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The balance equation derived by Sigmund, Oliva, and Falcone [Nucl. Instrum. Methods 194, 541
(1982)] for the evolution with ion fluence of the composition of irradiated polyatomic targets is general-
ized to include the effect of the implanted bombarding ions and the allowance for the target density to
depend on depth. The model also includes atomic mixing, surface recession due to sputtering, and
homogeneous target relaxation. As an additional feature in theoretical descriptions of collisional mix-

ing, the need to introduce the effect of the surface in the relocation operator is stressed, and a model for
the evaluation of this contribution is proposed. The relocation operators are evaluated in detail for
power-law interatomic potentials. We give explicit expressions that are ready for use in numerical solu-

tions of the coupled integro-differentia1 equations that describe the concentration profiles. The potential
of the formalism to treat a variety of topics in the interaction of energetic ions with matter is commented
upon. In particular, we discuss the conditions for the balance equation to be linear, and results on the
evolution with ion fluence of thin markers embedded in solids are compared with other theoretical pre-
dictions and with experimental data.

I. INTRODUCTION

The evaluation of the contribution of collisional mixing
to the composition of irradiated targets, is still a felt
need. While the number of experimental reports on mix-
ing is large, theoretical predictions of the effects of mix-
ing have been rather scarce in the last decade. A clear
knowledge of the collisional contribution is important in
order to fully appreciate the validity of alternative ex-
planations of the results of mixing experiments.

As in other issues within the field of atomic collisions
in solids, computer simulations and analytical approaches
are used to theoretically predict mixing profiles. Com-
puter simulations, either based on Monte Carlo schemes
or in molecular dynamics are scarce; they are expensive
(in CPU time) and complicated, due to the high fluence of
ions involved in mixing experiments. ' Analytical
theories, based on transport equations of the Boltzmann
type, are not any simpler to deal with because of the
nonlinear and coupled character of the processes in-
volved, and also because of the difficulty in developing
analytical results even for simplified models of collisional
relocation events. Analytical theories usually treat two
extreme limits concerning the target, the dilute limit or
the nearly equal-mass limit. Diffusion approximations of
transport equations for mixing have also been extensively
investigated.

Since the derivation in 1982 of a balance equation for
the evolution with ion Auence of the composition of sput-
tered polyatomic targets, including atomic mixing, sur-
face recession due to sputtering, and homogeneous target
relaxation, little practical use has been made of such a
powerful theoretical scheme. Only formal solutions of
those equations were obtained for artificial collisional

cross sections, ' or with numerous approximations. "
We have shown that the spatial dependence of the
coefficients in the balance equation cannot be approxi-
mated as constants with any reasonable value. ' In this
paper, the coefficients in the coupled, nonlinear, integro-
difFerential set of equations that describe target composi-
tion are evaluated for realistic cross sections for recoil
and cascade-induced collisional-mixing mechanisms.

The effect of the bombarding ions on mixing has been
treated' neglecting the effect of target relaxation. Here,
however, the model proposed is generalized to include
the effect of the bombarding ions that are implanted in
the solid. This adds another important nonlinear effect at
high ion Auences.

Up to this point, the expanded formalism that we pro-
pose to investigate is simply an alternative, but equivalent
approach to the one developed by Littmark and
Hofer. ' There are, however, some differences in the ex-
plicit form of the evolution equation that each group of
authors proposes ' and, furthermore, it is of interest to
have access to independent calculations of such compli-
cated effects as the ones mentioned in this paper. On top
of this, our model explicitly incorporates the target sur-
face into the atomic mixing process.

In our view, the need to introduce the effect of the sur-
face barrier in the relocation function has to be stressed.
The surface barrier is a well-established feature' in atom-
ic collision theory, affecting mainly the sputtering event.
The surface barrier plays an important role in the reloca-
tion of atoms close to the surface and in the predictions
of appropriate sputtering yields. But sputtering is only
one of the possible outcomes of atomic relocation events
close to the surface. A model for the evaluation of the
surface effect is proposed in this paper, and specified for
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the most significant mixing processes. This discussion of
the effect of the surface seems to be missing in previous
theoretical descriptions of collisional mixing. '

The computer code TUI (target under irradiation) has
been developed, based on the present formalism, and has
been applied to treat the sputtering of adsorbed mono-
layers on a substrate, ' the evolution with ion fluence of
thin markers in solids, ' the dynamic recoil mixing tech-
nique, ' the accumulation of implanted ions with fluence,
the sputtering of isotopic targets, the characterization of
depth profiling by sputtering, the preferential sputtering
of compounds, and others. The detailed input used in the
calculations reported' ' will be given here.

In Sec. II the inclusion of implanted ions in the balance
equation for the evolution with fluence of the composi-
tion of polyatomic targets is discussed. The relocation
operators, for recoil-mixing (RM) and cascade-mixing
(CM) mechanisms, with the incorporation of the surface
effect, will be specified in Sec. III and, finally, in Sec. IV,
this formalism will be applied to a particular case where
the balance equation is linear.

II. GENERAL F(ORMALISM

Take a projectile of mass Mo, impinging up to a fluence

P (ions/cm ) on a polyatomic solid with atomic masses
M;. At an ion Iluence P, let a;(x, P) be the volume atom-
ic fraction of the projectiles implanted in the solid (i =0),
or of the target species (i = 1,2, . . . , n), at a depth x from
the bombarded surface located at x =0. Volume atomic
fractions a;(x, P) are given by a; =N;0;, in terms of the
effective atomic volume 0, , and the atomic density
N, (x,g) of the species i

The balance equations for the evolution with ion
fluence of the volume atomic fractions of all the atomic
species that compose the target (i =0, 1, . . . , n), are ob-
tained after a slight generalization of the formalism
developed by Sigmund et al. ,

Ba;(x,P) =L,a;(x, P) a;(x, P)f—d hx(x', P)Bx . 0

+S~onoVo(x E g y)

The relocation operator L, is related to the relocation
cross sections, so that L;N;(x, P) expresses the net mean
number of i atoms relocated to a depth x, per unit
fluence. h (x,P) in Eq. (1) is the relaxation function that
prevents the occurrence of over- or underaccumulation of
atoms in the solid by allowing the total density to vary
according with the effective volume of the atoms that are
filling a given volume of the solid. The last term on the
right-hand side of Eq. (1), not included in the equation
derived by Sigmund et al. , accounts for the accumula-
tion of projectiles in the target. 9'o (x,Z, q, p) is the range
distribution' of the projectile in the polyatornic target,
for an initial energy E and a direction 0 (q=cose) with
respect to the surface normal, after a Iluence P.

In the derivation of Eq. (1), a homogeneous target re-
laxation is assumed according with the following stability

criterion:
n n

a;(x,P)= g 0;N;(x, g)=1
i=0 i=0

(2)

for all x and P. Then the relaxation function h (x,P) will
be given by

N;(x', P) W;(x', x, P)dx'dx

is the average number of i atoms that, per incoming ion,
having been displaced from (x', dx'), reach the surface
without enough energy to overcome the surface barrier;
these particles are backscattered at the surface, and slow
down in the target to stop at a depth (x,dx). It is not ob-
vious that this effect has been taken into account in previ-
ous treatments. ' ' One should note that the need to ac-
count for this possibi1ity arose quite naturally when try-
ing to keep track of all atoms (mass conservation) relocat-
ed after a given fluence, and in order to predict reason-
able sputtering yields.

The relocation operator L; is therefore an extension of
the one defined in the literature ' ' in that it takes into
account the surface effect

L;a;(x,P)= f" do;(x —z, z, P)a;(x —z, P)

+ f dx'W, (x', x, P)a.;(x', P)
0

—f do. , (x,z, P)a, (x,P) . (4)

The second term on the right-hand side accounts for
the surface barrier. As in Refs. 6 and 7, the relocation
cross sections are defined without considering the surface
barrier, which is included through the surface back-
scattering function W( xx, P). In Eq. (4), do;(x, z, P) is
the differential relocation cross section for an i atom, so
that dP do, (x,z, g) is the probability that an i atom is re-
located from the layer (x,dx) to the layer (x +z, dz) after
the fluence increment dg. The dependence of the cross
section on all a, is symbolically contained in P.

The partial sputtering yield of the i atoms, Y;(P), is
then given by

h (x,P)= g L;a;(x,P)+Boffo(x, E, r), P) .
i=0

The stability condition in Eq. (2) may be made more
general and one obtains the relaxation function given in
Appendix A. In general, the range distribution
Vo(x, E,g, g), the relocation operators L, , and the relaxa-
tion function h (x,P) will all depend on the volume atom-
ic fractions a,.(x,P), i =0, 1, , n W.e have expressed this
dependence by P in order to simplify the notation.

Now we discuss the relocation operator. For a realistic
description of semi-infinite media, we explicitly include
the effect of the surface and its concomitant surface bar-
rier through the relocation operator L, . One has to deal
with those atoms that reach the surface with insufFicient
energy to overcome the surface barrier. We introduce a
surface backscattering function W( x', xP), such that, at
fluence P,
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I;(P)=f dx N, (x, ctr) f dcr;(x, z, P)

—f dx f dx'W, (x', x, g)N;(x', P),
0 0

(5)

where the first term on the right-hand side represents the
sputtering yield without taking into account any surface-
barrier effect; the second term counts all the relocated i
atoms that are not able to overcome the surface barrier.
We can write Eq. (5) as

I;(P)= f dx N; (x, P)cr';(x, P), (6)
0

(7)

o', (x, P ) =f d o, (x,z, P) —o.
,"(x,P ),

where, in an analogous manner to the definition of the
sputtering cross section, we define a surface backscatter-
ing cross section, cr,"(x, P)., as

o,'(x, P)= f dx'W;(x, x', P) . (9)
0

N; ( xP)d xcr,".(x, P) is the mean number of i atoms, initial-
ly located at depth (x,dx), which, being relocated, reach
the surface but do not have enough energy to overcome
it. Equation (8) relates the relocation, sputtering, and
surface-backscattering cross sections.

with a sputtering cross section, cr', (x,P), given by

o';(x, P)= f do,'(x, z, P) .

dcr'( xz, P) is now the relocation cross section calculated
accounting for the surface barrier. Comparing Eqs. (5),
(6), and (7) one gets

III. RELOCATION OPERATORS: CROSS SECTIONS

In order to solve the balance Eq. (1), the relocation
operators L;, in Eq. (4), for each collisional mixing mech-
anism need to be specified. We shall generalize the relo-
cation cross sections for isotropic-cascade and recoil-
mixing processes, and shall model the surface-
backscattering function to include the surface effect in
the relocation operator.

A. Isotropic cascade mixing

Isotropic cascade mixing refers to the relocation of
atoms in the collisional cascades developed in the target
by energetic ions and energized recoils. In a polyatomic
target, the relocation cross section of i atoms, due to all k
atoms, is

dcr, (x,z, (t )= g der„, (x,z, P) .
k=0

(10)

We introduce' the functions Hk =g H k defined as fol-
lows: Per particle of species j, with energy E and direc-
tion Q,

Hp, ( xE, QE 0, QOP) dE odQ0

is the average number of k atoms, at fiuence P, that cross
the plane x, with energy in the interval (Eo, dEO) and
direction within the solid angle (Qo, d Qo). In the limit
E0 ((E, it has been shown that the recoil distributions
H k are isotropic. Then the relocation cross section for
this isotropic mechanism will be given by

2 1
d o ™(x,z, P) =dz g f dEO f d QDHk (x,E,Q, Eo, Qo, P) f d o k; (Eo,Qo, T, Q') 9, (z, T Ed, , Q', P),—

Ic =0 COS00

where do k;(Eo, Qo, T, Q ) is the difFerential energy-transfer cross section in a collision between the atoms k and i; T and
Q are, respectively, the energy and the direction of the recoil i atom and Ed,. is a threshold displacement energy for i-
type atoms. The relocation cross section for the cascade-mixing process is given by expression (11), without considering
the effect of the surface barrier. This latter effect will be taken into account through the surface-backscattering function
as defined in Eqs. (4) and (5).

In order to determine the surface-backscattering function 8;(x', x, P), we shall first assume that the surface barrier is
planar and of height U; thus, those atoms reaching the surface with energy E, and direction O„such that

E, ~ U/cos 0, = U/g, ,

shall not be able to overcome the barrier. Second, we assume that these atoms that cannot overcome the surface barrier
are specularly backscattered without suffering any energy loss at the surface and are consequently slowed down in the
solid. With these assumptions, the surface-backscattering function 8;(x,x, P) of the i species is given by

g, (x', x,y)=, fd2Q,f,dE,J;(E„Q„x',P)5[x R;(E„P)q,], —1 (12)

where R;(E„P) is the path length traveled by an i atom of energy E„at fiuence P. J;(E„Q„x,g)dE, d Q, dx is ' the
average number of i atoms recoiling in the layer (x,dx) due to an elastic collision cascade, and reaching the surface
(x =0) with energy (E„dE, ) and direction (Q„d Q, ). This function is given by

N, (x,g)J;(E„Q„x,g)= g f dED f d QQHk(x, E,Q, ED, Q0, $)
k=0 COS00

X f dcr„, (E„Q„T,Q') fd'.Q'6(Q' Q, )5(E, f, (x—, T Ed, , Q', P)—), — (13)
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where the functional dependence E, =f; (x, T, Q', P )

expresses the energy E, with which an i atom reaches the
surface, after having left the depth x with energy T and
direction Q'. We use the continuous slowing-down ap-
proximation along straight lines for the slowing down of
the i atom in the target. This approximation should be
taken with some precaution for the slowing down of light
species in polyatomic targets. However, in studies of
sputtering there is some evidence that the slowing-down
approximation may predict well the depth of origin of the
sputtered particles, due to compensation of scattering
processes.

Introducing expressions (11) and (12) into Eq. (4), we
can calculate the relocation operators L; for the isotropic
cascade-mixing mechanism with the explicit inclusion of
the surface effect. At this point, one may reconsider the
need to account for the surface-barrier potential. Alter-
natively, observed sputtering yields could be predicted by
a proper choice of the threshold displacement energy Ed, .
Beside the fact mentioned above that the use of a surface
barrier is very widely accepted, ' the neglect of the sur-
face barrier requires very large values of Ed; in order to
fit the sputtering yields. For instance, in the case which
will be studied later of 300 keV xenon bombarding sil-
icon, an Ed=55 eV is required to obtain the same
sputtering yield as for a binding surface energy U =4.63
eV and Ed=15 eV. On the other hand, values in the
literature ' are in the range Ed.. 10—20 eV for Si.

B. Recoil mixing

X5[z —R, (T Ed;, P)cosg; ]-
for 0 & z & z, '"(x), (14)

where the projectile is assumed to hit the solid in the
direction of the surface normal. P; is the scattering angle
for the recoiling i atom. The 6 function comes from the
continuous slowing-down approximation along straight
lines, for the slowing down of the recoiling particles in
the solid. This model may be a poor approximation for
light atomic species.

In this recoil-mixing model via direct collision of a pro-
jectile with an i target atom (i =0, l, , n), it is not possi-
ble for the target atom to be scattered towards the sur-
face, at least for normal incidence of the projectile.
Therefore, in comparison with Eq. (4), the relocation
operator L, for this mechanism

L,u;(x, P)= f do;(x —z, z, P)a;(x —z, P)
0

do;(x, z, P)a;(x, P)
0

Recoil mixing refers to the relocation of target atoms
in direct collisions with the incident ions. Therefore, for
this mechanism there is only a contribution from the pro-
jectile.

The relocation cross section for an i atom, at depth x,
due to a direct collision with a projectile of energy
E(x,g), is given by

do; (x,z, P)=dz f doo;[E(x, g), T]

contains no surface-barrier term. Furthermore, the lower
limit of both integrals in Eq. (15) are now set equal to
zero because this is a directional mechanism moving par-
ticles inside the target.

Recent computer-simulation studies of the relocation
cross section have shown that this restriction to forward
relocation is not bad in view of the relative magnitude of
forward and backward contribution to the relocation
cross section.

IV. APPLICATION: LINEAR CASES

There are some simple applications of this formalism
which are of practical interest, namely, the case of a tar-
get whose species have similar masses, and the case of an
impurity diluted into a matrix, when these systems are
bombarded with not too high ion Auences. In these limits
the balance equation (1) is linear, the target can be treat-
ed like monoatomic for the slowing down of the particles,
and the relocation operator wi11 not depend on the atomic
concentrations in the target. For high-energy ions, one
may also neglect the accumulation of projectiles in the
solid. Applications of the present formalism to such sys-
tems have been briefly reported. ' ' The input used in
those calculations will be specified here.

For a diluted impurity M, in a matrix M2, where
u, «az, u2-—1 is already a solution of Eq. (1) (mono-
atomic target). The evolution equation for the impurity
atoms a& is linear

Bcx) ()
1 A) dx L2

0
(16)

since the relaxation function [see Eq. (3)] can be written
as

In order to solve the balance equation (16) we need to
specify the relocation operator (4) for isotropic-cascade-
and recoil-mixing mechanisms, and the relocation cross
sections and the surface-backscattering function need to
be evaluated. For the case of a diluted impurity in a ma-
trix, we calculate the relocation cross section of i atoms
(i =1,2), due to elastic collision cascades developed by
matrix atoms only from Eq. (11). Since we are ignoring
the eFects due to the projectile, we substitute in Eq. (10),

do, (x,z)= do 2;(x,z). —

and in Eq. (11), Hk-=H2k. Using in Eq. (11) the well-
known expressions of H2 (x,E,Q, Eo, Qo) (Ref. 19) and
the power-law energy-transfer cross section
doz;(ED, Qo, T, Q'), we can find the relocation cross sec-
tion. We generalize the results for different exponents

h (x') =L, ( )xa, +L2(x')a~=L~(x')—:L~

For the nearly equal-mass target limit M& ——M2, the re-
location operators also coincide L, =L2, and Eq. (16) still
holds for e, , while +2=1—0, The relaxation operator
will be the same as that for a diluted impurity in a rna-
trix,

h (x') =L, ( )ax, +L2(x')(1 —a&) =L2(x') =L2—



COLLISIONAL ATOMIC MIXING IN POLYATOMIC TARGETS 2065

m, . in the power-law interatomic potential and also con-
sider a threshold displacement energy Ed, in order to
avoid the singularity at z =0. We obtain

1 V (x)C2;(1—m22)y2;docM(x, z) =dz
2%2C22(1 —2m22+m2, ) A,

x I "dT
(T E )

i2

1 V (x)C2;yz;do™(x,z)=dz
2 22 i di

2E'"
dl

Izl

A, |E„,+(IzlyA, )']

1

1/2 tan Izl

A E'"
l dl

where p; =2—2m22+2m2; and

To =Ed; + ( I
z

I /A; )

I is a well-known' parameter depending on m,j, 9 (x) is
the deposited energy distribution of the projectile into
the matrix, and A, is a parameter in the range of the

2m. 2recoil atom i in the matrix, i.e., R; (E)= A;E
There is a simple analytical solution for the relocation

cross section when mi2 4 and m22 m2i

In general, for di6'erent values of I; it is still possible to
get analytical expressions by expanding the T integral in
Eq. (17) as a series (for details see Appendix 8).

It is interesting to note the behavior of the relocation
cross section with the threshold energy parameter Ed;.
For large z values (large relocation distances) we repro-
duce the results of Sigmund and Gras-Marti, where this
threshold was not included, i.e., the cross sections are not
sensitive to the values of Ed; chosen and the slopes are
identical because they only depend on the m values
chosen. In the range of small z values, the relocation
cross section is quite sensitive to the specified Ed; and the
curves start to bend to a constant value for z =0 around
a value of z corresponding to the path length of a recoil
with energy Ed;. The probability for an atom to be relo-
cated a small distance z is larger the smaller the displace-
ment energy Ed, because less energy needs to be
transferred to move atoms, and the energy-transfer cross
section is larger. For Ed, =0, the relocation cross section
diverges at z =0. The m dependence of the cascade-
mixing relocation cross section is the following: for large
z the slopes are softer the higher the m value. For small
z, the larger the m values, the shorter is the path length
corresponding to Ed; so that one has higher values for the
isotropic relocation cross section.

Now, in order to find the relocation operator we need
to specify the surface-backscattering function, Eq. (12).
We obtain

1 & (x')C (1—m
(

,
)

2' 22 1 2'

~2C22 A'm'2( m22+ 2i )

( ~A )(I—2mi2~/2mi2
i'9s

(1—2mi2 /2mi2

9P gg E + x +x & A ~
l2 ~l

(19)

with

X
go

t2

' 1/(1 —4m, 2)

30

25

As for the cascade relocation cross section, we obtain a
simple analytical expression from Eq. (19) when m;2= —,

'

and m22 =m2;,

rV (x )C„),',
W, (x', x ) = Ed;

2 22 l
r

77 1 X +X
2

X ——tan
A E'"

dl

20

X
x 15

X
O

10

A;Ez; (x +x')
A; Ed;+(x +x') (20)

For di8'erent m;. we can also find an analytical result by
expanding the integral in a series (for details see Appen-
dix B).

Figure 1 shows the depth distribution of the atoms
rejected by the surface barrier in the target, i.e.,
jdx'W;(x', x). The system is 300-keV Xe ions incident

0
0

Depth x (A)

FIG. 1. Depth distribution of atoms reflected at the inner
surface of the solid, for 300-keV Xe —+ Si(Pt). For Si ( )

and Pt ( ———).
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0

10 20 30
Depth x (A)

FIG. 2. Sputter ( ) and surface reAection ( ———
)

cross sections vs depth of silicon. For 300-keV Xe ~ Si(Pt).

on Pt diluted in Si, a system that has been widely studied
theoretically, computationally, and experimental-
ly. ' We use m =0.25, Ed; =15 eV, and U =4.63 eV.
No rejected atom can go further than the path length
corresponding to the surface-barrier energy U (a few A).
It is precisely for values close to this path length where
the depth distribution drops rapidly to zero. Also, the
heavier Pt atoms have smaller recoil energies and ranges.
Physically, when the target concentration is relaxed after
each Auence increment, this model of the surface-
backscattering function gives very similar results to a
model where those particles that cannot overcome the
barrier are left at the surface. However, the proposed
model is more convenient computationally.

Figure 2 shows the sputtering and reAection cross sec-
tions versus depth for silicon, as obtained from Eqs. (8)

I

and (9), with the input specified above. The system and
the parameters are the same as in Fig. 1. The sputtering
yield obtained using Eq. (6) is 4.5 for silicon, a result that
agrees quite well with experimental data. One observes
in Fig. 2 that o') 0." in the tail of the distribution, but the
reverse holds near the surface. The behavior can be un-
derstood in terms of the energy and direction of the recoil
atoms. It is well known that those atoms that reach the
surface are more focused toward the surface normal the
larger the depth where they come from. Those atoms
moving at glancing directions contribute mainly to the
reAection cross section (E, ~ U/g, ), whereas the contri-
bution to the sputter cross section is mainly from atoms
whose directions are close to the surface normal
(E, ~ U/2), ).

Close to the surface, 0.")o' in Fig. 2. In the near-
surface region, atoms with any direction are able to reach
the surface even if they have low energy. However, the
opposite situation o."(o' may occur if the height of the
surface barrier is substantially reduced. At large x, how-
ever, o.")cr', independent of the height of the surface
barrier because of the focusing effect.

The cascade-mixing contribution to the relocation
operator L;, given by Eqs. (4), (17), and (19), shows a de-
pletion' around the maximum of the deposited energy
distribution 7 and an enrichment region deeper inside.
If the surface-barrier effect is included, a substantial en-
richment is obtained in a very small region close to the
surface (see Fig 1); con.versely, if the surface barrier is re-
moved, then a pronounced depletion due to sputtering is
found.

Now we obtain the relocation cross section for the
recoil-mixing mechanism from Eq. (14). We have calcu-
lated the scattering angle of the recoil particles i, with or
without subtracting Fd,- to the transferred energy, and the
differences in the calculated relocation cross section are
negligible. Therefore, we use the scattering angle

cosl(; = [(T—Ed, )/yo, E(x, ((1)]'/2

because, in this case, we obtain an analytical expression
for the cross section in Eq. (14):

Co;[E (x)]
d(7, (x,z) =dz

1/2+ 2m;2

1/(1/2+2m, .&) ]
—1 —

mo, .

E +dl

(/(1/2+ 2m, .2)
yo(E x 1/(1/2+2m. ) —1

z !2 [O~z ~z; '"(x)] . (21a)

concentration profiles of a platinum marker in a silicon
matrix, bombarded with 300-keV Xe. The Pt marker is
10 A wide, and initially located at 600 A. The parame-
ters Ed; and U are the same as in Fig. 1 but now
m =0.25 and —,

' for the cascade and recoil mechanisms,
respectively. The marker profiles broaden and shift to-
wards the surface as the fluence increases. The surface
effect is not relevant in terms of the distortion of such a
deep marker, converse to observations made for shallow
markers. ' The main inhuence of the surface barrier, in
this particular case, is to accurately predict the sputtering

1/2

(21b)

i.e., the maximum path length of a recoil i at depth x. At
z =0 the cross section in Eq. (21a) only vanishes for
m;2 & —„', becoming divergent again for m,.2) —,'.

Figure 3 shows the evolution, with ion fluence, of the

The relocation distance z ranges from zero to

y(1;E (x) Ed;—
z, '"(x)= 3;[yo,E(x) Ed,]-

y Ol
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FIG. 3. Depth distribution of a Pt marker concentration for
various Auences P (in 10i5 atomscm ~), for 300-keV Xe
Si/P t/Si.

FIG. 4. Broadening vs Auence of a Pt marker in Si. For 300-
keV Xe —+ Si/Pt/Si.

yield so that the recession speed of the surface or,
equivalently, the depth scale in Fig. 3, can be used for
comparison with experimental profiles. The evolution of
the Pt profile is very similar if we change the initial depth
of the marker from 600 to 500 A, as has been observed
experimentally, due to the fact that V (x) does not vary
much between those depths.

Figure 4 shows the broadening of a Pt marker asar er as a
unction of ion fluence P. The system and parameters are

the same as in Fig. 3. Figure 4(a) shows the mean stan-
dard deviation of the platinum marker. Experimental re-
sults ' correspond to a 5-A width Pt marker, 500 A dee .

g' 36 2e ave found o. not to be sensitive when marker
depth ranges between 400 and 800 A, as has also been
corroborated experimentally. Agreement between ex-
periment and theory is quite reasonable up to a 6
of bout

a uence
o a out 10 cm . At higher Auences the discrepancies
may be due to the role played by other mechanisms, such
as radiation enhanced diffusion, whose importance is ex-
pected to increase as the material is increasingly dam-
aged.

Figure 4(b) shows the same kind of results but in terms
of the half width at half maximum (HWHM). In this
figure, we have also plotted 2(ln2)o in order to indicate
to what extent do the profiles shown in Fig. 3 depart from
Gaussians (o. is the straggling in the profile). Theoretical
results obtained by Monte Carlo simulation agree quite
well with our predictions, keeping in mind that Monte
Carlo calculations were carried out with a cutoff energy
of 4 eV. Values of 8 and 25 eV, for the cutoff energy,
reduce the magnitude of the square of the HWHM by, re-
spectively, 20 and 50% approximately. It is interesting
to remark that experimental values agree better with
2(ln2)o than with the square of the HWHM, while they

are reported as the square of the HWHM. For the
present calculations, 2(ln2)o. is always larger than the
square of the HWHM (which has been calculated from
half the full width at half maximum); this means that pre-
dicted profiles, as in Fig. 3, are not symmetric and are far
from Gaussians. The experiments, on the contrary, seem
to miss the lack of symmetry of the profiles, as shown in
Fig. 4, where the values of the square of the HWHM 1-

32
ca-

culated experimentally agree better with 2(ln2)cr .

V. CONCLUSIONS

We have presented a powerful formalism to deal with
ballistic mixing in which features such as effective atomic
volume, projectile-implant effect, and surface barrier are
included. This formalism has the advantage that it is, in
principle, easy to drop approximations such as that of a
diluted impurity, made so far in the calculations.

An important further advantage of this formalism is
that it clearly spells out the models on which input quan-
tities are based, as relocation cross sections and reflection
function, in terms of input parameters like m E dan

Results obtained so far, both those reported in this
work and recently, ' ' show good agreement with other
theoretical calculations and reasonable agreement with
experimental results. We believe that, although other
mechanisms not included in our model, such as radiation
enhanced diffusion and chemical forces, do play an im-
portant role in atomic mixing by ion bombardment, more
experiments should be carried out paying special atten-
tion to differences between the characterization of the
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distortion of the pro61es either by o. or by the square of
the HWHM.

8 (x, ) =g L;a;(x, P)
l

f (x, p) f dx'h (x', p) (A2)
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f (x,P) = I+A, (x, P)

with

(A3)

which, together with Eq. (1), gives a system of integro-
diA'erential equations that determines the relaxation func-
tion h (x,P). Equation (A2) contains a source term.

For small deviations from homogeneous relaxation,
which will be the rule rather than the exception for real
solids, one may write

APPENDIX A: RELAXATION
TO A PRESCRIBED LOCAL DENSITY

h(x, P) «1 .

We also expand the relaxation function h (x,P),

h(x, P)= gL;a;(x, P) —g(x, P),

(A4)

(A5)

ga;(x, P)= gQ;X;(x, P)=f(x, P) . (A 1)

If we neglect the contribution of the implanted ions, for
clarity, we get

The homogeneous relaxation model specified in Eq. (2),
g;a; = 1, yields a total atomic density g;X; which varies
with x, depending on the efFective atomic volume of the
atoms located at x. One may wish to incorporate into the
formalism a more general behavior of solids, which can
certainly accommodate locally limited deviations from in-
itial total density without relaxation.

Let us assume the target relaxes to a prescribed, but
fluence dependent, in general, local fractiona1 concentra-
tion

where the function g(x, P) is of the same order as b.(x,P),
g(x, P)=A(x, P). Neglecting terms of second order, one
gets, from Eqs. (A2) —(A5),

h (x,P) = [2—f (x,P)] QL, a, (x,g)—a(x, )

l

f dx'gL;a;(x', P),
1

which is the explicit form of the relaxation function for a
prescribed local density. For f (x,g)=1, one retrieves
from Eq. (A6) the result in Eq. (3) (we are neglecting the
effect of the ion). This more general formalism of the re-
laxation function will be discussed elsewhere and expli-
cit model predictions will be reported.

APPENDIX B: SERIES EXPANSION OF SOME INTEGRALS APPEARING IN THE CROSS SECTIONS

The kind of integral that appears in Eqs. (17}and (19) is

I = f dt t '(t+Ed)
(0

(B1)

In the numerical process of solving Eq. (1), this integral occurs many times so, in order to save computer time, it is eval-
uated by a series expansion of the form

(t +Ed, )

t 'gK„
n=0

Ed; 'gK„

n

n

if t ~Ed,

if t ~Ed;,
(B2)

where

p;+k —1
K„=(—1)" Q To=1 . (B3)

The undefined integral of Eq. (Bl), once this series has been replaced in it, is
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I(t)= '

—p. —2m. +1
l l2I1

I —n —p; —2m+

—
p,.

—2m,.2+ 1 K
2= n

o 1+n —2m2 Ed;

'n

n

if t ~Ed;,

if t~Ed; .
(84)

1. Cascade-mixing relocation cross section

In this case, one gets, from Eq. (17), the kind of integral in Eq. (81) after the substitution t =T Ed;. T—he limits of
the integral are

to=

and t&
= oo. From Eqs. (17) and (84) one has

rV (X)C;(1—m )y
d~zoM(x, z) =dz

2N&C22(1 —2m&&+mq )A, . I2(Ed, ) I~(Ed.; ) ——I2(tp)+II ( ~ ), if tp Ed;,

and using Eq. (84),

(85)

1 V (x)C2;(1—m22)yz;

2%zC22(1 —2m22+m2;) A;

Izl
, !zlzz, (z„,. )

X
S; p

p,. +2m, ,—1

dl

2m)2 ~/2mgp K

n=o n 2~a+~
8;(Ed; )

—n /2m, .
2

lzl ~z, (E„.),
(86a)

where

oo (2n +p, )S;= gK„" (n +1 2m;2)—(n +p, —1+2m, 2)
(86b)

2. Surface-re8ection function

We start from Eq. (19) and, in order to get the integral in Eq. (81) again, the change of variable needed is
' 1/2m, .

2X+X
A,-q,

the limits of the integral become
1/2m, .

2X+X
A.

l

and

X

The reflection function must vanish for

(2; U ")/x —=R;(U)/x ~ 1,
that is, when x is greater or equal to the maximum path length traveled by one atom reflected by the surface. It is obvi-
ous then that t, ~ tp. From Eqs. (19) and (84) one has,
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W;(x', x) =dz
1 —2m&&+m2, I1(t1 ) I1(tp)~ 1f tp Edt and t1 ~

Ed&re(x )C„(1—m„)) „.
I2(Ed ) I2(tp )+I1(t1 ) I1(Ed ) 1f tp Ed and t1 Ed (88)

2N2C22(1 —2m22+m2, ) A,
I2(t, )

—12(tp), if t, Ed; .

Using Eq. (84) again,
1 —2m2&+m2, .

W ' =d
2N2C22(1 —2m22+ m2; ) A;

r

I(t, )
—I(tp), if t, ~Ed; or to~Ed, , for R, (U)~x
S;

X . +2, —I2(tp)+I1(t, ), if t, ~Ed, and t.p~Ed;, for R;(U)~x
p,. +2m, .

&
—1

dl

0, for R;(U) ~x .

(89)
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