icosahedral
quasicrystal was found as part of the equilibrium phase
diagram of the ternary Al-Li-Cu system.

Concomitantly with the experimental work, geometri-
cal models of "ideal" quasiperiodic tilings were proposed
for which the diffraction pattern could be exactly calcu-
lated. ' The inherent impossibility for ideal quasi-
periodic patterns to develop through strictly local growth
rules" (finite interaction distances) lead to the reasonable

idea that real quasicrystals should possess an "universal"
disorder (icosahedral glass models; see for instance Ref.
12) that would result in finite peak widths in the
diffraction patterns.

This, indeed, was in conformity with exi.sting materials
until the discovery' ' of an ideal stable icosahedral
phase in the Al-Cu-Fe system that changed the situation.
Contrary to all previously known phases, the annealed
Al-Cu-Fe alloy lead to diffraction peaks comparable to
those of good quality ordinary crystals with a width close
to the instrumental width of the best high-resolution
diffractometers. ' '

At about the same time, random-tiling models were
studied' for which the Fourier spectrum shows a
countable set of 6 functions for three-dimensional quasi-
periodic materials, as for the ideal case, plus an addition-
al diffuse scattering in the wings of the peaks. ' In that
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scheme, the icosahedral tiling is stabilized by phason en-

tropy. It suggests that real quasicrystals should be high-
temperature equilibrium phases without necessarily being
ground states.

The presently available experimental results are incon-
clusive for determining whether the internal energy or
entropy term is predominant at low temperature. On the
one hand, recent in situ x-ray-diffraction experiments
showed abnormal intensity variations as a function of
temperature, which could be attributed to a phase trans-
formation from icosahedral to a periodic structure by
lowering the temperature. On the other hand, both
diffraction studies and high-resolution electron micros-
copy pictures failed to find thermal phasons in samples
annealed at 800'C. Also, in a recent systematic explora-
tion' of the phase diagram (Al, Cu, Fe), a tiny domain of
composition close to A162Cu25. 5Fe12.5 has b
where no transformation occurs as a function of tempera-
ture.

The aim of this paper is a crystallographic analysis of
the icosahedral phase assumed to be a definite ideal struc-
ture. This assumption does not contradict the actually
available experimental data: no distinguishable diffuse
scattering has ever been observed in our annealed sam-
ples. This assumption is also legitimate with respect to
the thermodynamic behavior of the samples for which
annealing at low temperatures (down to 550'C) does not
induce phase transformations' that were indeed observed
for other compositions. Finally, it remains legitimate
with respect to the random-tiling picture for which the
ideal icosahedral structure is the configuration where en-
tropy fluctuations are maximized; it is the "most prob-
able" configuration of the random tiling. In that context,
a prescription of the definite locations of the atoms has to
be understood as a description of the thermodynamically
average structure as it is in ordinary high-temperature
phase crystals.

There is no attempt here to propose a precise model

from the data using refinement techniques. A refinement
requires the introduction of a set of adjustable parameters
in the ultimate stage of optimizing the diffraction intensi-
ties. The problem of choosing parameters that are physi-
cally significant is beyond the scope of this paper and will
be addressed in a forthcoming paper. We will restrict the
discussion only to the structural properties that are
directly obtained from the experimental data.

II. EXPERIMENTAL

A. Preparation

An alloy of nominal composition A163Cu2~Fe, 2 was
made by levitation melting the pure elements Al(99.99%),
Cu(99.9%), and Fe(99.95%) in a high-frequency furnace
in an helium atmosphere. After casting in a water-cooled
copper crucible, the alloy was remelted and rapidly
quenched from 1150'C by planar flow casting, resulting
in brittle flakes approximately 20 pm thick and 5 —10 mm
wide. The flakes were subsequently annealed during 4
days in an alumina crucible at 860 C, just below the peri-
tectic transformation. At this temperature, the alloy is
partia11y melted and large single crystals of the
icosahedral phase (that can reach millimeter sizes) grow
in the liquid. Single quasicrystals are Anally mechanically
extracted from the matrix.

B. Laue x-ray analysis

A single crystal of 2 mm in size was chosen d'or both
Laue x-ray analysis and neutron diffraction. An example
of a Laue back-reflection pattern taken perpendicular to
a fivefold axis is shown in Fig. 1 with well-defined
reflections that can all be indexed using the same unique
icosahedral six-dimensional (6D) index scheme.

Throughout this paper we use the 60 indexing of
Cahn, Schechtman, and Gratias. The projections of a
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FIG. 1. Backscattering I.aue pattern along a five-fold axis (by courtesy of A.M. Wache). Rejections are indexed by doublets N, M
according to the indexing scheme of Cahn et aI. (Ref. 25).
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h =n, —n4, h'=n2+n5, k =n3 —n6,

k n] +n4 I n2 n5 I n3+n6

where ~ is the golden ratio [~=(1+&5)/2],
a= 1 /&2(2+x), and A is the 6D lattice parameter. Two
integers N and M, defined by

p 2+k2+ I2+g &2+ k &2+ I &2

M=h' +k' +I' +2(hh'+kk'+ll'),

are used for labeling the reflections in the powder
diffraction patterns Ar. eflection labeled (X,M) is located
in reciprocal space at

~Q (= &++M~ ~Q~= v'r(X~ M) .
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C. Neutron single-crystal diffraction

The neutron measurements were obtained on the four
circle diffractometer 5C2 located at the hot source of the
Orphee reactor at the Laboratoire Leon Brillouin (LLB)
in Saclay (France). The neutron beam is monochroma-
tized by a Cu[111] monochromator at wave length
A, =O. 8314 A.

In five of the 120 elementary sectors of the reciprocal
space, 1869 measured integrated intensities were collect-
ed by co scans for 8 angles between 5 and 30 and by co 28
scans above 30. From this set, 219 independent orbits
have been extracted corresponding to intensities distin-
guishable from the background.

The 6D primitive lattice parameter, measured from the
25 strongest Bragg reflections, is 0.63146 nm in agree-
ment with previous measurements. In all cases, the16

difFerence between measured and calculated 20 positions
is less than 0.05 degrees.

As shown in Fig. 2(a), the widths of the reflections of
intensity higher than 10o (where cr is the quadratic error)
are close to the instrumental width; their profiles are only
due to the instrumental divergence as shown in Fig. 2(b)
where the (20,32) reflection is superimposed on the [2,2,0]
reflection of pure germanium. Reflections between 3o.
and 10o. show a systematic deviation consistent with the
statistical dispersion expected from low counting rate.
The full widths at half maximum (FWHM's) are indepen-
dent of the perpendicular momentum Q~ and of the sym-
metry of the orbit.

In order to check if equivalent reflections have same in-
tensities, the (20,32) and (18,29) reflections were mea-
sured 30 times in three elementary sectors given by the
permutation of three of the twofold axes. Whereas the
intensities for each reflection are reproducible within
0.05%, the intensities measured in the various sectors
vary by 6% or more. The integrated intensity measured
as a function of the azimuthal angle 4 around the scatter-
ing vector of the (18,29) reflection oscillates periodically
as a function of 4 (Fig. 3). The amplitude of the oscilla-
tion can reach 4.5% of the maximum intensity.

This variation cannot be explained solely by a strong
absorption: indeed, the total cross section of the true ab-
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FICx. 2. (a) Full width at half maximum for the icosahedral
phase (crosses) as compared to the intrinsic instrumental width
obtained from a perfect germanium crystal (full diamonds) as a
function of co angle. All rejections with intensity larger than
10o. correspond to the instrumental width. (b) A typical profile
of the intensity of the (20,32) reAection as compared with the
(2,2,0) reAection of germanium.
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FIG. 3. Integrated intensity for the (18,29) reAection as a
function of the azimuthal angle O'. Qscillations are observed
that could correspond to dynamical diffraction effects.
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sorption, the sum of the incoherent and the elastic diffuse
cross sections, is reasonably weak (@=0.035 cm ') and
isotropic (due to the shape of the sample). Moreover, the
transmission factor for a sample 2 mm in diameter is
0.993. Dynamical diff'raction effects (multiple scattering,
secondary extinction) could be responsible for these oscil-
lations, since they are usually magnified in high-quality
crystals where spatial correlations extend to large dis-
tances. Therefore, a study of the mosaicity of the single
crystal has been performed using y rays from a gold
source of 0.03-A wavelength and 10" horizontal diver-
gence. Owing to the smallness of the crystal, rocking
curves of three (20,32) reffections were measured only for
a zero 4 angle: the FWHM varies from 0.04 to 0.06,
values that are only one order of magnitude higher than
those obtained with a good silicon crystal (0.008 ) and
slightly smaller than those obtained from good-quality
metallic alloys. Consequently, our sample can be con-
sidered as a good-quality metallic alloy in which, indeed,
dynamical effects should play an important role enhanced
by the unusually high multiplicities of the reAections in
reciprocal space.

The external deviation, o.,„„definedas the square root
of the mean variance and the internal standard deviation,
o.,„„definedas the root-mean-square error of equivalent
rejections are calculated, respectively, from statistical er-
rors on each integrated intensity and from the dispersion
of equivalent measurements (see, for example, Ref. 26).
The ratio o.;„,/o, „„closeto one for kinematical
diffraction free from anisotropic extinction, provides an
estimate of the consistency of the data. Note that the ra-
tio attains high values (=4—5) for intense refiections
such as (18,29), (20,32), (52,84), and (136,220) where
dynamical diffraction effects are expected to be strongest.

III. CRYSTALLOGRAPHIC ANALYSIS

Diffraction experiments give the intensities of the
Fourier components of the structure. The determination
of the structure by inverse Fourier transform requires
solving the phase problem and is not a trivial task.

In the case where a quasicrystalline structure can be
obtained from a set of similar chemical species but associ-
ated with strongly different scattering form factors, a
contrast variation method has been applied for determin-
ing the average structures for Al-Mn-Si and Al-Li-Cu us-
ing isomorphic and isotopic substitutions in neutron
diffraction.

Also, since most of the icosahedral phases like incom-
mensurate structures, are closely related to a "parent"
known crystalline phase, an astute technique has been
developed by Jaric and Qiu, which consists in recon-
structing the missing phases of the quasicrystal through
an optimization algorithm from the corresponding phases
of the parent crystal.

The case of Al-Cu-Fe does not easily fit into either of
these two classes. First, the structure is extremely sensi-
tive to composition, and the preparation of single crystals
is not su%ciently we11 mastered to be safely applied to
isotopic substitution of Cu and Fe. Second, no known
crystalline phase of the phase diagram has been clearly

identified as a rational approximant of the icosahedral
structure. We therefore considered the problem in its
whole generality of the determination of a 6D periodic
object, where atoms are represented by "atomic surfaces"
as described by Bak.

A complete crystallographic determination of an ideal
quasiperiodic structure (definite structure without disor-
der) requires several steps, some being equivalent to those
encountered in standard crystallography, others being
specific to quasicrystallography. They are (i) the deter-
mination of the 6D space group of the structure, (ii) the
determination of the locations of the atomic surfaces in
6D, (iii) the determination of the geometrical shapes of
the atomic surfaces, (iv) the attribution of the chemical
species within these atomic surfaces, and (v) a refinement
process of these positions in parallel space together with
the associated Debye-Wailer factor for each of them.

Steps (i), (ii), and (v) are natural extensions of pro-
cedures used in standard crystallography, whereas steps
(iii) and (iv) are specific to quasicrystals and cannot be nu-
merically handled without considering additional physi-
cal assumptions for reducing the (a priori) infinite num-
ber of fitting parameters to a finite number. ' The
present discussion includes steps (i) and (ii) and, to some
extent, some basic ideas about the atomic surfaces from
step (iii). The remaining steps, requiring the description
of specific models, will not be treated here.

All diff'raction experiments (x ray, electron, and neu-
tron) clearly show that the 6D lattice is face centered
F(2A) with no systematic extinctions. Electron mi-
croscopy has clearly revealed the presence of antiphase
domains but no inversion domains. This is in strong
support of the centered symmorphic icosahedral group
Fs m 35. As it is very convenient to consider an F lattice
as a superstructure of order 2 (in any dimension) of a P
lattice of parameter 3, we shall make the convention
throughout this paper of using the underlying primitive
lattice as the unit for labeling the sites. Under this con-
vention, the lattice parameter of the F lattice is 2A
( A =0.63146 nm).

A. Reciprocal space analysis

The scattering amplitude of an icosahedral quasi-
periodic structure can be written as

F(Q)=g g &J G, (Q)&(Q —Q~),

where j labels the atomic species within the unit cell in
6D space, b is the corresponding atomic scattering fac-
tor, and G~(Q) is the Fourier transform of the corre-
sponding atomic surface.

Atomic surfaces are 3D volumes transverse to the
parallel space. In all currently known quasicrystals, in-
cluding Al-Cu-Fe, as will be shown later, Patterson func-
tions show peaks extended along the perpendicular space.
Therefore, we make the assumption that the atomic sur-
faces can be described by a set of elementary volumes (in
principle, not necessarily connected) embedded in the
perpendicular space. This infinite set of volumes is
periodic, i.e., it is generated by a finite number of elemen-
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tary volumes located inside the Wigner-Seitz cell of the
6D lattice through the translational symmetry.

We classify these volumes into subsets using the cri-
terion that all volumes belonging to the same subset pro-
ject at the same position u~I in parallel space. Each subset,
say S., has to be assigned a precise location in 6D space.
This location, in principle a matter of convention, can a
priori be any arbitrary point. Of course, in the most gen-
eral case, there are no special points in the unit cell to
which the atomic surface can be assigned. However, an
important remark is that for "simple" structures having a
few number of different atomic surfaces, there exist "nat-
ural" points for the 6D location of atomic surfaces. The
choice is based on symmetry arguments: each subset has
an invariant symmetry point group H&, a subgroup of

J
the space group, which transforms the elementary
volumes of the subset into each other. We define the lo-
cation u. of the subset j in the 6D space as the inuariant
point of Hz, if it exists and is unique. This definition is

J
not general and applies only if Hs is a centered group (in

J
this case the invariant set has dimension zero, i.e., it is a
single point). In all other cases, an additional decision
has to be taken for defining the location within the invari-
ant subspace of H~ .

J
The Fourier transform of the atomic surface generated

by 5, , say G (Q) can be expressed as

(2)

where p is the multiplicity of the u position of the S in
6D space and Q=Ql+Qj. The multiplicity p~ is the in-
dex [m35;Hs ] of Hls in the symmetry-point group of

J J
the structure. It is the exact 6D extension of the usual
notion of multiplicity encountered in standard crystallog-
raphy.

Observe that when Hz is a centered group, the integral
J

in (2) is a real number so that the phases involved in the
total diffracted amplitude GJ(Q) are solely due to the ex-
ponential factor preceding the integral. This phase is an
intrinsic geometric property of the 6D lattice and is there-
fore independent of the actual shapes of the atomic sur-
faces (up to a sign).

In the special case of neutron diffraction, the atomic
form factors are described by the scattering lengths of the
nuclei and have constant value in the reciprocal space.
Thus, for small Q~ values, the integral (2) converges to
the volume V. of the atomic surfaces so that the total
scattering factor F(Q) becomes

F(Q)& o=g p, b e'V~ . .

Therefore, if the structure in 6D is simple enough, one
could expect that a plot of ~F(Q) ~

as function of ~Q~~ will
reveal a splitting of the scattered amplitudes into
branches, each associated to a possible constant value of
the phase 2mQ u~. Each branch should then have a
smooth behavior as a function of ~Qj ~.

Indeed, in the present experimental data shown in Fig.
4(a), a tendency is observed for a splitting into four
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FIG. 4. (a) Raw experimental integrated scattering ampli-
tudes ~F~ =&I as a function of ~Q, ~. (b) Same plot after
Debye-&aller corrections with 8 =0.9 A . A splitting into four
branches is now clearly visible at small

~ Q~ ~.

branches. Now, rejections with comparable perpendicu-
lar momenta generally have quite different parallel com-
ponents, so that a Debye-Wailer correction fow
=exp[ —(8/4)Q~~] of the intensities is of primary impor-
tance for revealing the actual splitting.

Assuming that the experimental data should be smooth
functions at small Q~, we approximated the intensities in
each branch using a fourth-order polynomial with one
adjustable Debye-Wailer coeKcient. We found minimal
fluctuations of the experimental data with an average

0
Debye-%'aller coefficient 8-0.9 A, which is a typical
value for aluminum at room temperature. Figure 4(b)
shows the plot obtained with the corrected amplitudes
where the four branches are now clearly visible. At that
level of smoothness we were not able to recognize any ad-
ditional splitting of each branch, the Auctuations being
within the accuracy of the intensity measurements. The
branches rapidly become intricate for larger Qz values.
They oscillate in a rather complicated way and take
values much larger than those expected from spherical
atomic surfaces.

This decomposition into only four branches indicates
that the locations u. of the atomic surfaces are simple ra-
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tional points of the 6D lattice. Sorting the branches by
descending intensities extrapolated to Qj =0, we observe
that the 6rst branch, corresponding to the highest inten-
sities, consists of the rejections with both N and M even,
the second branch corresponds to rejections with N even

I

and M odd, the third one to N odd and M odd, and the
fourth one to N odd and M even.

It is straightforward arithmetics to show that N and M
match the forrnal group-subgroup decomposition from
I( A) to F(2 A) according to their parity,

( A)--—-—-----—-———-———--——--)P( A)—————————-——---—-—--------&F(2A)I

N =4p, M =4q N=2p, M=2q+1 N=4p —1, M =4q
N=4p —1, M=4q —1

with the corresponding coset decomposition,

I( A) = [(Id ~ [0,0, 0,0, 0,0])+(IdI [1,0, 0,0,0,0])
+(Idi —,'[1,1, 1, 1, 1, 1, 1])

+(Idl —,'[1 1 1 1 1 1 1])]F(2A)

Hence, we directly obtain four locations u for the atomic
surfaces in 6D space, i.e., n, = [0,0,0,0,0,0],
n2 = [1,0, 0, 0,0,0], bc, =

—,
' [1,1, 1, 1, 1, 1, 1], and bc2

=
—,'[1,1, 1, 1, 1, 1,—1] (Ref. 37) that match the observed

splitting (as will be confirmed by the Patterson function
described in the next section). Interestingly enough, all
these locations are special points with little group m 35 of
the Fg m 35 group. Each of the atomic surfaces therefore
have the full icosahedral symmetry. In that respect, the
structure of Al-Cu-pe, like all those presently known
(Al-Li-Cu and Al-Mn-Si) is also a simple structure where
the atomic surfaces are located at high-symmetry special
points.

We can now obtain a semiquantitative estimate of the
scattering power associated with each of these four sites
in 6D by extrapolating the experimental curves to Q~=0.
As shown in the previous chapter, the scattering ampli-
tudes derived from n&, n2, bc&, and bc2 have relative
phases, which are simply governed by the indices N and
M of the refiection: they are, respectively, +1, ( —1),
( —1), and (

—1)' + '. Let us label, using (a), (b), (c),
and (d) the four branches a =(N even, M even), b =(N
even, M odd), c =(N odd, M odd), and d =(N odd, M
even). Branch (b) corresponds to a "superstructure"
from I to P of branch (a), and branches (c) and (d) corre-
spond to a "superstructure" from P to F of branches (a)
and (b). At Q~=O, these branches have the following
scattering amplitudes:

(a) F.=IF„+F„+F„+F„I,
(b) Ft, =IF, +F„Fb, Fb, I, — —

«) F, =IF„—F„F„+F„I, —

(d) Fd = IF„—F„+Fb,—F„,I,
where F„denotes the scattering amplitude of the node at

1

the origin, F„ofthe node [1,0,0,0,0,0], Fb, of the body"2 1

center —,'[1,1, 1, 1, 1, 1] and Fb, of the body center'2
—,
' [1,1, 1, 1, 1, —1], which are positive values at Q~= 0. In-

I

verting this set of linear relations using the experimental
scattering values, we find an unique set of acceptable
equivalent solutions. The total scattering power is distri-
buted according to

F„=40.25%, F„=51.25%,

Fbc —8.5%, Fbc =0% .

Note that the bodycenter bc2 is empty so that the F
unit cell contains only three atomic surfaces each with
full icosahedral symmetry centered, respectively, at the
node n&, the node n2 and the body center bc&.

Although the present structure can be considered, to
some extent, as a superstructure of a primitive structure
like Al-Mn-Si, it does not result from a simple sub-
stitutional chemical ordering of this hypothetical primi-
tive structure. A disordering from F to I' would imply
the creation of a new atomic surface at the body center
bc2 that is empty here. As a consequence, a transition
from F to P would imply the appearance of new atomic
positions in the real material and, correlatively, the disap-
pearance of old ones. This could explain why the F struc-
ture in Al-Cu-Fe is very robust with respect to heat treat-
ments and does not disorder to P up to the melting point.

B. Patterson analysis

To go further in our study, a 6D Patterson analysis
(the Patterson or self-correlation function of an
icosahedral structure is the 6D Fourier transform of the
diffracted intensities ' ) has been performed with the
219 orbits of measured refiections. Figure 5(a) shows a
2D cut of the Patterson function along the twofold plane
of the physical space. The main feature of the Patterson
function is that it exhibits peaks. The use of a large num-
ber of rejections in the calculations reveals that these
peaks are very sharp. They correspond to projections of
either nodes or body centers of a primitive 6D lattice.
This location of the peaks is of course the direct space
image of the four branches splitting of the diffraction
data.

Depicted in the rational 2D planes corresponding to
twofold, threefold, and fivefold axes in 6D [Figs. 5(b),
5(c), and 5(d)], the intense peaks are located, as expected,
at the nodes and body centers of the primitive lattice [see
Figs. 5(c) and 5(d)]. They extend nicely along the perpen-
dicular space. This indicates that, in the present case, the
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0

1 Ilrr s

FIG. 5. Patterson contours obtained with 219 orbits of reflections (the contours are visualized by using a pseudogray-scale palette
with 10 levels; Patterson functions are normalized between 0 and 255): (a) is a cut in parallel space perpendicular to a 2-fold axis. (b),
(c), and (d) are the cut in 6D space along the three basic rational n-fold planes (unit cells are represented by rectangles): (b) two-fold
plane [[1,1,0,0,0,0], [0,0, 1,0, 1,0]] passing through the node [0,0,0,0,0,0]; (c) threefold plane [[1,1, 1,0,0,0],[0,0,0, 1, 1, 1]],and (d)
fivefold plane [[1,0,0,0,0,0],[0, 1, 1, 1, 1, —I]].

atomic surfaces are essentially embedded in the perpen-
dicular space with no or little shifting along the parallel
space. Our conclusion that the atomic surfaces are (up
to the experimental resolution) embedded in 3D planes
parallel to the perpendicular space follows from the three
following mutually related features of the Patterson func-
tion.

(i) In the parallel space, the width of the Patterson
peaks corresponds to the minimal width induced by the
finite number of components entered into the Fourier
synthesis. All peaks are affected the same way irrespec-
tive of their locations. If the atomic surfaces were ex-
tended along the parallel space, the width of the peaks in
the Patterson function would be bounded from below by
an intrinsic width (twice larger than this extension) in-
dependently of the number of components in the Fourier
synthesis.

(ii) The structure of the Patterson function in the
neighborhood of the origin (or any E-lattice site) comes
only from the superimpositions of the atomic surfaces
with themselves. If the atomic surfaces were bent, the
amount of superimposition in the neighborhood of the
origin would be significantly smaHer than at the origin
and the Patterson function would exhibit a sharp peak at
the origin surrounded by structured wings expanding in

both perpendicular and parallel spaces. These features
are not observed, clearly implying, together with (i), that
the atomic surfaces are embedded in 3D planes.

(iii) The structure of the Patterson function in six di-
mensions is the same in all neighborhoods of nonprimi-
tive translations. This, together with (ii), implies that the
three diferent atomic surfaces are carried by parallel 3D
planes.

The four peaks in the Patterson function observed in
Fig 5(d) are. in agreement with the existence of the three
atomic surfaces at n &, nz, and bc&. A rough estimate of
the extensions of the peaks at the nodes n, and n2 in the
perpendicular space leads to possible atomic surfaces that
are scaled by a factor of ~ with respect to the canonical
triacontahedron associated with the 3D Penrose tilings.
Only a careful examination of their relative intensities re-
veals that the unit cell is 2A where the maximum intensi-
ty values alternate from odd to even nodes (and body
centers) along the [1,0,0,0,0,0] direction. This small
difference comes as the image, in direct space, of the rela-
tively low-intensity values of the superstructure
retlections (N odd) as compared to the "fundamental"
ones (% even).

Plotted in perpendicular space, the Patterson function
shows an anisotropy with relatively fIat contours along
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FIG. 6. Patterson cut contours in perpendicular space. The Patterson function decays monotonically from the origin (the visuali-
zation of the contours is the same as in Fig. S). (a, a', a") at the node n, [0,0,0, 0,0,0] perpendicular to (a) a twofold axis, (a') a three-
fold axis, and (a") a five-fold axis. (b, b', b") at the node ni = [1,0,0,0, 0,0] perpendicular to (b) a twofold axis, (b') a threefold axis,
and (bs P

) a fivefold axis. (c c', c") at the body center bc, = i [1,1, 1, 1, 1, 1] perpendicular to (c}a twofold axis, (c') a threefold axis, and
(c")a fivefold axis. (d, d', d" ) at the body center bc' =—'[1,1, 1, 1, 1, —1] perpendicular to (d} a twofold axis, (d') a threefold axis, and
(d") a fivefold axis.
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the two-fold planes [Figs. 6(a) —6(d)], which suggests that
the atomic surfaces are polyhedra bounded by twofold
planes. This anisotropy is especially pronounced in the
contour maps drawn around the body centers in 6D. The
fact is significant considering the high degree of smooth-
ing generated by the self-convolution process.

As shown in Figs. 6(c) and 6(d), interesting features are
observed around bc, and bc2. The absence of an atomic
surface at the body center bc2 together with the relatively
modest scattering power at the body center bc& make the
examination of the Patterson function around these two
points very interesting. Indeed, what is essentially seen at
these points, are the correlations of each of the two major
atomic surfaces at the nodes n& and n2 with a small
atomic surface located at bc&, which acts like a probe.
The bc, translation superimposes the atomic surface of
the node n

&
with the one at bcj with no contribution of

the atomic surface of n2 and vice versa. The contour
shape of the Patterson function at bc& is simply related to
the shape of the atomic surface of node n „whereas at
bc2 it represents the atomic shape located at the node n2.

The extension of a Patterson map in perpendicular
space is roughly given by the sum of the two radii of the
overlapping surfaces. A careful examination of the ex-
tensions of the Patterson maps leads to the following
geometric properties of the atomic surfaces: (i) the po-
lyhedron P„atnode n, is well represented by a triacon-

1

tahedron of size r larger than the canonical triacontahed-
ron [Fig. 7(a)], (ii) the polyhedron P~, at the body center

1

bc, is slightly larger than a triacontahedron of size 7

times smaller than the canonical triacontahedron with a
maximum diameter along the three-fold axes [Fig. 7(b)],
(iii) the polyhedron P„atnode n2 is similar to P„except"2 1

that its extension along the fivefold axes is significantly
reduced [Fig. 7(c)].

To assign precise shapes for P&, and P„,we examined
1 "2'

the eight basic polyhedra proposed by one of us [A.K.
(Ref. 32)] (see the Appendix). Theoretically they come as
good candidates for describing atomic surfaces, provided

these surfaces are bounded by two-fold planes. One of
these polyhedra [Fig. 7(b)] matches the shape and volume
requirement for P&, .

In order to avoid short distances, we took as P„,a
large triacontahedron truncated by a Ej projection of the
fraction in the icosahedral orbit of P~, that would gen-

1

crate faulty distances. The intersection occurs around
the five-fold axes leading to the truncated triacontahed-
ron seen on Fig. 7(c). This truncation is enough for
ensuring that no short distances would come from the
atomic surfaces at n, and n 2.

Considering now the relative scattering power of each
surface, we observe that the strongest scatterer is P„,al-"2'
though it is of a smaller size than P„.This, of course, is

1

a strong constraint for the chemical ordering of these sur-
faces. We evaluate the average scattering length (b ) for
each atomic surface (b A&

=0.35, bc„=0.7689, and
bF, =0.955):

(b„)=0.407, (b~, ) =0.775, (b„)=0.778 .

A possibility is that the node n, might be mostly occu-
pied by aluminum, the body center by copper, and the
node n2 by a mixture of the three elements (50% Cu,
32% Fe, and 18% Al calculated with the stoichiometry
A163Cu25Fe, 2). In that simple case, the calculated density
is 4.28 g/cm, i.e., 2.9% below the experimental density.

DifFraction amplitudes have been calculated using
these atomic surfaces and the average (b) scattering
lengths. The results are shown in Fig. 8 as compared to
the experimental data. This raw model gives a reliability
factor R of 20.6% for 72 reAections which, in our
opinion, supports our choice for the atomic surfaces.

This starting value could be minimized by varying the
average Debye-Wailer factor (B =0.9 A ) and the three
average (b )'s. At the present stage of the study, such a
"cosmetic" fit is not essential for the basic understanding
of the structure.

(a) (b)

FIG. 7. Atomic surfaces of the model in perpendicular space: (a) P„atnode nl (triacontahedron), (b}Pl„atbody center bcl, and
1 '1

(c) P„atnode n 2 (triacontahedron truncated by P&, )."2 1
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DISTANCE (A)

FIG. 9. Coordination numbers N(d} of the first interatomic
distances calculated from 3000 atomic sites generated by the
model.

C. The quasiyeriodic network in icosahedral Al-Cu-Fe

The atomic surfaces P„and P„both contain the
1 "2

canonical triacontahedron. Therefore, a small fraction of
the atomic sites of the structure, irrespective of the chem-
ical species, generates a canonical 3D Penrose tiling by
the two basic Ammann rhombohedra with edge
a =0.44648 nm. However, the locations of the addition-
al atoms cannot be described as a simple atomic "decora-
tion" of these two basic rhombohedra: the presence of
the atomic surface at the bodycenter bc& and the
difference in shape of the atomic surfaces at n& and n2
imply that rhombohedra of the same shape are decorated
differently.

The quasiperiodic arrangement of atomic sites must
fulfill severe physical constraints. The first requirement is
the absence of inacceptabie short distances and a reason-
able distribution of interatomic distances in real space.

To check the atomic framework generated by our set
of atomic surfaces, we generated a file of 3000 sites from
which we computed the histogram of the coordination
numbers for the few first interatomic distances (Fig. 9).

The shortest interatomic distance in the framework is
0.2513 nm with an average coordination number of 4.55.
This is a typical Al-Fe or Al-Cu distance in the usual
A12Cu and A13Fe crystals. It is generated by atomic sur-
faces displaced by a 6D translation of type
t, = [1,0, 0—1, —1,0], which is along a three-fold direc-
tion. Since the body center bc2 is empty, this distance is
generated by the pieces of P, and P„defined by the in-

1 "2
tersection P„AP„(t,) of the E~ projections of these two

1 2

atomic surfaces. Hence, only atom sites derived from ei-
ther nodes ni or n2 have neighbors at 0.251 nm, located
on the vertices of a regular dodecahedron. Their max-
imum number is 7, and they are never close neighbors to
each other.

The second interatomic distance is 0.276 nm with an
average coordination number of 1.31. It is generated by
atomic surfaces displaced by a 6D translation of type

t2= —,
' [1,1, 1, 1, 1, 1], which is along a five-fold direction.

This distance arises from the atomic surfaces on nodes n
&

and bc, defined by the intersection P„ClPb, (tz). There-
1 1

fore, only atom sites derived from either n, and bc, have
neighbors at 0.276 nm located on the vertices of a regular
icosahedron. Since this intersection has a small volume,
the average coordination number is low (1.31).

The next interatomic distance, 0.290 nm, has a high
coordination number of 5.28 and is typica1 of Al-Al dis-
tances. It comes from both n, and n2 by a translation
t3= [0, —1, 1,0, 1, 1] along twofold axes and does not arise
for atom sites derived from the atomic surfaces located at
bc, . The neighbors are located on the vertices of an icosi-
dodecahedron.

All together these three first distances form the first
coordination she11 with an average distance of 0.2724 nm
and coordination number 11.14.

It is interesting to compare our results with those re-
cently obtained by Sadoc in an EXAFS study of
A165CuzoFe» and A163Cuz5Fei2. First, the distances of in-
terest as revealed by extended x-ray-absorption fine struc-
ture (EXAFS) do correspond to ours with an accuracy
better than 0.005 nm. Second, the average coordination
number for the three first distances are, respectively, 4.6,
2.0, and 4.1 by EXAFS as compared to 4.55, 1.31, and
5.28 in this study.

A second important physical requirement of a quasi-
periodic structure is the closeness property of the atomic
surfaces in the 6D torus (the set of the atomic surfaces
should form a manifold without boundaries). This condi-
tion ensures that there will be no "annihilation creation"
of arbitrarily distant atoms under a translation in perpen-
dicular space.

Indeed, as illustrated on Fig. 10 showing the cuts in 6D
space of our atomic surfaces drawn in the twofold-,
threefold-, and fivefold 2D axes, the atomic surfaces are
connected to each other by 3D polyhedra embedded in
parallel space. The facets of the polyhedra are mapped
on each other by short translations belonging to the F~
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projection of the 6D lattice. This generates a partition of
R in hyperprisms decomposable into direct products of
3D volumes in E~~ and E~. This decomposition is similar
to the oblique cell decomposition previously intro-
duced to partition the 6D space in the standard 3D Pen-
rose tiling.

Our set of atomic surfaces, completed by 3D pieces
parallel to the parallel space, form a closed set by con-
struction. As a consequence, phason propagation
proceeds only by close-neighbor atomic jumps. The
probability of these atomic jumps are given by the over-
lapping area of the two considered atomic surfaces pro-
jected in perpendicular space. As shown on Fig. 10, the
shortest jump distance is 0.105 nm along the five-
fold axes and connects P„ to P„ translated by

i "2
[1,1,—2, 1,—1,1] (and equivalent sites). In our model, this
atomic jump should not appear, since these two polyhe-
dra, projected in perpendicular space, connect only by
vertices. The second distance is 0.155 nm along the
threefold axes. It corresponds to the connection of Pb,

1

with P„translated by —,
' [ —3, 1, 1,3, 3, 1 ]. Here, again, the

connection occurs only by vertices and this atomic jump
is very unlikely to occur. The next possible atomic jurnp
is 0.1705 nm along the five-fold axes corresponding to
the connection of P„with Pb, translated by"2 1

—,
' [ —1, —1,3, —1, 1, —1]. Here the connection occurs by
facets (actually all facets of Pb, are concerned). As a re-

1

suit, this atomic jump along five-fold directions should
occur very frequently. The last possible atomic jurnp is
0.179 nm along twofold axes coming from connections
between P„, (P„2) with P„, (P„z) translated by
[0,2, —1,0, —2, —1]. Here too, the overlapping areas are
the facets of the polyhedra, and we expect this atomic
jurnp also to occur frequently in the material.

From this simple geometric analysis of our model, we
conclude that phason defects in Al-Cu-Fe should have
the following characteristics.

(i) Since the atomic surfaces in perpendicular space are
faceted by twofold planes, the defects should appear as
boundaries oriented along twofold planes in the physical
space.

(ii) The atomic jumps are of two kinds: 0.1705 nm
along fivefold directions and 0.179 nm along twofold
directions.

By electron microscopy, we should observe planar
boundaries in the twofold planes and streaks around the
diff'raction peaks along fivefold directions and/or twofold
directions essentially governed by the perpendicular com-
ponents of the wave vectors (Bessiere et al. ).

(a) IV. CONCLUSIONS

(b)

(c)

FICx. 10. 2D cuts of the atomic surfaces of the model in 6D
showing the decomposition of R in hyperprisms; the thick lines
represent the basic atomic surfaces, the thin lines represent the
primitive lattice: (a) two-fold plane, (b) three-fold plane, and (c)
fivefold plane.

This study has shown that, as in all known quasicrys-
talline icosahedral structures, the icosahedral Al-Cu-Fe
phase has a simple description in 6D space. The 6D unit
cell is face centered and contains three atomic surfaces
Pn I Pn2 and Pb, &, each with full icosahedral symmetry,
located, respectively, at the nodes n, and n2 and at the
body center bc&. The body center bc2 is empty.

The Patterson function analysis has shown that the
atomic surfaces are embedded in perpendicular space and
are faceted along twofold planes. These planes are
privileged planes for easy phason relaxations, since they
are the 3D analogs of the worms of zero Gipping energy
in the 2D Penrose tiling.

Our choice of atomic surfaces guarantees that no unac-
ceptable short distances are generated and that phasons
propagate through close-neighbor atomic jumps. There-
fore, they should relax easily as indicated by the observed
spectacular rapid enhancement of the quality of the
icosahedral phase through short time annealing treat-
ments.

No attempt has been proposed here to refine our mod-
el. A precise prescription of the atomic species within
the atomic surfaces requires further experimental and
theoretical studies, which are in progress and will be dis-
cussed in subsequent papers.
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APPENDIX: ATOMIC SURFACE POLYHEDRA

The atomic surfaces represent the atomic trajectories
under translation in perpendicular space. They must
fulfill severe constraints especially the following:

(i) There should be no "annihilation-creation" of arbi-
trary distant atoms under a translation in perpendicular

FIG. 11. The eight polyhedra with full icosahedral symmetry constructed with twofo1d planes as defined in Table I.
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space (closeness condition).
(ii) No two atoms should come infinitely close to each

other (hard-core condition, nonintersecting atomic sur-
faces).

TABLE I ~ The basic polyhedra are defined in the elementary
sector by their intersection lengths along the three high symme-
try vectors A~=[1,0, r], A2=[0, 0,2r], and A3=[0, r,—r ].
For example, polyhedron No. 1 is defined by the triangle formed
by the extremities of ( A5, A&, A3), polyhedron No. 2 by
( A5, ~ '

A&, ~ ' A3), etc. The fu11 polyhedron is obtained by ap-
plying the 120 operators of m35 on the elementary triangle.
The scale used in the table is such that the canonical triacon-
tahedron (convex envelope of the projection of the 6D cube in
perpendicular space) is polyhedron No. 3 inAated by ~: (~A5,
(~/2) A)) ~ ' A3).

Polyhedron No.

In addition to these basic topological constraints, we
request the quasiperiodic order to propagate through lo-
cal rules. A necessary (but not sufficient) condition is
that the atomic surfaces be bounded by rational planes of
the 6D lattice (polyhedra). In order to achieve the close-
ness condition, opposite facets of the polyhedra must be
mapped on each other by translations belonging to the
perpendicular projection of the 6D lattice. Finally we
want the atomic jumps to occur in a symmetric environ-
ment such that initial and final states have the closest
possible configurational energies. These conditions lead
to the twofold planes as being the best candidates for pos-
sible facets of the polyhedra. It is easily shown (Katz )

that only eight basic polyhedra with full icosahedral sym-
metry can be built from the 15 twofold planes. These po-
lyhedra are listed in Table I and shown on Fig. 11. They
can be linearly scaled by any power of w.

Polyhedron P„,in the text corresponds to polyhedron
No. 3 (triacontahedron) inflated by a factor of r in
length, polyhedron Pb, corresponds to polyhedron No.

1

2. Polyhedron P„2is obtained by truncating P„,with
Pb, displaced along the perpendicular component (five-

1

fold axis) of the 6D translation —,'[ —1, —1,3, —1, 1, —1 j
and its equivalents.
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