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Dielectric susceptibility of III-V indium-compound semiconductors
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The dielectric constant [e,(0)] of InP, InAs, and InSb is calculated with use of a linear combination of
hybrids model recently developed by us. Our expression for e&(0) is origin independent and is free from
any scaling parameter, unlike the earlier theories. There is reasonably good agreement between our re-
sults and experiment.

The series of indium-based III-V-compound semicon-
ductors is gaining attention because of their potential as
device materials. InAs and InSb are good infrared detec-
tors as a result of their small band gap. InP forms a
lattice-matched basis for In-Ga-As high-electron-mobility
transistors which have achieved higher speed' than corn-
parable A1As-G-aAs structures. Several attempts have
been made to investigate the electronic structure as well
as physical properties of these semiconductors. In re-
cent years the chemical bond approach ' has been uti-
lized to calculate the electric, magnetic, and optical prop-
erties of tetrahedrally bonded solids. This approach,
which is much simpler than the band theory, emphasizes
the bond aspect of the crystal structure and is valuable in
studying chemical trends. Recently, we have formulated
a chemical bond theory to calculate the diamagnetic sus-
ceptibility g of InP, InAs, and InSb, using a linear com-
bination of hybrids method developed by us. We have
constructed a basis set for the valence bands by taking
linear combination of sp hybrids forming a bond in
which their relative phase factors, heretofore neglected,
have been properly included. We have also constructed a
basis set for conduction bands which are orthogonal to
the valence-band functions. We have constructed local-
ized (Wannier) functions from our Bloch functions and
have shown that the bond orbitals used in the earlier
chemical bond theories ' are not the proper choice for
the Wannier functions of the valence band. We have
shown that the basic assumption in the bond orbital mod-
els, i.e., that the localized Wannier functions have the
character of the chemical bonds, is equivalent to ignoring

ik d.
the relative Bloch phase factor e ' (where d is a bond
length) between the hybrids forming a bond. However,
since d —d' is a lattice vector, the relative phase factor
plays an important role in solids unlike in molecules
where it could be neglected. We have used our basis
states in our general expression for y and have calculat-

ed y of InP, InAs, and InSb. The novelty of our formula-
tion is that our results are origin independent and are free
from any scaling parameter.

In the present paper we calculate the dielectric con-
stant [e&(0)] of III-V indium compounds using our chem-
ical bond formalism. We consider a zinc-blende struc-
ture, where each 3 atom is surrounded tetrahedrally by
four B atoms and vice versa. The primitive cell contains
two basic atoms, A and B. At each site i, we construct
four sp hybrids P (r —R;) pointing from the B atom to
the nearest-neighbor A atoms along the direction j
(j =1, . . . , 4) and four other sp hybrids tt "(r—R; —d )

pointing from these nearest neighbors to the B atom. We
choose one of the B atomic sites as the origin. R, is a lat-
tice vector for site i and d is a nearest-neighbor vector.
We construct Bloch-like tight-binding sums for valence-
band basis functions by taking linear combination of hy-
brids forming a bond

g'(r, k) = —g C'(k)e
N

where

X[/ (r —R, )

+A, t()j"(r—R; —dj )e '],

Cj'(k) = [1+1, +2XS cos(k.d, )] (2)

We obtain the basis functions for the conduction bands
by constructing functions orthogonal to y'(r, k):

S is the overlap integral between the two hybrids forming
a bond. A, accounts for the partial ionic character of the
compound via Coulson's ionicity parameter f, by the ex-
pression

(1—S )' (1—
A, )

1+k'+2XS

y'. (r k)= y C'. (k)e '[(Z+Se ')(t (r —R;)—(kS+e ')yj~(r R; dj)]
I

(4)
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where

C,'(k) = A, +Se
(1—S )[1+A, +2AS cos(k d )](A,+Se ')

1/2

The Bloch eigenfunctions for the valence and conduction
bands are

i n k &
= g a'„(k)y'(r, k),

J
(6)

mk& = g a' (k)y'(r, k),
J

(7)

and

g aj (k)a', (k) =5

where n and I denote valence and conduction bands, re-
spectively. a's are elements of 4X4 unitary matrices
which satisfy the unitary properties

g a'„(k)a'„t (k) =51

constant because they are small. " Further, the nature of
the steep and narrow, curve between e2(w) and photon
frequency ' for tetrahedral semiconductors permits us
to expand the energy denominator about an average ener-
gy gap (E ) as

E „'=E, ' g (1—E „rE,),
p=0

where we keep only the first term in this expansion. In
order to evaluate e&(0), we have used Hall-Weaire ap-
proximations, ' ' i.e., we have calculated matrix ele-
ments between hybrids of the same site and hybrids of the
same bond. Since the Hall-Weaire model yields a poor
description of the conduction band, we have expressed
Eq. (8) in terms of valence bands alone by assuming the
completeness relation

The dielectric constant is calculated by using an ex-
pression' which is derived from the Kramers-Kronig re-
lation at co =0,

n, km, k
g lmk & & mk1=5(r —r') —g ~nk & & nk~ . (10)

e (0)=1+
n, m, k

(mWn)

(8)

where ~nk& and imk& are Bloch functions [Eqs. (6) and
(7)] representing filled valence-band and empty
conduction-band states, respectively, Emn Emk Enk
and r ~ is the component of the electron position vector in
the direction of polarization. It may be noted that we
have neglected the core contributions to the dielectric

Further, we note that for semiconductors, which contain
high-lying core d states, the peaks in ez(co) are broader
mainly because of the mixing of these core d states with
the valence-band states. " Consequently, we introduce a
dimensionless factor" D to correct for this eFect.

Using Eq. (10) in Eq. (8) and after some algebra, we ob-
tain

( )
64meND T.

E

where

A,2dT= f, &x &s+A, &x &„+ — ——M~ +2f„k&x'&s„4f„A,'&x &s„—

—4f„z&x &,„ M~ —A. M~ +
2 v'3 fg&—+

2 v 3 ,'f6 (Ms —
A, M~)—— (12)

TABLE I. Results of one-site and two-site integrals used in el(0).

Solid

InP
InAs
InSb

0.549
0.627
0.829

&x') „
(A )

1.38
1.38
1.38

0.625
0.659
0.771

M~
(A)

0.924
0.924
0.924

&x. )a.
(A )

0.486
0.542
0.703

&x),„
(A)

0.396
0.426
0.496

0.598
0.611
0.633
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TABLE II. Dielectric constant of InP, InAs, and InSb.

Solid

InP
InAs
InSb

' Reference 9.
"Reference 11.

(A)

2.54
2.61
2.81

Eg'
(eV)

4.84
4.6
4.08

0.222
0.258
0.267

1.19
1.33
1.42

e, (0)
(Theory)

7.71
8.86

10.52

~, (0)b
(Expt)

9.6
12.3
15.7

Here (0 ) = (tt (r)IOltt~(r)) (ct= A, B), (O )s~
=(y,. (r)IOIQ, (r —d )), and M =(s Ixlp„~. We have
chosen j along the (111) direction and j'Wj, s and p„
are the atomic orbitals and V is the volume of the solid.
fi,f2, are functions of A. , S, and cos(k.d ) involv-
ing summation, over k. We note that in the expression
for T [Eq. (12)] the first, fifth, and sixth terms are contri-
butions due to the matrix elements between intrasite hy-
brids while the second, third, and fourth terms are contri-
butions due to matrix elements between hybrids of adja-
cent sites forming a bond. In the case of homopolar
semiconductors (A, = 1, (x )ii =(x ) z, and M+=M& ),
the first part of the fourth and fifth terms and the sixth
term vanish. In the case of heteropolar semiconduc-
tors, ' such as III-V indium compounds, ionicity plays an
important role in the results of ei(0). Due to specific
dependence of A, of different terms in Eq. (12), the first
term of the first group of terms predominates over all the
other terms yielding maximum anionic contribution to
the dielectric constant. We note that our expression for
ei(0) is independent of the choice of the origin and is free
from any scaling parameter. However, in the Harrison's
bond orbital model ' an arbitrary scaling factor y has
been used to fit with the experimental results.

We have calculated ei(0) of Inp, InAs, and Insb, using
Hartree-Fock atomic orbitals from Clementi's table. '

We have used the spheroidal coordinate transformation
technique' to calculate the two-site integrals. The
coefficients f i~, f2J, . . . are evaluated by carrying out the
k integration over a sphere of volume equal to that of the
Brillouin zone. There is reasonably good agreement be-
tween our theoretical results and the experiment. In
Table I we present our results of one-site and two-site in-
tegrals. In Table II we present the values of d, E, k, and
D together with our results for ei(0) and the experimen-

tal results. "
In order to analyze our results, we note that we have

made an expansion of the energy gap denominator about
the average-energy gap and kept only the first term in the
expansion. This approximation, in fact, is a consequence
of the steepness and narrowness of the ez(co) curve and
the error involved here has been estimated to be around
10%. In order to estimate the error due to the Hall-
Weaire approximation, we note that we have considered
the matrix elements between intrasite hybrids (N; ) and
the matrix elements between hybrids on adjacent sites
forming a bond (0;). If we would calculate ei(0) in a
more realistic method, we would have to consider the ad-
ditional contributions such as matrix elements between
hybrids on adjacent sites not forming a bond (P, ) and
matrix elements between hybrids on further neighbors
(Q;). We note that in general N; &0; &P; & Q;, a trend
which is confirmed by the earlier calculation of matrix
elements of the Hamiltonian. ' Since the contribution
of 0, terms in the present calculation of ei(0) is only 8%,
we estimate from the above analysis that the error due to
neglect of P, and Q, terms, i.e., due to the Hall-Weaire
approximation, is very small and would be around 1% or
2%. We further note that we have not considered the
effect of local fields on e, (0). However, there is still con-
troversy for' and against inclusion of the local field
correction to e'i(0).

Finally we note that the effect of mixing of bonding
and antibonding states in the construction of the
valence-band states is effective in the case of higher ele-
ments where the metallic character is comparatively
large. The increasing discrepancy between our results
and the experiment, as we go from InP, InAs to InSb, may
be accounted for due to the fact that we have not con-
sidered band mixing in our formulation.
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