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Theory of spin, orbital, and spin-orbit Knight shifts of Pb in n-type PbTe
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We make a careful analysis of the various contributing mechanisms to the Knight shift of Pb in n-

type PbTe, and show that it is one of the few examples for which the orbital hyperfine interaction gives a
shift comparable to the strengths of the usual dominant contact Knight shifts in other systems. The
good agreement based on our calculations between theory and experiment is quite remarkable.
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Equation (3) is a sum of contact and dipolar hyperfine
vertices and Eq. (4) represents the orbital hyperfine ver-

PbTe is the most extensively studied member of the
semiconductor family known as lead salts, which also in-
cludes PbS and PbSe. These are multivalley semiconduc-
tors with large spin-orbit interaction. While the electron-
ic properties of these semiconductors are fairly well un-
derstood, ' interest in the magnetic ' and hyperfine
properties is of more recent origin. This is due mainly to
the complications involved in computing the various
competing mechanisms which contribute to the magnetic
susceptibility (X) and the Knight shift (K). Furthermore,
only recently a systematic theory for the Knight shift was
derived which could be applied to a many-band semicon-
ductor like PbTe with large spin-orbit interaction. Un-
like the Knight shift in p-type PbTe where the usual con-
tact hyperfine interaction forms the major mechanism, '

what we show in this Brief Report is that the orbital
hyperfine interaction plays the dominant role in explain-
ing the Knight shift of Pb in n-type PbTe. This is one
of the few examples where orbital hyperfine interaction
gives a shift comparable to the contact Knight shift in
most other systems including metals and semiconductors.
This report is an extension of our work reported earlier.

The general expression for the Knight shift (K) at the
jth site is given by the formula

K =K-, +K., +K ..
where K „K„and K, , are the spin, orbital, and spin-
orbit contributions to the Knight shift and these are ex-
pressed in terms of the matrix elements of momentum,
spin, and hyperfine interaction operators. The vth com-
ponent of the hyperfine vertex, X, is defined as

tex. e „„is an antisymmetric tensor of third rank and we
follow the Einstein summation convention for repeated
indices. The matrix elements are taken between the
periodic parts of the Bloch functions for different bands.

E, differs from the conventional K, (Ref. 8) in the
sense that it is expressed as a function of the effective g
factor, g„„(k), rather than as a function of X„ the
effective Pauli spin susceptibility. Moreover, it contains
the effects of all the hyperfine interactions through X .
The orbital contribution K, is expressed as a sum of a di-
amagnetic term and a paramagnetic term which are very
similar to Lang evin and Van Vleck susceptibilities.
K, , is due to the effect of spin-orbit interaction on the
orbital motion of Bloch electrons, while the effect of the
spin-orbit interaction on the spin of Bloch electrons is in-
corporated via the effective g factor. While K, is termed
as the orbital contribution, the orbital effect also contrib-
utes through both K, and K, , via the hyperfine opera-
tor X.' (Ref. 5).

The minimum energy gap E in PbTe occurs at the I.
point of the Brillouin zone. In addition to the band-edge
levels, there are two more conduction and valence bands
which contribute significantly to the k m. model. The
double group Luttinger-Kohn amplitudes' for the six en-
ergy levels are taken from Mitchell and Wallis" (MW)
and we follow the Bernick-Kleinman' band ordering. In
order to know the nature of atomic orbitals involved, we
quote only the MW band edge states:

L~zct) =sinO ~Zl )+cosO X+ j),
~L62P) =sinO Z4 ) —cosO ~X f ),
~L6+, a) = i cosO+—R 1') —sinO+~S+ $ ),

and

~L~, P) =i cosO+ Rl, )+sinO+ S $) .

The minus and plus signs stand for conduction and
valence bands, respectively. The transformation proper-
ties of the spatial parts of the wave functions around the
Pb nucleus are as follows: R transforms like an atomic s
orbital, X+ and Z transform like atomic p functions withI,=+1 and 0, respectively, and S+ transform like atom-
ic d functions with m, =+1. The spin states t' and 4 are
the eigenstates of cr, for z along [1,1,1] with eigenvalues 1
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and —1, sinO —and cosO —are the spin-orbit mixing pa-
rameters.

In order to calculate the various contributions to the
Knight shift, the conduction-band and the valence-band
edge states are treated exactly and the interaction of far
bands are considered up to second order within the
framework of a k.m model. The matrix elements of m, o,
and X are evaluated as a function of k by using the renor-
malized wave functions, g„1(/2, g3, and g4, obtained by
the above method (Ref. 4). As the details of the evalua-
tion of the first two types of matrix elements are dis-
cussed in our earlier papers, ' we now write down the
matrix elements of the hyperfine interaction terms taken
between the renormalized band-edge states. These are

and

sk+'
m EG8'k

(15)

sk
(q, ~x ~y, )=-

G k

ek,

G k

Here

(16)

tk, g sk+
& g/IX"

l &3) ~ dip (Bopb /B dip )

1+8'k

28 k

(sk —tk, ),
m EG Wk(1+ W/, )

(9)

2s 2k 2 A2t ~k
1+2 +4

m EG m EG

k =k +k
p x y

k+ = —(k„+ik ),1
/'

(17)

(19)

& q, ~x' q, &
= 1+8'k

2Wk
(10)

and s and t are single group momentum matrix elements
(Ref. 4). In Eqs. (9)—(16), the L-point hyperfine matrix
elements are

&q, lx lq, &=

$2
2V'2 tsk„k,

2Wk ' E W(1+W )
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Bd; =sin 8 (R6/~r ~R6/)Q . (25)

The radial functions R60 and R6, are the lead 6s and 6p
orbitals and 0 is the unit cell volume of PbTe. While
evaluating the hyperfine matrix elements, we have
neglected the orbital contribution of d-like states. The
neglect of this orbital part is justified in the sense that
only 5% of the L6+ wave function is non-S-like. "

Since there are four inequivalent L points, we calculate

TABLE I. Longitudinal and transverse contributions to the Knight shift.

n

(cm ')

Chemical
potential

(2 Ry) K,' K,' Kd;, IK para K para
IK, , K,',

10' 0.194X 10 0.371 X 10 0.113X 10 —0.115X 10 ' 0.241 X 10 0.393 X 10 0.221 X 10 0.662 X 10
1.5 X 10' 0.106X 10 0.637 X 10 0.236 X 10 —0.175 X 10 0.199X 10 0.361 X 10 0.245 X 10 0.784 X 10
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n

(cm )

K,
(two band)

TABLE II. Spin, orbital, and spin-orbit contributions to K.

X,
(far band)

+tot
(T=P K)

+exp
(T=5 K)

Ref. 13

1017

1.5 X 10'
0.916X 10-'
0.174X 10-'

—0.117X 10-'
—P.P26 X 10-'

0.798 X lp-'
0.148 X lp-'

0.1371X 10
0.9905 X 10-'

0.4721 X 10
0.5367 X 10

0.1P5 X1P—'
0.201 X 10-' 0.2X 10

the Knight shift from the formula"

K =4( —'K'+ —'K') (26)

where the longitudinal and transverse contributions are

and

E'=E'+E'+E'
S 0 S.O. (27)

E'=E'+E'+E'
S 0 S.O. (28)

We have calculated the Knight shift of Pb in n-type
PbTe for two typical values of carrier densities and
present our results in Tables I and II.

Our results are given for carrier densities 10' /
cm and 1.5 X 10' /cm . The energy levels and spin-
orbit mixing parameters are taken from Bernick and
Kleinman. ' The matrix elements ( R&6~5(r)~ R6)oand
( R 6& ~

r
~
R 6& ) are taken from experiment. ' It is seen

that all the constituent contributions to E increase with
increase in carrier concentration. Since Ed;, is isotropic,
there are no longitudinal and transverse contributions for
it. It is seen that E, is the dominant term, E, is 4 orders
less, and the strength of E, , is of the same order as E,
for higher carrier densities. The ratio of K, , /E, in-
creases from 0.059 at 10' /cm to 0.362 at 1.5 X 10' /cm .
In the case of E„we have separated the two-band (band-
edge) and far-band contributions. The far-band contribu-
tion is opposite to that of the dominant two-band contri-
bution. However, the ratio of far-band to two-band con-
tributions increases from 12% at 10' /cm to 15% at
1.5 X 10' /cm . Our calculated values of the total Knight
shift for a carrier density of 1.5X10' /cm is 0.201 at 0 K
which compares well with the experimental value of
0.2 X 10 at 5 K (Ref. 13). Since there is no appreciable
change between the values at 0 and 5 K in p-type PbTe
(Ref. 13) we expect the same trend here. Thus, there is
excellent agreement between theory and experiment. The
value given in Table II is obtained by considering all the
hyperfine interactions. However, when we neglect the
contact and dipolar hyperfine interactions we found E to
be equal to 0.24X 10 . Thus, the major contribution to
the Knight shift comes from the orbital hyperfine interac-
tion. The distinction between the orbital contribution
E~, and the contribution due to the orbital hyperfine in-

teraction can be understood as follows. Consider, for ex-
ample, the spin contribution EJ, . It has two parts —the
hyperfine part and the crystalline part. The hyperfine
part consists of contact, orbital, and dipolar interactions.
Thus E, is essentially a sum of three contributions,
namely, contact, orbital, and dipolar contributions. Each
contribution has the same crystalline part —product of
the effective g factor and the energy derivative of the Fer-
mi function. This is also the case with some of the
terms of KJ, , (Ref. 5). Thus, while K, is normally
small, the orbital hyperfine contribution through E., is
significant, since it is associated with the effective g factor
which is large in these systems. Inclusion of contact and
dipolar interactions, however, improves our theoretical
results. Furthermore, when we make only the contact
hyperfine interaction zero, then our value for E equals
0.21X10 for an electron density of 1.5X10' /cm .
Thus, contact hyperfine interaction does not play any im-
portant role up to this carrier density. This is justified in
the sense that the spatial parts of the conduction-band
wave functions transform like p-type orbitals around the
lead nucleus, which do not contribute to the contact
hyperfine interaction. However, it is expected that the
contact interaction might be important at higher electron
densities because of the significant mixing of bands.

In conclusion, we note that we have made a careful
analysis of the Knight shift of Pb in n-type PbTe and
show the various mechanisms as distinct physical contri-
butions. The remarkable feature of the present work is
that we have shown that the orbital hyperfine interaction
gives a shift in n-type PbTe which is comparable to the
contact Knight shift in most other systems including met-
als'"' and semiconductors. ' The mechanisms we have
not considered are core polarization, electron-electron in-
teractions, and electron-phonon interactions. However,
the latter two mechanisms are shown to be small in Refs.
4 and 16, respectively. As regards the core polarization,
it has been shown to be small in metallic lead. ' This
mechanism, being an intra-atomic phenomenon, is ex-
pected to be small in this case.
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