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Electron-phonon interaction and electron scattering by modified confined LO phonons
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An improved model of electron-phonon interaction for longitudinal-optical phonons in layered
semiconductor quantum wells is developed. In this simple modified dielectric continuum model, the
LO phonons are confined modes having electric and displacement fields that agree with both elec-
trostatics and microscopic models of longitudinal-optical phonons. Numerical results are presented
and discussed for the electric fields of these modes. The resulting scattering rates of electrons for
emission and absorption of LO phonons in a quantum well are calculated and presented in graphical
form.

I. INTRODUCTION

In the past decade, quasi-two-dimensional (Q2D) elec-
tron systems in semiconductor heterojunctions and quan-
tum wells (QW's) have attracted much attention. It is
well known that the mobility of a quasi-two-dimensional
electron gas (QZDEG) is considerably enhanced at low
temperatures by the so-called modulation-doping tech-
nique in these structures. This is due to the spatial sepa-
ration of the Q2DEG from the parent ionized donor im-
purities, which drastically reduces the ionized impurity
scattering. At high temperatures (T)40 K), however,
the scattering of electrons by optical phonons plays a
dominant role for various electronic properties. Hence,
there has been considerable interest in the problem of
electron —optical-phonon interaction.

The problem of scattering of electrons by optical pho-
nons in semiconductor microstructures has been treated
by a number of authors. ' But in these papers the usual
Frohlich interaction was used, ' which is based on 30
bulk LO phonons, and only effects of the electron
confinement have been properly taken into account.
However, the optical phonons are strongly inAuenced by
the presence of the heterointerfaces. The polar or
Frohlich type of electron-phonon interaction (EPI) in po-
lar media is based on the dielectric continuum model. "
This results from the fact that only long-wavelength opti-
cal phonons produce large polarization fields. Using the
dielectric continuum model, Fuchs and Kliewer' showed
that the spectrum of long-wave optical phonons of a po-
lar layer consists of LO and TO phonons, which are
confined modes in each individual layer with vanishing
influence at the interfaces, and interface phonons with
fields mainly localized at the interfaces of the system and
decaying exponentially from them. Using the dielectric
continuum model, the EPI was considered for various

layered structures. ' The general Hamiltonian for this
type of EPI in layered and multilayered polar systems in-
cluding electronic polarizability ' was applied to different
types of single heterostructures, to a double heterostruc-
ture, an infinite superlattice, and a semi-infinite super-
lattice. As in the bulk case, the electrons do not in-
teract with the TO phonons.

Riddoch and Ridley calculated the electron-
scattering rates in a thin ionic slab by interaction of the
electrons with both types of optical phonons, namely,
confined LO and interface phonons. But in this paper the
dispersion of the interface phonons was neglected.
Wendler et aI. calculated the electron-scattering rates
for semiconductor QW's and superlattices and showed
the increasing contribution of the interface phonons if the
layer thickness decreases. In the usual dielectric continu-
um model, the LO phonons are dispersionless and there-
fore degenerate at the bulk values of the frequency for
zero wave vector even in the layered structure. Babiker '

considered optical modes of a semiconductor QW taking
into account the spatial dispersion by an extended dielec-
tric continuum model. In this model he used hydro-
dynamic boundary conditions at the interfaces, neglect-
ing mixing of LO and TO modes completely.

However, there are indications that the node structure
of the confined LO phonons derived from the dielectric
continuum model disagree with some experimental
Raman-scattering results ' and with results calculated
from microscopic models. " One reason is that the
dielectric continuum model is a macroscopic model that
corresponds to the long-wavelength limit of optical lat-
tice vibrations. The application of this model to systems
with sharp discontinuities at the heterointerface is some-
what problematic. These discrepancies led some au-
thors ' to change the boundary conditions for the fields
in the dielectric continuum theory. But this was neither
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justified nor in agreement with the electrostatics that is
the underlying physics of the dielectric continuum
theory

In the present paper we use a modified dielectric con-
tinuum model for the LO phonons of layered semicon-
ductor structures, for instance, GaAs-AlAs QW's. The
boundary conditions used here agree with both electro-
statics and microscopic models. We consider the
electron —LO pho non interaction and calculate the
electron-scattering rate by interaction with these
modified confined LO phonons and compare the results
with those for the usual confined LO phonons. We note
that the modifications investigated here do not inAuence
the interaction of the electrons with the interface pho-
nons. For the latter case, the theory is developed in Refs.
21, 22, and 24. Further, Raman-scattering experiments
show that the dielectric continuum model describes well
the interface phonons. Microscopic model calculations
for interface phonons also show perfect agreement with
the dielectric continuum model results in the low-wave-
vector limit.

of the p-polarized modes:

2dz
(2)

The two components of the electric field are related to
each other by

E, (qll, z) = —
Ell(qll, z)

l

dz

with q
ll

=
~ qll ~. LO phonons occur at those particular fre-

quencies co=cot where e (co)=0. Hence, we have inside
the layer VXE=O but not necessarily V.E=O. For a
layered system of different polar materials we have
different LO phonons: co=cot for e (cubi )=0 and
e (cot )WO for vWv' having the LO phonon frequencies
of each bulk material.

Further, with e„(cot )=0, Eq. (2) is satisfied inside the
layer v for arbitrary fields EL . But outside the layer v
[e .(cot „)WO], the electric field must satisfy

II. THE DIELECTRIC CONTINUUM MODEL
2

—
qll (4)

A. Confined LO phonons

In the local continuum model the LO phonons are de-
scribed by Maxwell's equations of electrostatics with the
lattice dielectric function e,(co) =e,(cot „—co )/
(cuT —co ) and with the conventional boundary condi-
tions of electrostatics. e is the optical (high-frequency)
dielectric constant of the layer v, and coL and mT are the
longitudinal- and transverse-optical (LO and TO) -pho-
non frequency, respectively. If we assume the interfaces
of the layered structure to be perpendicular to the z axis,
the translational invariance in the x-y plane allows the in-
troduction of two-dimensional Fourier series. We have
applied Born —von Karman periodic boundary conditions
in the x-y plane with the unit area A. xll=(x, y, O) and

qll =(q„q~,O) are the two-dimensional position and wave
vector in the x-y plane, respectively. The usual boundary
conditions for the fields are the continuity of the electric-
field components Ell(qll, z) and e (co)E, (qll, z) across the
interfaces of the structure and noninfinite E(qll, z) at
z —+~.

Maxwell's equations contain different types of polariza-
tion eigenmodes of the layered system: p- and s-polarized
TO phonons, p-polarized interface phonons, and p-
polarized LO phonons.

Here we are only interested in the LO phonons that are
p-polarized. The nonzero components of the electric field

E of the p-polarized modes (transversal magnetic waves)
are

The boundary condition for e+,„requires that the field

E,L outside the layer v is zero at the interfaces of the
layer v. To satisfy Eq. (4) the field Ei must vanish iden-
tically outside the layer v, hence the field component
EIIL vanishes at the boundaries of the layer v. Finally,
we have

T

l
cos(q z), —a /2(z (a /2

E (q, z)= ——C- XLv 0

sin(q z), —a /2(z (a /2
E (qz)= '

C x'
zLv II' Lv 0 Othej Wj

qll

(5)

with CL a normalization constant,

q = m; m=123, . . .Pl

a

and a is the thickness of the layer v.
For the calculation of the electron-phonon interaction

in Sec. III, the electric fields of the confined LO phonons
must be orthonormalized according to '

O, (cot, )
dz EP *(qll, z }Ei qll'

oo COpv

with

E(qll, z) =(Ell(qll, z), O, E, (qll, z)) (l)

using a Cartesian-coordinate system with the axis along

I ell, e„e,I. Here, ell
=

qll
/~ ql~l i is the unit vector in the

propagation direction of the optical-phonon mode in the
x-y plane and e, is orthogonal to ell in this plane. Ac-
cording to Fourier transformation, we get from
Maxwell's equations inside each layer the wave equation

and

9e
O (aii. )= (e„+2}

CO&
=

&
(COi ~ COT~)

2 ~v 2 2

(e„+2)
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Using the fields of the usual confined LO phonons, Eqs.
(5) and (6), and the normalization relation (7), we obtain
for the normalization constant

C Lv

2 2
2 ~r

a e„qll +(q )

1/2

(10)

B. Modified confined LO phonons

The LO phonons of the standard dielectric continuum
model have the following discrepancies from microscopic
models. One difference is that the discrete values of
the wave vector in the z direction q =arm/a of the
dielectric continuum model now become
q =arm/(N+ I/2)ao, where N is the number of atomic
bilayers of Ga and As inside the GaAs layer and Al and
As inside the A1As layer, for instance, and ap is the width
of the bilayer, i.e., one-half of the lattice constant. That
means that the LO phonons of the microscopic model
have a very small penetration depth in the neighboring
semiconductor layer of roughly one or two atomic mono-
layers. Hence, this is only a microscopic correction in

Hence, the LO phonons of a layered system are com-
posed of ordinary dispersionless bulk LO phonons that
propagate to the interfaces of the system and are back-
scattered from them. At the interfaces the infIuence of
these modes vanishes due to the interference of incident
and backscattered waves. This is the physical reason for
the discreteness of the z component of the wave vector q
of the LO phonons of a layer. Hence, in the usual dielec-
tric continuum model the LO phonons of layered systems
are confined modes having standing-wave character in-
side the layer in which they exist. There is an important
difference between the strongly localized LO phonons of
layered systems and ordinary 3D bulk phonons. Whereas
for the 3D bulk LO phonons the 3D phonon wave vector
starts at q~ =0, for the confined LO phonons wave vec-
tors smaller than q~

=m. /a are forbidden, because they
are "quantized" with q =(ir/a )m. The relation be-
tween the electric field and the relative ionic displace-
ment field for LO phonons is given by

(EOCi)y (E E ))
w(x, cot, )= E(x, aii ),

CO~ CO~

where e, is the static (low-frequency) dielectric constant
of the layer v. Hence, the relative ionic displacement is
proportional to the electric field of the LO phonon.

atomic scale. In the microscopic model there is a max-
imum value of nodes and, hence, m „=X. But such an
upper limit does not exist for the macroscopic model.
Here the complete set of LO modes is given by
m =1,2, . . . , ~, which in the microscopic sense is non-
physical. A further difference between the standard
dielectric continuum model, described above, and micro-
scopic models results from different boundary conditions.
Microscopic models yield the continuity of the relative
ionic displacement field w at the heterointerfaces. Be-
cause w-E [Eq. (11)], these microscopic boundary con-
ditions result in the continuity of both E~~ and E, at the
heterointerfaces. In the standard dielectric continuum
model, however, the boundary conditions at the inter-
faces are those from electrodynamics, i.e., the continuity
of Ell and e (co)E, and not necessarily of E, . In the case
of LO phonons [which means for e', (coi ) =0, where E7
is equal to zero outside the layer v], E,i of Eq. (6) is in
general nonzero at the interfaces inside the layer v. This
discontinuity of E,z at the interfaces violates the bound-
ary condition for E, and m, resulting from microscopic
calculations. Hence, the electric fields of the LO phonons
resulting from both models differ slightly. We note that
for interface modes such a discrepancy does not occur
and the results of both the macroscopic and microscopic
models agree very well.

In a microscopic model, the long-wave optical phonons
have the following physical properties, which are absent
in the usual dielectric continuum model: (i) LO phonons
have a very small penetration depth in the neighboring
semiconductor; (ii) their relative ionic displacement field
is continuous across the interfaces; and (iii) there is a mix-
ing of LO and interface modes for a finite, nonzero wave
vector because the spatial dispersion is included.

In this paper we want to overcome the most important
point, point (ii). To do this we construct a set of ortho-
normalized eigenfunctions of the LO phonons fulfilling
both the boundary conditions of electrodynamics and the
boundary condition of the continuity of w. We note that
this procedure guarantees that for both types of forces,
the short-range interatomic forces and the long-range
Coulomb forces, the boundary conditions are satisfied.
Hence, we overcome the problems of Refs. 41 and 42,
namely, that their boundary conditions contradict the
electrodynamics, and the problem that the fields of the
modified LO phonons are not orthogonal.

From microscopic calculations a possible system of
eigenfunctions for symmetric modes (m =1,3, 5, . . . ) is
given by

and

1+(—1)' " cos(q z), —a /2&z &a, /2
mE z = ——C XIILv Ill~

E'p 0 otherwise (12)

sin(q z), —a /2 &z &a, /2
Em z = 1 (m —I)/2 Cm X 0 otherwise

&p~))
(13)

with the changed wave-vector component q = ( n /a )( m + 1 ) so that additionally the boundary condition
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E,i (q~~, z)~, +, &&=0 is satisfied. For the antisymmetric modes (m =2,4, 6, . . . ) the following ansatz is possible:

sin(q z) —b z, —a /2 (z (a /2
l 2

III v qlI& ~ Lv 0 otherwise (14)

and

cos(q, z) b —/q, , —a, /2(z (a /2
(15)

where the constants q and b are determined by the
boundary conditions that both E~~ and E, vanish at the
heterointerfaces at z =+a /2:

q~i z) ——C„.[b»+ b»cos(q ~)—«s(q ~)],
0

(20)

a a
(16)

1E,'L (q~~, z)= CL [b»q'sin(q~) —
q sin(q~)];

(21)

bm
v

q

a
1+ q

2 1/2 (17)
for m =5,

l
ElL (q~~, z)= ——CL [b&o+b5zcos(q~)

Eo

Equation (16) gives a series of solutions for q, where

q ( (~/a„)(m + 1) is valid. For m ~ co we have

q ~ (vr/a, )( m + 1). The eigenfunctions (12)—(15) of the
modified model have the property that the lowest possible
value ~/a, for the wave-vector component q, in the usu-
al model is forbidden for the modified model. Hence, in
comparison with the standard model for the wave-vector
component q, =q of the modified model for symmetric
modes, an amount of exactly ~/a is added, and for an-
tisymmetric modes, an amount of slightly smaller than
vr/a is added.

If one wants to derive the Hamiltonian of the LO pho-
nons and the Hamiltonian of the EPI, it is necessary to
have a system of orthonormal eigenfunctions. Unfor-
tunately, the systems (12)—(15) are not orthogonal [ac-
cording to Eq. (7)]. In particular, the different symmetric
modes are not orthogonal to each other. This is also true
for the antisymmetric modes. But, of course, the sym-
metric modes are orthogonal to the antisymmetric
modes. It is possible to orthogonalize this system of
functions with the help of Schmidt's orthogonalization
method. We can treat this procedure for the symmetric
and antisymmetric modes independently. For the three
lowest symmetric LO phonon modes, the orthonormal-
ized eigenfunctions for —a„/2(z (a /2 are given by
the following.

For m =1,

Z 1

b32b30=
Z2

Z 1Z2

Z3Z4 Z5

and

Z5

Z3

Z2Z5
b54

Z324 —Z5

Z 1Z5

2
Z3Z4 Z 5

(24)

z3=3&
q~~ +4~, z4=3a

q~~
+16~ (25)

According to the normalization condition (7), the nor-
malization constants CL are determined to be

1/2

CLv CLv

C'„.=CL.

Z5

a vZ3

Z5Z3

a, (z3z4 —z5)2

1/2

(26)

(27)

+b,4cos(q ~)+cos(q ~)], (22)

1E,'„.(q„,z) = C,'.[b„q.'sin(q ~)
E'pq

)i

+b5„q sin(q~)+q sin(q~)],

(23)

with

l
EIIL (qli'z) Ci [I+cos(qQ)],

60

1

E,'„(q~~,z) = CL sin(q~);
eoq

for m =3,

(18)

(19)

CL.=CL a b 50+ b,2+ b 54+5 0 2 1 2 2 2 6

Z5 Z5 Z5

with

—1/2

(28)
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CLv

2 2 1/2
COTv

2
EpE~v

(29)
with CL, according to Eq. (29). The normalization con-
dition (7) yields

l
E~~L (q~~, z)= —CL [b2 &z+sin(q~)],

Ep
(30)

In the case of the antisymmetric LO phonons, the three
lowest orthonormalized eigenfunctions in the region
—a /2 & z & a, /2 are as follows.

For m =2,

CL =C2

Lv

(6
Lv

I
Cl2

6

C l2
2

C26

( C4 )2
—1 i2

C46
2

C,2C,4 1/2
4 24

C l4 C l2C l2
24 2 4

(39)

(40)

(41)

E L (q~i, z) =
epq

I!

CL [b2, +q cos(q~)]; (31)
C. Discussion of the electric fields

for m =4,

for m =6,
+q cos(q~)]; (33)

l
E(~L (q~~, z)= —CL [b6 iz+b6 csin(q~)

Cp

+b6 3sin(q~)+sin(q~)],
1E L (q~~, z)= CL, [b, , +b, ,q„cos(q~)

(34)

with

+bs 3q cos(q~)+q„cos(q~)],

(35)

b4, =b A24
—b

b4 1 A 24

b6, =b (326 —324346)+b, 346 b6, —

b6, 1 A24 A46 A26

b6 3 A46

(36)

where

Cl2

24
24

Cl2

26
(CL, )

46
46

(37a)

and

2 C24C26C46
Cl2Cl2 Cl2Cl2

24 26 2 46
(37b)

12Cz~=(CL )

3(bIC)2 (
I )2

C' =(C ) 5+3K I v 24 2

(38a)

(38b)

lE
~~L (q~~, z) = — CL [—b4, z +b4, sin(q ~)+sin(q ~)],

Ep

(32)

1E,"~~ qli'z)= — C„~[b4,+b4, q cos(q~)

The material constants for GaAs are taken to be
10.9, coL1=5.496X 10' s ', and coT1=5.057X 10'

s '. In Figs. 1 and 2 we have plotted the spatial depen-
dence of the components Ell~~ qll'z) and E,L~ qll'z) of the
electric field of the LO phonons of a GaAs layer. Figure
1 shows the symmetric modes. It can be seen that for the
component E~~z, the fields vanish at the heterointerfaces
for both the standard model and the modified one. The
field component E~~„, of the modified model has no gra-
dient at the heterointerfaces but that of the standard
model has a finite gradient. For the modified model the
additional constant contribution to the component EiiL1
[Eqs. (18), (20), and (22)] can be seen in Fig. 1. If we com-
pare the number of extrema for the electric-field com-
ponent E~~z& inside the layer (

—a/2&z &a/2) of the
standard model with those of the modified model for
equal m, we see that these modes are true equivalent
modes. The same statement is valid for the antisym-
metric modes (Fig. 2). More pronounced is the difference
between the two models on the component E,L, . Here,
the fields are zero at the heterointerfaces for the modified
model but nonzero for the standard one.

In Fig. 2, the corresponding electric-field components
for the antisymmetric modes are depicted. In contrast to
the symmetric modes, the component E ~~„1 depends addi-
tionally on a linear function of z. Hence, the deviation of
E~~zi for both models is more pronounced than for the
symmetric modes. The di6'erences between the two mod-
els for the component E,„, consist of a zero value at the
heterointerfaces for the modified model, in contrast to the
standard model, and an additional constant contribution
for the modified model.

For both symmetries we see that the additional bound-
ary conditions for E,L, yield a small compression of the
electric field perpendicular to the interfaces, so that the
wave-vector component q, of the single LO phonons q,
is a little lowered (b,q, & ~/a) if we compare the standard
with the modified model. In general, the difI'erences be-
tween the fields of the standard and the modified model
are lowered with increasing mode number.

In Fig. 3, we give for the modified model a three-
dimensional representation of the electric-field com-
ponent E~~„, (q~~, z) for m =5 [compare with Fig. 1(a)] of
the symmetric case and for m =4 of the antisymmetric
case. It can be seen that with increasing

q~~
the shape of

the electric-field component E~~„, is changed. This is par-
ticularly pronounced for m =5, where for increasing

q~~
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FIG. 1. Spatial dependence of the components of the electric
field (a) E~~„, (q~~, z) and (b) E,„,(q~~, ~) of the symmetric LO pho-
nons of the modified dielectric continuum model (solid lines)
and of the standard dielectric continuum model (dashed lines) of
a GaAs-A1As QW with a thickness of the GaAs layer a = 10 nm
for the wave-vector component q~~

= 10 cm

FIG. 2. Spatial dependence of the components of the electric
field (a) Ell~&(qll ~ and (b) E L~(qlI ~ of the antisymmetric LO
phonons of the modified dielectric continuum model (solid lines)
and of the standard dielectric continuum model (dashed lines) of
a GaAs-A1As QW with a thickness of the GaAs layer a = 10 nm
for the wave-vector component q~~

= 10 cm

the minima drop below zero and the maximum (in the
middle of the layer) drops below the outer maxima.
These features can be explained by increasing contribu-
tions of the lower-index modes [m = 1 and 3, Eq. (12)] to
the orthonormalized mode [m =5, Eq. (22)] for increas-
ing q~~.

III. ELECTRON-PHONON INTERACTION
AND ELECTRON SCATTERING

The electric fields of the usual confined LO phonons
and the modified confined LO phonons satisfy Maxwell's
equations of electrostatics and the corresponding bound-
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(K =0,2, 4, . . . ) are and for the antisymmetric states (IC = 1,3, 5, . . . )

—a2&(z —a /2)
e ', z&a/2

«(z) =CK X

e 2~, z) a/2

—a/2) z

COS(K)KZ)
a /2&z) —a/2

cos K)«a/2
K2~ (z +a /2)21(.

7

(49) ~2+(z+ a/2)2K —a/2) z

with the normalization constant

sin(K, «z)
«(z)=CKX . a/2&z) —a/2

sin(K, «a /2) ' (50)

CK

—1/2

K1X

I 1K2~+
m 2K1~2 sin (K)«a/2)K1K

1 a m 1K2rC

2 cos (K,«a/2) m2K)K
—1/2

1

%=0,2, 4, . . .

K=1,3, 5, . . . .
(51)

II) I =(N, +N )

II3I —(b,pN 1+b32N, —N3)

II, I'=(b,pN —) +b52N) +b34N3+N5)',

(53)

Using (51), (26)—(28), and (39)—(41) in Eq. (45), the matrix
element Mz'z is given by

IMK'K™l'= ', Ic«l'IC, I'lc„l'lI I'
2EO

I(

6 oo 1COL1 ,N, +N2)',

II41'=(b, , N, +b, , N, +N4)',

I6I =(b6 )Np+b61N2+b63N4+N6)

(54)

for odd-parity intersubband scattering contributions. In
these equations we have defined

I

for even-parity intersubband and intrasubband scattering
contributions, and

1 2K' 2K
2 2

2 K1K 1K+, %=K', %=0,2, 4, . . .
2 cos (K,«a/2) m2K)»

(55a)+, %=K', %=1,3, 5, . . . ,
2 sill (Kl«a/2) m2K)«

I 1 K2~~ K2~
2 2~2 K1~ K1g

for L =1,3, 5,

2
fPl 1

K1~+K1~+2
Pl 2

2 2 2
(K1K' K1K )

(551)

N =( —1)(L'+))/2
L

4
Pl 2

; K=K',
4K, K (L +1) (girja)— (55c)

for intrasubband scattering, and

[(L +1)m/a] (K2» +K2«) —(K)K, —K1«)(K2», K2«)( —1)'—
m2

t [(L + 1)lr/a] K,« K,K I 4K, K
—K,«— — AWK' (55d)

for intersubband scattering between even-parity states. For intersubband scattering between odd-parity states
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(I =2,4, 6) we have,

m) m)
&iczKiczK +a I:(q] ) (KzK' KzK) ( 1Ic' ziK)( zrc' zK)l

X t [(q, ) K—1K, K—,K] 4K—,K K,K I ', K%X' . (55e)

If we neglect the nonparabolicity for the subband electron energy resulting from the eA'ective-mass discontinuity at the
interfaces, i.e., CK(kii)=eK(0), we get, for the scattering rate (44),

WK(kii) =0

for 8K DK & —cJficoi1,' Vkii &kiiG with kiiG=I(PK, —CK)+oh'coL1]/(fi /2mi) and

qi~i~
I K'K (qii )I'I B(~L1)+—,

'

& (kii)= g g g I qiiI X' ~=+

(56a)

(56b)

&kii —kiiG
& —o.4~„„b'kII with

( 8K
—6'K ) + cJficoL,

II g2 g2m
k — k

m)

1/2

0.05

0.00

0 I+

modIfied I standard model

a=2. 5nm

( 6'K —6'K ) + crfico L,

A /2m)

1/2

0.5

2~3 5 2

For numerical calculations we use the following material
constants: m, =0.066 24mp, m2 =0.087mp, and
Vp: 206 meV' m p is the free-electron mass. Results for
the scattering rate for absorption and emission of LO
phonons versus the electron kinetic energy are plotted in
Figs. 4 and 5. The electron always starts in the lowest
subband K =0 but all intrasubband and intersubband
contributions are summarized in these figures. In Fig.
4(a) we have depicted the scattering rate for absorption of
LO phonons. On the left-hand side, the results for the
modified dielectric continuum model can be seen, and on
the right-hand side those of the standard model can be
seen. It is also shown that for the lowest thickness of the
quantum well a =2.5 nm in the considered range of the
electron kinetic energy only intrasubband scattering takes
place. This is valid for both models. In the standard
model the scattering is dominated by the scattering with
LO phonons m =1. The higher modes (m =3,5, . . . )

only have a very small contribution to the scattering rate.
We note that the symmetry of the QW provides the selec-
tion rules that even-parity phonon modes
(m =1,3, 5, . . . ) induce only scattering of electrons be-
tween subbands with equal parity and odd-parity phonon
modes (m =2,4, 6, . . . ) induce only scattering of elec-
trons between subbands with opposite parity. In the
modified model the higher modes have a larger contribu-
tion to the scattering rate than in the standard model, but
this contribution also decreases rapidly for increasing
mode number. This eAect is only pronounced for small
layer thicknesses. Higher-mode contributions are not
shown in the figure. For larger thicknesses of the QW,
a =10 and 25 nm, intersubband scattering takes place in

2

'0 5

--.2~3~4 5

0

Ekin / ~~L1
5 10

0.05—
modified standard model

3 5
0.00
04

a = 2.5nm

~ 0.2

00
0.5

2~3 2

0.0
0 5 0

Ekin / h~L1

2' 4 5

5 10

FIG. 4. Scattering rates 8 0 (normalized with
W=2a, fi coL[n (scoL) +—'+o —']; (a, =0.07; Frohlich coupling
constant of GaAs) ) for the absorption (a) and emission (b) of LO
phonons vs electron kinetic energy normalized with A'coL& for an
electron in the lowest subband of the CxaAs-A1As QW for three
difterent well widths (a =2.5, 10, and 25 nm). The solid line is
the sum of the scattering rates for the LO phonons with
m =1, . . . , 6.
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0.05

absorption emission
I ~

-0.05

scattering-rate contributions of low-index LO phonon
modes to modes with somewhat higher indices.

0.00,
04

0.2

0.0

0.5

Q= 2.5nm

10 nm

0.00
04

0.2

0.0
0.5

0.0
0 0

Ekin/h&U

25nq
5

0.0
10

FIG. 5. Scattering rates 8'0 of LO phonons of the standard
model (dashed lines) and the modified model (solid lines) for an
electron in the lowest subband of the GaAs-A1As QW for three
different well widths.

addition to intrasubband scattering.
In Fig. 4(b) we have plotted the scattering rate for the

emission of LO phonons. The threshold for the onset of
LO phonon emission is at Ace„, for the scattering with the
LO phonons of the GaAs well region. As for absorption,
in the case of emission for the smallest thickness of the
QW (a =2.5 nm) only intrasubband scattering takes
place, and for the thicker QW's intersubband scattering
takes place as well. In the modified model the contribu-
tion of the higher LO phonon modes (m =2, 3,4, . . . ) is
enhanced in comparison with the standard model. In
Fig. 5 we compare the scattering rates (summation over
all LO phonon contributions m =1,2, 3, . . . ) for absorp-
tion and emission for both models. It can be seen that
the scattering rates of the modified model are always a lit-
tle smaller than those of the standard model, especially
for small layer thicknesses.

The modified electrostatic continuum model does not
change the scattering rate of an electron with the LO
phonons appreciably. The magnitude of the scattering
rate is a little lowered. One main difFerence between the
two models is the enhanced inhuence of the higher-order
LO phonons (m =2, 3,4, . . . ) for the modified model,
which can be interpreted as a redistribution of

IV. SUMMARY

In this paper we have developed an improved model of
the electron-phonon interaction for LO phonons in semi-
conductor quantum wells. By using a modified dielectric
continuum model with LO phonons having electric and
displacement fields that agree with both electrostatics
and microscopic models of LO phonons, the scattering
rates of electrons for absorption and emission of LO pho-
nons are calculated. It is shown that, for the modified
model, the scattering rate is only a little smaller than that
for the standard model. In the standard model the
scattering rate is dominated by the scattering with the
first LO phonon mode. But in the modified model the
higher modes have a somewhat larger contribution to the
scattering rate than in the standard model. The main
e6'ect of the changed LO phonon model concerning the
scattering rate of electrons in this considered QW struc-
ture is the redistribution of scattering channels from
low-index LO phonons to higher-index LO phonons if we
compare the standard with the modified LO phonon
model. But the sum of all contributions to the scattering
rate is almost equal and only a little lowered.

In this paper we have only investigated the
modification of LO phonons in thin layers because the in-
terface phonons of the dielectric continuum model agree
well with microscopic calculations and experiments.
Hence, the total scattering rate is obtained by the sum of
the results of this paper with that of Ref. 30, where we
also compared our results with the simple LO phonon
continuum model.

In Ref. 44 the scattering rate for LO phonons of the
modified dielectric continuum model is calculated. But
in this paper the different LO phonons have fields that
are not orthogonal. This gives incorrect results for the
scattering rate. In the paper presented here the LO pho-
non modes are characterized by orthonormalized fields.
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