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A method for the calculation of the surface local-field effect on reflectance has been developed. It
also takes into account the different polarizabilities of surface and bulk. Application has been made
to GaAs(110) and GaP(110), starting from first-principles one-electron calculations of surface opti-
cal properties. The inclusion of local fields has important —yet not drastic —effects on line shapes
of reAectance-anisotropy and differential-reAectivity measurements.

I. INTRODUCTION

The measurement of the reflectance anisotropy (RA) of
cubic crystals is an important tool for the investigation of
surface structure. ' Since the bulk optical properties of
cubic crystals are isotropic, any observed anisotropy
must be related to the lower symmetry of the surface.
Some of these surface-induced optical anisotropies are
due to adsorbed films, surface states, or surface recon-
struction. However, an intrinsic reflectance anisotropy
has been measured for the natural (110) surfaces of Si and
Ge, where no optically active surface state is expected in
the frequency range of interest. This anisotropy has been
interpreted as arising from the surface-local-field (SLF)
effect:" the surface is assumed to have the same isotropic
polarizability as the bulk, but to respond to different local
fields for different light polarizations. This yields a calcu-
lated RA in agreement with experiment. A concurring
reason for RA may be, however, the anisotropy of the
surface polarizability itself, arising from the reduced sym-
metry of Si and Ge, as well as of III-V compounds, (110)
surfaces. It has been shown by a tight-binding random-
phase-approximation (RPA) calculation' that for
Si(110):H, the latter effect gives a RA of the same order
of magnitude as that due to the SLF effect. The hydro-
gen coverage was meant to mimic the native oxide layer
present at natural surfaces, on which the experiments
were carried out. However, the resulting line shape is
different from the experimental one.

RPA calculations have also been carried out for GaAs
and GaP(110) surfaces. The computed RA and the
differential refiectance (DR) (the difFerence between the
reAectivity of the clean surface and that after chemisorp-
tion) have been compared with experiment. ' '" The
agreement —yet reasonable in some cases —is not com-
plete. It may be argued that some of the discrepancies
arise from many-body effects. Among these, the-most im-
portant are the excitonic effect, arising from the

electron-hole interaction, and the SLF effect, arising from
the microscopic structure of the crystal. In this paper we
want to explore the SLF effect on the optical properties.
To this aim, we neglect excitonic effects (more precisely,
we neglect the difference between surface and bulk
electron-hole interaction), and study local-field effects
within the dipole picture of crystal polarizability. ' The
polarizabilities of bulk and surface dipoles are extracted
from bulk and slab RPA calculations. ' We compute the
electromagnetic field generated by the dipoles in a slab in
response to the external (incident wave) field. In this way,
the reAection and transmission coefFicients are computed.
Then the reAectance of a semi-infinite crystal is found
from slab optical properties. Such an approach has the
advantage of avoiding the cumbersome solution of light-
propagation equations near the surface (usually carried
out perturbatively' '") involved in the usual approach,
but relies from the beginning on the dipole picture. (A
derivation of this picture from linear-response theory has
been recently given. '

) It yields the same results as the
usual approach when surface resonances are weak
enough that the perturbative approach is reliable, but it
can embody higher-order effects without further effort.

The method of calculation is described in Sec. II. The
results, discussed in Sec. III, show that local-field effects
do not qualitatively modify the RPA optical line shapes.
Other reasons should be invoked to explain the
discrepancies with respect to experiments. The con-
clusions of this work are summarized in Sec. IV.

II. METHOD OF CALCULATION

A. Dipole theory for thin slabs

A beam of electromagnetic radiation impinges on a
slab of N (110) atomic layers of a III-V semiconductor (in
particular, GaP and GaAs will be considered in this pa-
per). The z direction corresponds to the [110] direction,
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perpendicular to the planes of the slab. We divide the
specimen under consideration into a number of polariz-
able units (cells) with index i, dipole strength p, , and po-
larizability n;. The dipole induced at the i cell is

pi =i 'Eloc, i

where E&„,is the local field and o., is the polarizability
tensor. Strictly speaking, the off-diagonal terms n," relat-
ing the dipole induced at r; to the local field at r should
also be included. ' However, following the approach of
Mochan and Barrera and for sake of simplicity, we con-
sider here only diagonal (i =j) polarizabilities. The di-
poles p, give rise to Hertz potentials, ' from which the in-
duced electric field can be obtained as

F„.The intraplanar (n =j) terms, already given in Ref.
12, have been calculated by a straightforward extension
of the method of Vlieger, ' originally devised for square
lattices, to rectangular lattices. We find

c" +2~' (k I k~i
~i

k)/(P~k~), (9)

where a =a'/&2 (a' is the lattice constant) and P=V2.
In deriving (9), the sum outside a circle of radius ro
(much larger than a and much smaller than k ') has
been transformed into an integral. ' The calculated in-
tegral and the sum inside the circle are expanded up to
the first order in kro and then the zeroth-order integral
term is converted back into a sum. The final result con-
tains the static all-plane dipole sum

E, (r, t)=V(V Z, )— 8 ZI

at2
C

2 (2)

(')c„„=ag(R R —R I)/R
R

(10)

with

Z;(r, t) =(p, /~r —r; ~
)exp[i (k~r —r; ~

cot )], — (3)

where k =co/c. The external and induced fields give rise
to the total field

E„,(r, t)= E,„,(r, t) +g E(r, t) .

Because of parallel translational symmetry, we have the
relation

F„=(VV+k I)S,(r, k) r=r
n

(')

SJ(r, k)=+exp(ik R)exp(ik~r —R —r~)/~r —R, ~,
R

(8)

where the term in the large parentheses in (6) is the local
field at the origin of the n plane. The incident field driv-
ing the entire process enters Eq. (6) as E,„„„.Vector
combinations of the v v indicate the corresponding direct
product subtensor, the dyad. Equation (8) defines the lat-
tice sums S (r, k). The prime means that in the case
r =r, the term with vanishing denominator must be om-
itted.

The main problem of the dipole theory is to calculate

pit „exp=(ik R)po
„

between dipoles in the layer n, where R=(R,R&, 0)
spans the two-dimensional (2D) lattice and k is the wave
vector of the incident light. (In the case of normal in-
cidence, for which calculations will be carried out in this
paper, R and k are orthogonal, so that all dipoles in the
same layer have the same strength. ) The infinitely many
unknown dipole strengths p&, reduce to a single one po „

for each plane, located at the origin r, of the lattice be-
longing to the n plane. (The index 0 will be omitted in
the following. ) Straightforward combination of these re-
lations yields the following system of equations:

p„=H„E,„,„+QF„Jp, (6)
J

plus the term linear in k appearing in (9). Terms of the
order (kro) are neglected in this way, altogether with the
Lorentz damping, proportional to k . ' Neglecting the
latter term is well justified in solids, where more impor-
tant damping mechanisms are present, such as, for in-
stance, interaction with phonons.

The value of c„„canbe easily computed by brute force
(i.e. , direct summation) or by a modified Hoff-Benson
method. ' ' The result is

~stat

4.7901 0
0.9060

0
0

—5.6961

Next we have to evaluate the off diagonal terms. In
this case it is more convenient to convert the sum over
the direct lattice into a sum over the reciprocal lattice.
We find

S, (r, k)=(2~/Ao)+exp[i(k~~+G) r]

X exp( —~&~z )/~&,

=(ik„+Gi'—k')'"
(12)

(13)

where G is a vector of the reciprocal 20 lattice and Ao is
the cell area. It should be noticed that (12) cannot be
used for z =0. [For this reason we had to carry out the
cumbersome calculation in real space in order to get the
intraplanar term (9).] For neighboring planes it is also
slowly convergent, but it is still much quicker than direct
calculation according to (8). After that, it readily ap-
proaches the speed of an analytical expression. The non-
analytic behavior at small k in the term linear in k of the
dipole-dipole interaction I'„,clearly apparent in the in-
traplanar term (9), is present also in the interplanar
terms: in this case, it is contained in the term with G=O
of the sum (12), which depends differently on k~~ and k, .

Once the results of (9) and (12) are obtained, we are left
with a system of 32K linear equations in the 3X unknowns,
the components of the p, 's. Surface effects are embodied
in the dipole-dipole interplanar interaction, which is per-
turbed by the missing layers (this is the surface-local-field
effect of Mochan and Barrera ), and in the layer-
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dependent dipole polarizabilities a„.The solution of the
system is

p„=g(A ')„JE,„,J,
J

where

(14)

~nj ~nj + n +nj (15)

The dipole strengths p, together build a complete
description of the optical response of the slab under irra-
diation by a light wave. The measurable quantities are
functions of the p„'s.

We solve the linear system (6) by numerical inversion
of the 3N X 3% matrix 2, . This is possible, of course, to
the extent that N is not too large. An alternative method,
suitable for thicker slabs, is the expansion of the total
field in normal modes inside the slab. Since both
methods are meant to solve the linear system (6), they are
equivalent to the extent that they use the same truncation
of the interplanar dipole-dipole interaction.

B. Dipole polarizabilities

The next step is to determine the polarizabilities of sur-
face and bulk dipoles. We start from a pseudopotential
calculation of electronic states and of the RPA dielectric
constant of bulk GaAs and GaP, as described in Ref. 9.
Then we use the same approach for repeated slabs of
N =15 GaAs or GaP(110) layers separated by nine miss-
ing layers. In order to minimize the gap underestimates
involved in the local-density-functional (LDA) approxi-
mation, ' we have used the Slater, rather than the
Kohn-Sham, exchange potential. Calculated bulk gaps
(1.5 eV for GaAs, 3.1 eV for GaP) are in good agreement
with real ones (1.5 eV for GaAs, 2.8 eV for GaP). It is
not clear, however, whether gaps between surface states
are well reproduced or not, since convicting experimental
findings on the energy of empty surface states have been
presented. ' The output of the calculation is the in-
tegral I(co) of the slab dielectric susceptibility e(co;z, z )

over z and z'. Neglecting nonlocality and assuming that
the first X, layers near each surface have dielectric con-
stant e„while the inner layers have the bulk dielectric
constant, we get

e, (co) =I(cd)/(2N, dI )
—[N/(2N, ) —1]eb(co), (16)

where d& is the interlayer spacing. Because of the sym-
metry of the (110) surface, e, will be different for light po-
larized along [001] or [110]. The choice of N, is dictated
by the physical requirement of a thin surface layer, which
is, however, contrasted by the appearance of a negative
imaginary part of e, for too small X, . We choose N, =3,
which is the smallest value for which the imaginary part
of e, is positive in the frequency range 0—13 eV.

We extract the bulk dipole polarizability from the cal-
culated RPA dielectric constant. The Lorentz-Lorenz
formula relates the former to the actual (macroscopic)
dielectric constant, ' which is different from the RPA
one. It is, however, known that such a difference, due to
many-body effects, is quite small in semiconductors:

peak energies are weakly affected, while larger changes
occur in line shapes. Therefore, a zeroth-order approxi-
mation, used here, is to identify the RPA polarizability
with the macroscopic one and to derive from it the dipole
polarizability via the Lorentz-Lorenz equation. This pro-
cedure yields a relation between the RPA and dipole po-
larizabilities. Because of the very definition of the dipole
(called "atomic" in Refs. 15 and 27) polarizability, such a
relation does not involve the dipole-dipole interaction,
but only the short-range interactions. For instance,
within a simplified two-band model, we have

~diP/II ~RPA[1 ( Vo V~ /2)Q~RPA/f 2] (17)

Here Vo and V are the Coulomb and exchange interac-
tion in the same cell, 0 is the cell volume, and f is the
matrix element of the dipole operator between the Wan-
nier functions of the two bands. Equation (17) is coin-
cident with the inverse Lorentz-Lorenz relation when

Vo —V /2 =4'f /30. This implies the vanishing of
( Vo —V, /2 4~f /—3f),), which is the combined effect of
intracell electron-hole interactions and of the long-range
dipole-dipole interactions. It is in this very case that the
macroscopic and RPA dielectric constants coincide, as
was assumed from the beginning. We assume that the
same relation holds near the surface and again derive the
polarizability of the dipoles in the surface layers from e„
computed within the RPA, through the Lorentz-Lorenz
equation. By using the same relation in bulk and near the
surface, we simply assume that the electron-hole interac-
tion is not modified by the surface itself.

In order to compare the present approach with that of
Mochan and Barrera, based on the solution of light-
propagation equations, we repeat the calculation for
Si(110):H, already performed in Ref. 15 according to the
latter approach. We take from Ref. 15 surface and bulk
dipole polarizabilities, which account to some extent for
excitonic effects.

C. Remote fields: Reflectance and transmittance

where Eoexp[i(k r cot)] is t.h—e external (normally in-
cident) field, k„is the wave vector of the refiected wave,
and

P =+exp( ik, rj )p—
J

P =

+exp�(

ik rJ. )p,
—.

J

(20)

(21)

Finally, we find the complex reAectivity and transmittivi-

The remote fields can be obtained by applying (7) and
(12) along the line of calculation shown in Ref. 17. We
find for the reAected and transmitted beam

E (r, t)=(27ri/P~k, ~a )

X(k I —k„k„)P exp[i(k„r cot)], (18)—
E (r, t)=[ED+(2vri/P~k, ~a )

X(k I —k k) P ]exp[i(k r cot)], —



1828 C. M. J. WIJERS, R. DEL SOLE, AND F. MANGHI

ty at normal incidence:

r =(2~i/P)k, [a')k'(E, P'/[E, (),
t = I+(2~i/P(k, (a )k (Eo P /(Eo() .

(22)

D. Reflectance of a semi-in6nite crystal

q, =(~/c)e'I, '(~) . (24)

The discrete dipole model treated until now is not suit-
ed for the description of semi-infinite systems, hence the
results obtained so far cannot be compared with experi-
ments. However, the slab, in principle, can be made so
thick that most of its interior is bulklike. In that case, a
classical continuous description can be used to extract
the required results for a semi-infinite crystal from slab
calculations.

Inside the slab, where surface effects are not important,
light propagates according to the wave-vector q, given by

r(d)=r+r'exp(iq, d)t(d) . (25)

Here r means the reAectivity of a semi-infinite sample
from vacuum to bulk —the required quantity —while r'
is the reAectivity from bulk to vacuum. Surface effects
are fully included in r and r', according to the approach
of Refs. 14 and 29. If one uses (25) for two different lay-
ers of thickness d~ and dz, respectively, the reAectance
of a semi-infinite crystal turns out to be

We can find the refIectivity and transmissivity of a slab of
thickness d by summing the contributions of multiple
reflections of waves propagating with wave-vector +q, .
This approach is similar to that of Ref. 29, with the
difference that we are here considering field amplitudes
(and not their square moduli) in order to fully account
also for interference effects, which cannot be neglected in
thin slabs. After some algebra we arrive at the relation

r = [t(dz )r(ds) —exp[iq, (dz —d„))t(dz)r(d„)]/[t(dz ) —exp[iq, (dz —d„)]t(dz)] . (26)

In the following we use dz =54 layers and d„=38layers.
The convergence has been checked by using d~ =38 lay-
ers and d~ =20 layers, finding practically no difference.

The method used in this subsection makes the contact
with the normal-mode expansion, used, for instance, by
Grindlay. We are actually considering a single, long-
wavelength, normal mode deep inside the slab, whose am-
plitude is determined, rather than by the boundary equa-
tions of Ref. 20, which are in turn determined by the mi-
croscopic structure of the surfaces, directly by the nu-
merical solution of the linear system (6) near the surfaces.
It can be shown that, within a broad absorption band
such as that considered here, additional long-wavelength
modes are not present, while short-wavelength normal
modes have little effect on the optical properties.

E. Test of the method

We have tested our method of computing the SLF
effect on retlectance in the case of Si(110):H. The calcu-
lated RA has been compared with that computed, ac-
cording to the approach of Mochan and Barrera, in Ref.
15. The two approaches yield practically identical re-
sults. This confirms the validity of our method and also
makes us sure that the condition of relatively weak sur-
face resonances, needed for the validity of the Mochan-
Barrera approach, is fulfilled.

III. RESULTS

Let us discuss now the RA of the clean GaAs(110) sur-
face. Figures 1(a) and 1(b) show the surface contributions
to reflectance of x- and y-polarized normally incident
light, respectively. (We take the x axis parallel to [110]
and the y axis parallel to [001].) The overall effect of

SLF's is to reduce the retlectance (mostly of y light, i.e.,
of light polarized normally to the [110]chains). This can
be understood as follows: the dipole-dipole interaction
shifts the main resonance of the polarizability to low en-
ergies. This is clear from the Lorentz-Lorenz formula,
and can be directly verified by comparing the bulk mac-
roscopic polarizability, embodying the dipole-dipole in-
teraction, with the atomic one: the latter has a much
larger resonance energy, and, by consequence, a much
lower static value (about 2 versus about 10). At surfaces,
the missing half crystal reduces the dipole-dipole interac-
tion and the associated shift, so that the surface macro-
scopic polarizability is overall shifted, with respect to te
RPA one, to higher energies. This implies a reduction of
low-energy features, such as those shown in Fig. 1. This
effect is larger for the light polarized along y, because the
yy component of the in-plane static pole sum c,„„[see
(11)] is much smaller than the bulk (cubic) value of 4'/3.
This means that the effect of missing layers on the local
field at the surface is larger for y polarization than for x
polarization: actually, in the latter case, the in-plane sumc„„is very close to the bulk value, implying a less impor-
tant effect of missing layers.

The RA is shown in Fig. 1(c). As a consequence of the
different reductions for the two polarizations, the peak at
3.6 eV is enhanced, with respect to RPA, by the SLF
effect. The agreement of GaAs(110) RA with the experi-
ment carried out by Berkovits et al. ' is reasonable. The
inclusion of local-field effects, however, does not improve
the agreement.

The surface contribution to the retlectance of GaP(110)
is shown in Fig. 2. Also, in this case, the overall reduc-
tion of low-energy reflectance structures by local-field
effects is apparent in Figs. 2(a) and 2(b). The RA in Fig.
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2(c) shows an enhancement in the energy range around 4
eV. The agreement with experiment is worse in this case,
and the SLF effect is not big enough to improve it.

In both cases, the SLF contribution to RA is not
dramatic. This might seem to contrast the case where no
anisotropy is present within RPA (Refs. 4 and 30), where
the SLF effect yields a RA of the order of 1%. The para-
dox, however, is only apparent, since SLF-induced
changes of RA are still of this order, even though they
are definitely smaller than the RPA contribution. The
main SLF effect on the RA of III-V compounds, namely
the enhancement in the valley between the two main
peaks, centered at 3.1 (4) eV in GaAs (GaP), is similar but
smaller to that found for Si(110):H.' A similar effect,
namely an enhancement of R -R„with respect to the
RPA value (zero, in this case), is also found when surface
dipoles are assumed to have the same polarizability as
bulk ones. '

Let us now discuss differential reAectivity. In experi-
ments, oxygen chemisorption is often used to saturate
surface states. In our calculation, instead, we mimic the

chemisorbed surface by a H monolayer. ' ' This can
cause some of the discrepancies found between theory
and experiment. The calculated DR of GaP(110) is
shown in Fig. 3 for x polarization [Fig. 3(a)], y polariza-
tion [Fig. 3(b)], and for the RA [Fig. 3(c)]. Again, the
SLF effect reduces the reflectance (low-frequency) struc-
tures; in this case the agreement with experiment, already
good in RPA, is improved by SLF effects.

The DR of GaAs(110) is shown in Fig. 4. The SLF
effect is similar to that in GaP; an overall reduction of
low-frequency structures. However, agreement with ex-
periment is only qualitative, and local-field effects do not
improve it.

IV. CONCLUSIONS

In this paper we have described a method to compute
the SLF effect on optical properties. It is based on the di-
pole picture of crystal optics: it consists of calculating
the response of the dipoles in a slab to the incident radia-
tion. From slab

reflectance

and transmission, the
reflectance of a semi-infinite crystal is obtained. The
cumbersome solution of light-propagation equations near
the surface involved in the usual approach ' ' is there-
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fore avoided. The soundness of the method has been
checked by comparison with calculations carried out ac-
cording to the other approach.

We have applied our method to GaAs and GaP(110).
The agreement between RPA calculations and experi-
ment is quite good for peak energies, but is not always so
for line shapes. The inclusion of the SLF effect yields an
overall reduction of low-frequency structures, especially
for light polarized along y, perpendicular to the [110]
chains. In RA, however, since the difference R —R is
of interest, these structures are amplified by the SLF
effect. This effect may substantially modify the line
shapes, even though it has little inhuence on the energies
of the main structures. We have found that, in the case
of GaP(110) DR, the inclusion of local-field eQ'ects im-
proves the comparison with experiment. In the other
cases, no relevant improvement is obtained.

FIG. 4. The same as Fig. 3 for GaAs(110).

The poor agreement between theory and experiment
found in some cases may be due to several factors, such
as to the mimicking of the oxidized surfaces involved in
DR experiments by H-covered surfaces, and the uncer-
tainties in the determination of the one-electron states in-
volved in the RPA calculations. The last uncertainties
have to do with the gap problem associated with the
local-density-functional approach: as is well known, the
LDA underestimates band gaps in semiconductors by
about 50%, and the use of Slater (instead of Kohn-Sham)
exchange is a simple —yet empirical —way to get correct
bulk gaps. Unfortunately, it is not clear whether this
occurs for gaps between surface (or between surface and
bulk) states, where residual discrepancies of the order of
0.6 eV might be present. ' ' Other possible reasons might
be associated with surface exciton effects, as well as with
the nonlocality of the self-energy operator, which has
been found to substantially affect the static dielectric con-
stant of Si and Ge.
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