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Valence-band coupling in thin (Ga,In) As-AlAs strained quantum wells
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Model representations of varying complexity are used to describe the band structure of semiconduc-
tor quantum wells and superlattices. However, the physics of valence-band-confined states is usually
restricted to the upper I'f band. We report spectroscopic measurements of the light- to heavy-hole
splitting in (Ga,In)As-AlAs strained multiple quantum wells. The results are compared to two types
of theoretical calculations: (i) within the framework of the usual approximations, and (ii) taking ac-
count of the I'j split-off states, which are mixed with the light-hole ones. We demonstrate the crucial
influence of the valence-band coupling, by a significant improvement of the agreement between theory
and experiments. Competitive effects of thicknesses, potential-well depths, and magnitude of the I's-I'7

splitting are detailed and discussed.

The advent of low-dimensional systems such as quan-
tum wells or superlattices has revolutionized solid-state
electronics. The possibility of achieving the coherent
growth of various semiconductor compounds on low-cost
substrates opens up opportunities for devices with new po-
tential applications. A tremendous activity has developed
in order to correlate the physical properties of these struc-
tures to their design. The physics of these artificial semi-
conductors is derived from the bulk properties, but the
reduction of dimensionality gives rise to alternate proper-
ties: Fundamental phenomena such as the quantum Hall
effect and fractional quantum Hall effect! are typical of
two-dimensional semiconductors. Also, the possibility of
tuning the miniband width of superlattices produces the
Wannier-Stark localization? under moderate electric-field
conditions, while this effect cannot be observed in the
bulk. Another growing area of interest in the physics of
low-dimensional systems concerns strained-layer semicon-
ductors where the different layers which constitute the mi-
crostructure are lattice mismatched with each other, and
sometimes with the substrate.? Coherent growth is impos-
sible to achieve beyond a critical thickness* where disloca-
tions are generated, with disastrous consequences on the
basic characteristics of the materials: collapse of the
mobilities,> quenching of the radiative lifetimes, etc.
Beneath the critical thickness, the layers experience a
built-in elastic strain field which lowers their lattice sym-
metry. The modifications of the electronic levels in the
deformed layers can quantitatively be correlated to the
strain via a set of phenomenological quantities: the defor-
mation potentials. This paper reports on the (Ga,In)As-
AlAs combination, where both layers are elastically
strained so as to match their in-plane lattice parameter to
the lattice parameter of the GaAs substrate.® We have
varied the thicknesses of the (Ga,In)As confining layers in
order to observe experimentally the coupling of the light-
hole states with the split-off band. This effect, which can
be predicted from group theory arguments,’® is unambi-
guously observed and quantified. The paper is organized
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as follows: The experimental results are described in the
next section, then we outline the formalism used to calcu-
late the electronic structure of our samples. A theory-
experiment comparison is made in the next section, and,
finally, we infer some conclusions from our work.

The samples all consist of the same sequence of 20
Gag.o6lng 0sAs layers sandwiched between 21 AlAs layers.
The energy difference between the direct gaps of these
materials is ~1.6 eV, hence the confining potential wells
are deep. The thickness of the AlAs layers is fixed at 4
nm for all the samples, while the thickness of the alloy
layers is varied. Samples, hereafter labeled samples 1, 2,
3, 4, correspond to (Ga,In)As thicknesses of 3.8, 3.0, 1.8,
and 1.2 nm, respectively. Photoluminescence characteri-
zation of these samples has revealed that the band align-
ment of samples 1 and 2 is type I while samples 3 and 4
have a type-II lineup.® Reflectivity has been used in order
to measure the energy position of the e(1)hh(1) and
e(1)1h(1) type-I transitions in each sample. Figure 1
summarizes the low-energy reflectance data taken at 2 K.
Except for sample 1, one observes a pair of features corre-
sponding to the e(1)hh(1) and e(1)1h(1) excitons, respec-
tively. Uniaxial stress experiments, which will be detailed
elsewhere,® have confirmed that the additional features
observed for sample 1 correspond to “hot” excitons.® As
generally observed, the splitting between heavy- and
light-hole excitons increases when the thickness of the
confining layer diminishes. Envelope function calcula-
tions have been performed using the “decoupled subbands
approximation,” which is generally used to compute the
electronic structure of quantum wells at k, =k, =0.'%!!
Within this approximation, the eigenfunctions of the
quantum-well problem are directly proportional to the I'g
Bloch waves | 3,+ 3)and | 3, = §), for heavy holes and
light holes, respectively.

Applying this simple model to our samples, and allow-
ing a small correction for the binding energy, one ade-
quately calculates the energy of the e(1)hh(1) excitons.
However, the model always fails to intepret the energy po-
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sitions of the e(1)Ih(1) features. The discrepancy be-
tween the calculation and the observation is most dramat-
ic for thin quantum wells. This is illustrated in Fig. 2,
where we have plotted the experimental values of the
energy difference between transitions e(1)Ih(1) and
e(1)hh(1) (solid circles) together with the calculated
difference of the band-to-band energies (dashed lines).
Because the growth parameters are sufficiently well con-I
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trolled, it is clear that the deviation between the experi-
ment and the calculation originates from the excessive
simplicity of the treatment of the valence-band physics in
the decoupled subbands approximation.

Writing the 6x6 effective-mass kinetic Hamiltonian at
kx=k, =0, one sees that it can be represented by two
3x3 block-diagonal matrices corresponding to the sub-
spaces of basis functions (¢, ¢, ¢s0).

on=X+iV)a/N2, ¢;=[—2Za+ X +iY)BI/V6, ¢o=[Za+(X+iY)BI/V3, )
l¢n) los) [9s0)
= (y1 =27k, 0 0
H+Hyn= 0 —(n+2p)k? 2V27k? |, )
0 2V2y2k? —y1k?— Ao

where y) and y; are the Luttinger parameters and Ay is
the energy of the spin-orbit split-off band. The diagonali-
zation of (2) gives the dispersion relations E (k,) of the
valence-band energies along the [0,0,1] direction, in the
absence of stress. In the decoupled subbands approxima-
tion, the off-diagonal terms are ignored, and all the bands
have a parabolic dispersion. To quantitatively discuss this
usually adopted approximation, we have drawn the disper-
sion relation of the GaAs valence band as a function of k,,
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FIG. 1. Reflectance spectra obtained at liquid-helium tem-
perature on four Gao 9sIno.0sAs-AlAs superlattices, having a con-
stant AlAs width of 4 nm. The well thicknesses are indicated on
the figure. h and / label the e(1)hh(1) and e(1)1h(1) excitonic
features in each sample. The transitions labeled A#* and /* cor-
respond to the creation of hot excitons (see Refs. 6 and 9).

r
and at k, =k, =0. On the left-hand side of Fig. 3, we have
plotted the parabolic relations obtained when the interac-
tion between the light hole and the split-off hole is ig-
nored. A similar drawing appears in the right-hand side
of the figure, but now the interaction is included in the
calculation, leading to nonparabolic dispersion relations.
To make quantitative estimations, we have solved, for
both approximations, the infinite well problem for a well
width of 5 nm. The light-hole confinement energy is
significantly reduced in the coupled subbands approxima-
tion (see the solid rectangles in the figure). In fact, the
usual limitation of the valence-band states to Bloch states
having the I's symmetry collapses when the depth of the
valence-band discontinuity exceeds the value of the I'§-I'j
energy difference and when the confinement energy of the
light hole reaches ~A¢/2 in the decoupled subbands ap-
proximation. Now we will treat the real problem of
strained layers and finite potential depths.

150 T T g T T T
% 140 F~~ N — — — Decoupled Subband Calculation -
r N -
E 430 | N Coupled Subband Calculation -
E 120
£ 110
= 100
¥ a0
Z 80
c
— 70
=
ot 60
[ L
50 i 1 A 1 " 1
1 2 3 4 5
(Ga, In) As WELL WIDTH (nm)

FIG. 2. Comparison of the energy difference between the
e(1)1h(1) and e(1)hh(1) transitions obtained from experiments
(solid circles) and from calculations, for Gag.esIno.osAs-AlAs su-
perlattices, with constant barrier width of 4 nm. The dashed
curve is obtained when the coupling between light-hole and
split-off hole states is neglected, while the solid curve includes
this interaction. Excitonic binding energies are not calculated in
this paper.
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The total valence-band Hamiltonian for a p-like multiplet under a strain field can be written as

Htot=Hso+Hl+H2+Hkin )

12

(3)

where H\i, and H, are the kinetic and the spin-orbit Hamiltonian, respectively. H is the orbital-strain Hamiltonian, A,
is the stress-dependent spin-orbit Hamiltonian. The expressions of H; and H; are given by

Hi=—a(exxte,+e,)L2—=3b[L2—L?/3)exx+cp.]l —=V3d | [(LL,+L,L,)e,,+cp.],

Hy=—as(excte,+e,.)(Lo) —3b,[(Lio, —Lo/3)ex+c.p.l —V3d2[ (Lo, + L,0, ey, +cp.],

4

where L is the angular momentum operator, o is the Pauli matrix vector, and c.p. denotes the cyclic permutation with
respect to the indices x, y, and z. The quantities a,, by, and d, (a3, b2, and d,), are orbital (spin-dependent) deformation

potentials.

For the case of (0,0,1)-oriented built-in stress, we keep the distribution of the 6x6 valence-band matrix as two

equivalent 3 X% 3 block-diagonal matrices of the following kind:

|¢h> |¢1) |¢so>
—alextey,te;;) 0 0
—=b (ezz — €xx )
—alexctey, te;;)
0 +b(e,; —exy)
0 V2b'(e,; —exx)

where e;; are the components of the strain field, and the
deformation potentials a, a’, b, and b' are given by a =a,
+ay a' =a;—2a;b=b;+2by;b'=b;—b,.

To calculate the eigenstates in the valence band of our
heterostructures, we have to ensure the continuity of both
the envelope functions and probability current across the
interfaces. A detailed description of the calculation of the
in-plane dispersion relations of I's-like confined states, in-
cluding the effect of coupled bands, is given in Ref. 13.
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FIG. 3. Plot of the valence-band dispersion relations E (k;),
for GaAs. On the left is the so-called “uncoupled” calculation
(see text), for which the bands are parabolic. When the cou-
pling between light and split-off states is taken into account
(“coupled” situation), the corresponding bands become nonpar-
abolic, as shown on the right-hand side of the figure. The solid
rectangles represent the energy differences between both ap-
proximations, for the first quantized light and split-off levels, for
the case of an infinitely deep, 5-nm-wide single quantum well.
These differences are of the order of ~25 meV.

—V2b'(e;; —exx) |’

—a'(exxtey+e;)

(5)

I
We assume a 33%-67% division of the gap difference be-
tween the strained heavy-hole and conduction-electron po-
tential depths, which is known to be the correct partition
for GaAs-AlAs microstructures. !>

The result of this last calculation, made using the pa-
rameters of Refs. 6, 12, and 16-18, is illustrated in Fig. 2
(solid line). By comparison with the reflectance data, it is
clear that the inclusion of the light-hole interaction with
the split-off hole is sound and fundamental if we are to ex-
plain the experimental observations. A modest discrepan-
cy still remains between the experimental data and the
calculation. This we attribute to the difference between
the Rydberg energies of light-hole excitons and heavy-
hole excitons. No calculation of the Rydberg energies is
available for the 6 x6 full valence Hamiltonian: The off-
diagonal term in Eq. (2) was omitted in all the earlier
works on the subject. Most calculations were made at
kx=k, =0, and show that the light-hole exciton has a
larger Rydberg than the heavy-hole one. More recent cal-
culations, which include the contributions of states away
from ky=k,=0 and the mismatch of dielectric con-
stants'® demonstrate an enhancement of this difference.
Qualitatively, this can be explained as follows: in the cal-
culation of the I's Rydberg, a significant contribution to
the difference between calculated values originates in the
difference between the light-hole and heavy-hole in-plane
masses. The light-hole (heavy-hole) excitons have a
heavy (light) in-plane reduced mass, giving large (small)
values of the Rydbergs. Andreani and Pasquarello'® have
estimated a difference between light-hole and heavy-hole
excitons for GaAs-AlAs of 9 meV for a 3-nm well, and 6
meV for a 4-nm well. Assuming similar differences for
our (Ga,In)As-AlAs samples with 3 and 3.8 nm brings the
experimental points in excellent agreement with the calcu-
lated curve in Fig. 2 (solid line). The increasing energy
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difference between experiment and theory, as the well
width is reduced, is consistent with the trend proposed by
Grundmann and Bimberg?® in the narrow well range.
Our results are consistent with the light-hole Rydberg
remaining larger than the heavy-hole one, for this range of
well widths.

In conclusion, we wish to emphasize the fact that a
correct estimate of light-hole confinement energies in
quantum wells requires the inclusion of the coupling with
the split-off band when the light-hole potential depth is
comparable to the value of the energy difference between
I's and I'f. This has been demonstrated experimentally
for the case of (Ga,In)As-AlAs quantum wells with low
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indium concentration. Further investigations are required
to quantify the influence of the light hole to split-off hole
interactions. This may be particularly important, for in-
stance, in predicting threshold currents for (Ga,In)As-
GaAs strained-layer quantum-well lasers, for which in-
teresting results have been predicted,?! invoking valence-
band physics. The results shown in this paper demon-
strate unambiguously that device designers cannot restrict
the valence-band physics to the I's states without care in
their model calculations. This is particularly true for
strained layers quantum wells and superlattices where the
light-hole and split-off hole states are coupled by both the
kinetic-energy Hamiltonian and the strain.
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