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Optical-phonon modes and Frohlich potential in one-dimensional quantum-well wires
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By extending our microscopic model on optical-phonon modes in quantum wells to one-dimensional
(1D) quantum-well wires (QWW), the optical displacements and associated electrostatic potentials of
optical-phonon modes in 1D QWW are calculated. The modes can be clearly divided into confined LO
bulklike, TO bulklike modes, and extended interfacelike modes provided the bulk phonon dispersion is
ignored. The character of each type of mode is illustrated with special attention to the interfacelike
modes, which are hybrids of longitudinal- and transverse-optical waves from the corresponding bulk ma-
terials. Based on the numerical results, approximate analytical formulas for bulklike modes are present-
ed. As in 2D wells, both the optical displacements and Frohlich potentials for the bulklike modes vanish
at the interfaces. The finite dispersion of bulk phonons has a more pronounced effect on the 1D phonon
modes because interfacelike modes show mixed characteristics of 2D interface and bulklike modes.

The fundamental properties of optical-phonon modes
in typical semiconductor superlattice and quantum wells,
such as GaAs/AlAs, have become well understood dur-
ing the past five years. ' Recently, with improvement
of sample fabrication technique, one-dimensional
quantum-well wires (QWW) attract more and more atten-
tion. In contrast to the large number of works on the
electronic structure of quasi-one-dimensional (1D)
QWW's, to our knowledge, there is no research work on
optical-phonon modes in QWW's based on a microscopic
model. In this paper, with a specially devised microscop-
ic model, ' which has been justified in dealing with pho-
non modes in 2D systems, the basic properties of the
optical-phonon mode as well as corresponding electro-
static potentials in QWW's are investigated.

As originated by Huang and Rhys and further
developed in Ref. 6, a simple cubic lattice of charged os-
cillators has been used as a model to simulate the relative
motion of the oppositely charged particles in a polar lat-
tice. To model optical vibrations in the quantum-well
wires constituted of two materials 3 and B, we shall as-
sume that the A lattice of oscillators differs from the B
lattice only in the oscillator's intrinsic frequencies (the
difference between squared oscillator frequencies is desig-
nated by b, too). If the z axis is taken to be parallel to the
wires, Ma and Na denote, respectively, the rectangular
well (A material) widths along the x and y directions,
with M'a and N'a representing the corresponding barrier
widths, then the period along the x direction is L„a
(L =M +M'), and the period along the y direction L a

I

equals (N+N')a, where a is the monolayer width (half
lattice constant). Such a rectangular QWW will be
denoted as QWW (M, N, M', N'). Thus, among 3L,L
optical modes, there will be 3M% 3-like modes and
3(MN'+M'N+M'N') B-like modes.

The method of calculation and basic idea are as fol-
lows. Similar to the usual effective-mass treatment of
electrons and holes in quantum-well wires, the optical vi-
brational modes can be conveniently imagined as the
eigenmodes in the "phonon quantum-well wires, " where
hcoo plays the role of the phonon potential barrier height.
Owing to QWW periodicity, in working out the A-like
optical phonons in QWW's, the eigenmodes can be ex-
panded in terms of LO and TO plane waves of the 3 lat-
tice, i.e.,

~k, ~,j)= V ' exp(ik, R)&(k, ,j) (j =1,2, 3, ),
with wave vectors k, related by reciprocal-lattice vec-
tors of the QWW, which can be expressed as

k, =k+(2sm. /L„a )x+(2pm/L~a )y, .

where s is an integer within —L /2 and L„/2, and the
integer p is between L /2 and L /2—. The wave-vector
specifying mode in 1D QWW's, k=(k„,k, k, ), is restrict-
ed to the minizone of the QWW lattice. The phonon po-
tential barrier will couple together these 3-lattice modes
associated with different k, , and the following dynami-
cal matrix element can be deduced:

~k, ,~j lIIlk, , ~ j )=[co~(k,~,j ) +& &'c&(o1 MN/L L )]5„,5,5,—
+ [(1 5„,)N'I(s' —s)+(1—5 ~ )M'I(p' —p )—

—(1—5„)(1—5 ~ )I(s' —s )I(p' —p )]e *(k, ,j') g(k, ,j),
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where co& (k, ,j ) and e(k, ,j ) are the frequency and nor-
malized displacement of the jth A-lattice mode associat-
ed with wave vector k, and

b coosin[M (s' s)—m. /L„]I(s —s') =
L„Lysin[(s' s)m—/L„]
bcoosin[N (p' p)—vr/L ]

I(p —p') =
L„L sin[(p' —p)vr/L ]

In actual calculations, for a given wave vector, the basis
functions of the 3 lattice are simply assumed to be one
LO (j =1) and two TO modes (j=2,3), with respective
parabolic dispersions.

For the sake of convenience in analysis, we first assume
that the bulk optical phonons are dispersionless. Later
we will take the dispersion efFect into account.

Let us first consider the case of modes associated with
wave vector perpendicular to the wires, namely, k, =0.

Among the 3M% A-like modes, there are MN modes
vibrating along the z direction with the TO frequency,
which will be denoted as TO2 modes and are character-
ized by two integers m and n. Their z displacements u,
are well described by a product of two sinusoidal func-
tions of x and y, that is,

sin[mar(x /Ma+0. 5)]sin[nm(y/Na+0. 5)],
with —0.5Ma &x &0.5Ma and —0.5%a &y &0.5'.
Here Ma and Na represent the QWW eff'ective
well widths, with M+0. 5 & M & M + 1 and
1V+0.5&X&N+1. We see that I and n are just the
number of half wavelengths contained in the confining
layer along the x and y direction, respectively.

The behaviors of the remaining 2MN modes vibrating
within the xy plane are more complex.

As shown by the calculation, there exist three types of
modes. First of all, there are (M —1)(N —1) LO bulklike
A modes vibrating at frequency near the bulk LO fre-
quency of the A lattice confined in the well of QWW's
(M, N, M', N') for a given wave number vector. That they
are (M —1)(N —1) in number rather than MN can be in-
terpreted as follows. Imagine we start with the 2D A
material (well) in the superlattice AMBM. , then the B
barrier perturbation in the y direction is introduced to
make the QWW (M, N, M', N'). It is known that there ex-
ist only M —1 branches of 3-like LO bulklike modes in
the AMBMsupe, rlattice (the mode with wavelength of
2Ma, having the largest net dipole, is strongly coupled
with distinct dipoles and is in the nature of the interface
mode, thus the bulklike modes will start with m =2; cf.

TABLE I. Calculated electrostatic potentials @, x displacement u, and y displacement u~, for the
first two LO bulklike modes associated with k=(0.04~/a, 0,0) in the 1D QWW (5,7,5,5). The figures in
front of the parentheses are deduced from the analytical formulas, and the figures inside the
parentheses are obtained from the microscopic calculations with zero-dispersion limit (the first) and
finite dispersion {the second), respectively. The dispersion parameters are taken from GaAs and AlAs.
(a) is for the LO(2,2) mode and (b) is for LO(2, 3), where the integers refer to N „ in the text.
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0.26(0.25, 0.22)
0.22(0.21,0.20)
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0.11(0.11,0. 12)
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0.12(0.13,0. 16)

—0.11(—0. 11,—0.09)
—0.14( —0. 15, —0. 13)

0.00(0.00,0.00)
0.05(0.05,0.07)
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0.13(0.13,0. 11)
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1928 BRIEF REPORTS

R= J dxdy
Be' + Be +k242
Bx By J

and the constants p„and C„are the same as given by
Ref. 6. Following similar functional relations, one can
readily write down the mode potential associated with
even m and odd n, or even n and odd m. With the
analytical potential functions of vibration modes, the cor-
responding optical displacements, the derivatives of po-
tentials, are immediately obtained, which are also found
to agree with the numerical results. Similar to the 2D
bulklike modes, the 1D bulklike mode potentials and the
optical displacements both vanish at the interfaces (see
Table I).

Besides the LO bulklike modes, there are
(M —1)(N —1) bulklike modes with frequencies near the
bulk TO frequency, which we designate as TO1-like
modes. Their optical displacements are also confined to
the A region.

By subtracting the 2(M —1)(N —1) bulklike mode
from 2MN modes, we obtain 2(M+N —1) modes, which
are found to vibrate at frequencies within the LO-TO gap
in the dispersionless limit. This is what should be expect-
ed. Since modes with wavelength of 2Ma correspond to
two branches of interface modes in the AMBsr. QW, the
new period of L a in the y direction results in N A modes
for each branch of 2D interface modes; on the other
hand, periodical variation in the x direction transforms
one branch of interface modes in the A&Bz QW to M A
modes containing a p =0 component for a given QWW
wave vector. Noting that we have twice counted modes
associated with m =1 and n =1, i.e., the mode dominat-
ed by the koo component, thus there exist 2(M+N —1)

modes affected by the long-range Coulomb interaction

Ref. 6). Further introduction of the phonon barrier in
the y direction leads to a quantization of optical phonons
and, consequently, X —1 confined modes for each branch
of the QW bulklike modes (similarly, the mode with n = 1

should not be considered as bulklike). It thus turns out
that there are (M —1)(N —1) LO bulklike A modes for
each QWW wave vector.

In general, the modes polarized within the plane can
hardly be expressed by a product of function of x and
function of y; however, we have found that, for bulklike
modes, especially for the modes associated with longer
wavelengths, the mode potentials, which can be con-
sidered as the analog of the Frohlich interaction in 1D
quantum systems, are fairly well described by the follow-
ing analytical expressions (cf. Table I), namely, for even
m and n,

„=R „'~ [cos(marx/Ma) —( —1) ]

X [cos( n rry /Na )
—( —1)" ];

with both odd m and n (3,5,7, . . . ),

„=R „'~ [sin(p 7rx/Ma)+C x/Ma]

X [sin(p„my/Na )+C„y/Na] .

Here the eigenmode normalization constant R reads
2 2
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FIG. 1. Long-wavelength frequencies as a function of 0 for

part of modes in (3,5,3,3) QWW's in the zero phonon dispersion
limit (left) and finite phonon dispersion (right), where 0 is the
angle between the wave vector and the z axis. The notation
LO(n, m) refers to N„ in the text.

sizably; these are designated as interfacelike modes in
QWW's. These interfacelike modes are the hybrid of the
longitudinal- and transverse-optical waves from the cor-
responding bulk materials, which are thus in the nature
of Coulomb modes, or interface modes. Generally
speaking, just as for interface modes in 2D systems, inter-
facelike mode are accompanied by extended electrostatic
potentials and confined optical displacements. Among
them, one mode associated with dominant ~ko o, 1 ) com-
ponent and one with dominant ~ko 0, 2) component, can
be compared to interface modes in 2D systems, which
define the band edges for the interfacelike modes if k, =0.

The consideration above provides a guide to number-
ing the interfacelike modes and indicates that the inter-
facelike modes, except for two modes dominated by ko o,
have characteristics of both 2D interface and 2D bulklike
modes. However, as shown by the numerical results, this
does not mean that the displacement or potential func-
tion of the interfacelike mode may be characterized as in-
terface mode in one direction and as a bulklike mode in
the other direction. In contrast to the bulklike modes in
QWW's, interfacelike modes cannot be expressed as a
product of two functions of separated variables because
of long-range interaction. One noteworthy feature of the
interfacelike modes in 1D QWW's is that the frequencies
of these modes are split off from the bulk LO and TO
bands even in the case of zero k„unlike the interface
modes with vanishing k parallel in the 2D QW which
merge into the bulklike modes. In the dispersionless lim-
it, the vibration frequencies of these three types of modes
are clearly distinguishable (Fig. 1).
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TABLE II. Eff'ect of finite phonon dispersion on mode mixing in the (3,5,3,3) QWW. For wave number as (0,0,0 04.~/a) and
dispersion parameters as Fig. 1, the figures in the first row are the frequencies of the mode in finite dispersion and the percentages are
squares of projection of the mode on the modes in the dispersionless limit.

Frequency (cm '} Percentage of admixture

286.0
281.9
279.8
278.8
275.3
275.2
273.2
270.3
270. 1

269.5

LO(2,2}
LO(2, 3)
IF-7
IF-2
IF-11
IF-9
IF-15
IF-15
IF-10
IF-14
LO(2,4)

75.0
68.5
39.5
26.6
49.6
23.0
33.7
32.0
23.1

10.6
48.6

LO(3,2)
LO(3,3)
IF-8
IF-5
IF-12
LO(3,3)
IF-4
IF-4
IF-13

IF-2

10.5
10.2
16.7
15.2
34.2
21.1
23.3
24.5
12.5

16.9

LO(3,2)
LO{2,4)

IF-13

LO(3,4)

LO(2, 5)

16.2
13.7

17.0

11.8

12.3

IF-11

12.1

12.4

15.3

11.4

For nonvanishing k, (compared to nonzero k parallel
in 2D systems), the TO2(1, 1) mode, polarized in the z
direction with the longest wave1ength, becomes a hybrid
of ~kp p 1 ) and k, z, 3 ) (s,p&0) plane waves, forming
another interface mode. Thus there are 2(M+X) —1 in-
terfacelike modes for an oblique QWW wave vector.
This interface mode and the upper interface mode polar-
ized in the xy plane dominated by the ko o component are
k sensitive, while the others are roughly k independent.
As shown in Fig. 1, when the wave vector changes its
direction from perpendicular to the z axis to parallel to
the wires, the upper interface mode (at k, =0) decreases
its vibration frequency and the TO2(0,0) mode at k, =0
increases the frequency, exhibiting the typical anisotropic
dispersion for the interface modes.

In studying phonon modes in 2D systems, we have
learned that the finite bulk phonon dispersion plays a spe-
cial role in determining 2D phonon mode structure. The
2D optical-phonon modes are sharply divided into bulk-
like modes and interface modes in the limit of zero bulk
dispersion; when finite phonon dispersion is taken into
account, the interface modes are partially mixed with the
bulklike modes with nearby frequencies. In 1D QWW's,
however, the dispersion could give rise to even more pro-
nounced change from the clearly separated vibration
spectra in the dispersionless limit. Table II lists the
square of the projections of several normalized mode vec-
tors calculated in the finite phonon dispersion onto that
calculated in the zero-dispersion limit. From the figures,
first we can see that, except for such modes as
LO(2,2),LO(2, 3), . . . and interface modes associated with
dominant koo component (e.g., the 7th, 11th, and 15th
interfacelike modes, denoted as IF-7, IF-11, and IF-15, in
Table II), other modes are mixed up so heavily that one
cannot identify the correspondence between the modes

calculated with and without dispersion. Second, the
recognizable modes still mix with other modes
significantly, though the discrepancies between the
analytical expressions and numerica1 results as given in
Table I are generally acceptable. Third, compared with
the dispersionless case, not only the bulklike modes, but
most interfacelike modes shows remarkably reduced fre-
quencies when dispersion is taken into account. We as-
cribe such pronounced effects of dispersion on 1D pho-
non modes to the inAuences by the relatively large num-
ber of interfacelike modes, which have characteristics of
both 2D interface and 2D bulklike mode.

So far we have not mentioned the optical-phonon
modes in the barrier region. Similar to A modes, there
are also two types of B modes: bulklike and interfacelike
modes. If k, =0, there exist 2(M+N —1) interfacelike
modes, (M'X'+M'X+M%') TO2 modes and
[M'X'+I+(M' —l)%+M(X' —I)] LO and TO1 bulk-
like modes. But in this region the bulklike modes exhibit
more complicated vibration patterns.

In conclusion, the microscopic model in Refs. 6 and 7
has been applied to investigating optical-phonon modes
in 1D quantum wires. The modes are similar to the
modes in 2D quantum wells in many aspects, such as di-

viding modes into bulklike and interfacelike modes, mode
mixing induced by finite bulk phonon dispersion, vanish-

ing displacements and potentials at interfaces for bulklike
modes, extended potential for the interfacelike modes,
etc. , but, since the interfacelike modes in 1D systems are
different from 2D interface modes, finite dispersion plays
a more important role in the 1D phonon spectra.
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