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Conductance fluctuations in quantum wires are calculated numerically by a scattering-matrix formal-
ism with Landauer’s conductance formula. The fluctuations are not universal because they are strongly
dependent on the system length. When many subbands are occupied, there appears the length region
(called the universal region) longer than the mean free path and shorter than the localization length
where the fluctuations are almost independent of the length. A crossover from one to two dimensions
occurs when the broadening of one-dimensional subbands exceeds their separations. In the presence of a
weak magnetic field, the universal region becomes wider and the fluctuations are reduced. In strong
magnetic fields, the conductance becomes nearly quantized and the fluctuations become negligibly small
due to the formation of edge states with an extremely long mean free path.

I. INTRODUCTION

Quantum transport phenomena have attracted much
attention for years. In particular recent developments in
experiments in mesoscopic submicrometer structures
have revealed a quantum-mechanical nature of transport
at low temperatures such as conductance fluctuations.!
Conductance fluctuations were unexpectedly observed in
the magnetoresistance of a small normal-metal ring,? in-
stead of the Aharanov-Bohm oscillations predicted
theoretically’ ™ and observed later.® These are the direct
manifestation of quantum interference effects in systems
with a size smaller than the phase-coherence length.
More recently, various phenomena have been observed
such as anomalies in the weak-field Hall effect’° and the
quantized conductance!®!! also in quantum wires made
at GaAs/Al,Ga,_,As heterostructures. In this paper we
study numerically conductance fluctuations in quantum
wires.

A special feature of conductance fluctuations is that al-
though the fluctuating patterns are random as a function
of the magnetic field B or the Fermi energy Ej, they are
time independent, reproducible, and specific to each sam-
ple. Diagrammatic perturbation calculations!>™!® have
shown that the amplitude of the fluctuations takes a
universal value of order e?/h, independent of sample size
and degree of disorder at zero temperature, when the
sample dimensions are always much larger than the mean
free path / as well as the Fermi wavelength A but are
much smaller than the localization length £ (“metallic
system’). The universality has been shown by various
other methods both analytically!” and numerically.'®# %’

Different behaviors are expected in conductance fluc-
tuations in quantum wires. In the quantum wires the
width W is smaller than / and comparable to A although
the length is usually much larger than I. Therefore, the
one-dimensional (1D) subbands are well defined and
resolved because their level broadening is much smaller
than their energy separation. Consequently, there is no
definite transversal electron motion and we can no longer
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use the idea based on semiclassical Feynman paths valid
in metallic wires. Moreover, the localization effect can be
essential. As a matter of fact, in a strict 1D system the
localization length & is comparable to the mean free path
and therefore there is no diffusive regime where the con-
ventional perturbation treatment is valid.?® 3% In wires
with many conducting channels, the localization length
becomes larger than the mean free path.

In this paper we study the behavior of conductance
fluctuations in quantum wires by calculating the scatter-
ing matrix of the system containing impurities of §-
functional type in the presence of a magnetic field. We
shall describe the theoretical formulation in Sec. II,
present numerical results in Sec. III, and give a short
summary in Sec. IV.

II. THEORETICAL MODEL

We consider a two-dimensional system of noninteract-
ing electrons confined within the width W in the lateral
(y) direction in the presence of a perpendicular magnetic
field B. The Hamiltonian is written as

H=-1(p+eAP+Uy)+V(r),
2m

0, y<|wr2|

U(y)= ©, yZ'W/2|’

2.1
where r=(x,y), A=(—By,0), m is the effective mass,
and V(r) is the potential of impurities distributed ran-
domly. The system has length L in the x direction and is
connected on both ends to long perfect leads which them-
selves are connected to reservoirs. We assume the
scattering potential from a single impurity as the 8 func-
tion with the same strength |y|, and do not take into ac-
count other scattering mechanisms, such as the long-
range Coulomb scattering from an ionized impurity.3!

In the absence of impurities the wave function is writ-
ten as

E(r) = e™¢(y) , (2.2)

1792 ©1991 The American Physical Society



44 CONDUCTANCE FLUCTUATIONS IN QUANTUM WIRES

where ¢(y) satisfies the reduced equation

_ # d’ m 552732 —
m dyz+ S0y —IRR UG |60)=E(y) ,

(2.3)

with w.=eB/m and lg=*7/eB. For a given energy
(E =Ej) we obtain the two kinds of mode, the “conduct-

ing mode” whose wave number is real, =k,
(n=1,2,...,N.k,>0), and the ‘“evanescent mode”
whose wave number is imaginary, =ik,(n=N,
+1,N,+2,...,00;k,>0). We denote the right-going

waves consisting of the conducting modes with +k, or
the evanescent modes with ik, as £, and the left-going
waves with —k, or —ik, as &, _.

The normalization of the conducting solution &, is
chosen as

£relr)=——e" " (),

+ Vo

with the velocity in the x direction of the nth state given
by

(2.4)

b= Layas o k=2 |6, @.5)
m lB

so that each channel carries a unit flux. The normaliza-
tion of the wave function of the evanescent channel is ar-
bitrary and the conductance is independent of their
choices.

The wave function can be written for the incoming
wave from the left side of the scattering region [0,L] as

N
§n++ 2 gn’—rn’n’ x <0

n'=1

. (2.6)
E §n’+tn'n’ X>L,

n'=1

D, (x,y)=

where ¢, and r,, are the transmission and reflection
amplitudes, respectively, and for the incoming wave from
the right side of the scattering region as

N
gn—+ 2 §n’+rr'1'n’ x>L

n'=1

N 2.7
2 gn’—tr;’n’ x <0,

n'=1

D, (x,y)=

with transmission and reflection amplitudes, ¢,,, and r,,,.
The scattering matrix, or the S matrix, is defined as

’

’

r

The current conservation law requires the unitarity of the

S matrix as
§51§=85"=1, (2.9)

where S consists of the N, XN, transmission matrices 7
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and 7' and the reflection matrices 7 and 7', which contain
the scattering amplitudes from N, incoming conducting
channels to N, outgoing conducting channels.

To calculate the conductance between two reservoirs,
we use the two-terminal, multichannel version3?73¢ of
Landauer’s formula®’

2 2 Nc N,
ngfl—Tr(i?*):—ZZ— S S 5.7, (2.10)

n=1lm=1
where a factor 2 due to the spin degeneracy is included.
Here it should be noted shortly that conductance fluctua-
tions, though universal in the two-terminal metallic wire,
are shown both theoretically®® ~*! and experimentally*>+3
to exceed the universal value by many orders of magni-
tude in the multiterminal system.

The overall S matrix for the disordered region L X W
containing a certain number of impurities with § poten-
tial can be obtained by decomposing it into single-
impurity parts and free-propagating parts using a compo-
sition law.** If we consider the two S matrices defined by

’

!
ry Iy ry I

S, = and S,= ) (2.11)

’

ty ry

t, 1)

then the composed S matrix S, =5,8S, for §; and S,
in series can be calculated as

tp=t1—rir) 'ty ,

th=ti(1—r,r) 1y,
, A (2.12)
r12:r1+t1r2(1'—r1r2) tl N

— 1,

rao=rytt,ri(1—rr)” 't .

Note that the composition law satisfies the associative
law (S,®S5,)®S5;=5,®(5,®S;), but does not satisfy the
commutative law in general, i.e., S,®S,7S;®S,. The
overall S matrix can be expressed as

S§=siregsimPg sireg ---@S;,';‘P@S]fvfji] , (2.13)
where N; is the total number of impurities. It must be
noted that this decomposition method of the disordered
region into parts by Eq. (2.13) cannot be applied to the
system containing impurities with the long-range poten-
tial.

Now, we derive the S matrix for a single impurity. We
first integrate the Schrodinger equation for the system
containing an impurity with a &-function potential of
strength ¢ at ry=(x,,y,) over the infinitesimally small
region [x,—¢€,x,+ €] with respect to x and get

0 9
O D(xy+e€,y) O D(xy—¢€,y)

= 8(y —=yo)®P(xp,y) . (2.14)

Further the continuity of the wave function at x =x,
leads to
P(xy+ey)=d(xy—¢€,y) . (2.15)

The wave function ¢, ..(y) is expanded by an orthonormal
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set of the N eigenstates ;’s of the reduced Hamiltonian
for B =0.

N
¢ni(y): 2 ¢j(y)cj%

(2.16)
ji=1
with
172 .
b - | sin %y+7W , y<|W /2]
0, y>|wrl. 2.17)

Substituting Egs. (2.6) and (2.16) into Egs. (2.14) and
(2.15), multiplying ¥7(y), and integrating with respect to
y, we have the transmission and reflection matrix, ¢ and r,
for incoming waves from the left-hand side

C_K+ilC_ C,K+ilC. ||,
—C_ C, t
C+K—lrc+
= c. , (2.18)
with
172
+ h
(Cdn=Cpn van] ’
k, W
(K)pp = 8, » (2.19)
o
my W
(T = 7;2 ¥ (90)* Y1) -

In the same way we can obtain the transmission and
reflection matrix, ¢’ and ', for incoming waves from the
right-hand side as

C_K+iTC_ C,K+iTC, ||y
—C_ C, r’J
C_K—i'C_
= —C_ (2.20)
Combining Egs. (2.18) and (2.20), we finally obtain
C_K+irc_ c,kK+irc, | !
Simp —
—C_ C,
C,K—iI'C, C_K—iI'C_
X c, —Cc_ (2.21)

The S matrix for the free propagation from x =x, to
X =X+ Ax is given by

0
0

§ free— ik, Ax

, (O)=e "8 (2.22)

The wave numbers t+k, or tik, and the corresponding
wave functions ¢ are calculated as follows:** Substitut-
ing Eq. (2.16) into Eq. (2.3), we obtain

N

2

=1

m —
Ejﬁjj,-i-?wg((y—lgk)z)jj,]cj,—Ech , (2.23)

4
with E; =(#’/2m )arj /W )?, where
(Y) = [dy v¥0)Y9(p) . (2.24)
Defining d; = (kW /m)c;, Eq. (2.23) can be rewritten as
0 1] |c c
4 8| la|= 4] (2.25)
with
2 2 2
)= keW |, 5o #iw, Ty
(=117 I8 | 2E, Wl i
# (2.26)
_ N9 [my
Blr="g, <W>jj"

where kp=(2mE /#*)'/2. Solving Eq. (2.25), we obtain
2N eigenvalues +k, or +ik, and 2N eigenvectors c:.

The situation becomes particularly simple in the
absence of a  magnetic field. We have
k,=[kE—(mn/W)*)'/? and v,=%k,/m when E, <Ep
and «, =[(7n /W)>—k2]'/? when E, > E,. Further, we
have c;;L:Sj and the S matrix (2.21) reduces exactly to
the same expression as that previously obtained without
evanescent states’>2* and with evanescent states.?%2%46

The system is characterized by the following three di-
mensionless parameters: W /Ap, |/Ap=Ep7r/7#, and
¥y =2my /m#*, where 7 is the relaxation time in 2D sys-
tems given by 7 !=n;|y|*m /# with n, the impurity
concentration and is related to the mean free path
through ! =vg7. The parameter 2W /A represents the
number of occupied subbands at the Fermi energy. The
parameter 7 represents the importance of the higher-
order Born scatterings from a single impurity relative to
the first-order Born effect. In the limit of negligibly small
v and large concentration n; of impurities with a fixed /
(the high concentration or white-noise limit), # becomes
irrelevant and the system is characterized only by the two
parameters W /Ay and [ /Ag. In the following, except for
a single-impurity system, we choose [7] =0.2, for which
the system is nearly in the high concentration limit. In
addition, equal amounts of attractive and repulsive
scatterers are distributed in a sample in order to cancel
out effects of energy shifts to the lowest order.. The num-
ber of samples with different impurity configuration is be-
tween 2000 and 3000.

The 6-function potential can cause some problems. A
typical example is a divergence associated with its bound
state in the attractive case in two or three dimensional
systems. The same happens in the present quantum wire
and the binding energy diverges logarithmically if the
number N of the basis ¢;(y) becomes infinite. Any realis-
tic scatterers have a potential with nonzero range.
Therefore, we shall introduce a cutoff E, in such a way
that N is determined by the condition Ey <E.. This
roughly corresponds to a cutoff of the potential range at
about k! with #k2/2m~E,. We shall choose
E_ ~4E} in the numerical examples shown in the follow-
ing section.
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III. NUMERICAL RESULTS

A. Single impurity

The conductance for a single impurity in the absence of
a magnetic field has already been calculated by Bagwell.*®
It has been shown that for an attractive potential a quasi-
bound state is formed below each subband bottom where
the transmission probability is reduced considerably. For
a repulsive scatterer no such quasibound state appears as
is expected. The situation changes drastically in the pres-
ence of a magnetic field.*”*® The bound-state energy of a
single impurity can be obtained as

Vmax 1

2715 VZO —(v+1/2Yio, ’

(3.1)

where v, is a cutoff. This shows that there exist bound
states (with an energy larger than each Landau-level en-
ergy) even for a repulsive impurity in 2D systems in
strong magnetic fields.

An example of the calculated conductance for a single
impurity with ¥ ==20.7 located at the center of the wire
(yo=0) in a strong magnetic field (#w,./E;=10 or
W /lg~7) is shown in Fig. 1. Dips can be seen both for
repulsive and attractive potential. They are due to the
suppression of the transmission probability of the highest
conducting channels: For example, when two subbands
are occupied, we have |#;;]~1and |t;,| ~|t,,| =]t | =~0.

fiwg /[E4=10.0
L yo/W=0.0

Conductance (units of e2/h)
Overlap ( arbitrary units )

2 -
5
— 0.7 {
-------- —0 7
0 " . N Il . L
5 10 15 20 25
Fermi Energy (units of Ey)
FIG. 1. Conductance for a single impurity with 8-function

potential located at the center of wire (y,=0) as a function of
the Fermi energy in a strong magnetic field. The solid line
represents that for a repulsive potential and the dotted line for
an attractive potential. The conductance decreases at the ener-
gy of the quasibound states. The vertical arrows indicate the ex-
pected quasibound state energies for a 2D system with “-+” for
a repulsive potential and “—” for an attractive potential. The
overlap between the highest conducting channels at the impuri-
ty position, [¢¥ —(yo)$, +(po)l, is represented by the dashed
c c

line.
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The energies of quasibound states are close to those ob-
tained from Eq. (3.1) for v_,,=10 shown in Fig. 1 by the
vertical arrows.

The overlap of the wave functions of the highest con-
ducting channels at the position of the impurity,
%~ (o )¢Nc+(y0)|, is also included in the figure. At en-

ergies away from those of quasibound states, the conduc-
tance is nearly quantized except when this overlap is
large. A singular peak seen just at the energy of the bot-
tom of the second subband (Ep=~15E,) is due to the
presence of a node of the wave function at y,=0. When
E becomes slightly larger than the subband bottom, the
overlap rapidly increases and the conductance is reduced.

B. Conductance fluctuations

In Fig. 2 we show the length dependence of the aver-
aged conductance in the absence of a magnetic field. The
narrowest wire has five occupied subbands and the
widest 20 below the Fermi energy. We have
assumed [ /Ar=51.25, for which the broadening is al-
ways smaller than the smallest subband separation
[A/T7=(4/m)(W /Ap)*(Ap/1)E,~0.87(E,—E,) even for
W /Ar=10.25] and therefore the subbands are well
resolved. The Fermi level lies in the middle of the two
subband bottoms E N, and E N, +1- We have used the two

different ways of averaging, the arithmetic average (G )
and the geometric average exp[{InG)]. With the in-
crease of the sample length, the conductance decreases
starting from the quantized value G =2N,e2/h. As the
system becomes much longer, the conductance begins to

102 3 T T T T T T

1
10?

—_
(=]
o

=]
L

Uap=51.25

Conductance (units of e2/h)

102 L <G> exp<InG> W/ixg
E 4 a 1025
[ o n 5.25
I o ° 2.75
10—3 " 1 " 1 N 1 .
0 10 20 30 40

Length (units of 1)

FIG. 2. Conductance as a function of the length L for
different wire widths. The number of occupied subbands is
2W /Ap. When L becomes large, {InG ) shows a linear depen-
dence on L, from which the localization length £ can be estimat-
ed. The estimated localization lengths are indicated by the vert-
ical arrows. The numerical uncertainty of £ is smaller than the
width of the arrows.
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decrease exponentially. The localization length & can be
estimated by fitting to £= —(3{InG ) /dL)"! for the re-
gion 25<L /1 <40.7> We have £/1=4.9+0.2 for
N,=5, 10.0%+0.3 for N,=10, and 19.6%1.0 for N.=20,
which are denoted in the figure by the vertical arrows.
The two different averages start to deviate from each oth-
er when the length exceeds the localization length
reflecting the well-known singular distribution of the con-
ductance in the localized region L 2 £.4°753

The calculation shows that & increases in proportion to
N, (§=N_I within the numerical accuracy). There have
been various arguments which lead to the conclusion that
£ increases in proportion to N, in quasi-one-dimensional
metallic wires. Thouless®* has assumed that the localiza-
tion length roughly corresponds to the system length L
where the conductance ne?r/mL becomes of the order of
e?/m#. The same result has been derived analytically
with the use of the supersymmetry method,> within a
model of weakly coupled 1D chains,”® and within a
random-matrix model®’ proposed by Imry'? to explain
the universal conductance fluctuations and numerically
explored later.”® Numerical calculations have also
confirmed this conclusion.”® It should be noted that in
quantum wires with well-resolved 1D subbands the actual
value of & varies considerably as a function of the energy
even for a given channel number.

Figure 3 shows the corresponding results for the con-
ductance fluctuation 8G={(G—(G))?)!/2, With in-
creasing length, the fluctuation first increases, takes a
maximum value, and then begins to decrease. The first
increase in the nearly ballistic regime is a reflection of the
fact that the conductance is quantized when L </, and
the decreases for L R £ is a result of the reduction of the
conductance due to the localization effect. When the

U=51.25 oo,

Fluctuation (units of e2/h)

02} Wi .
a 10.25
m 525
e 275
1 1 " L
0'00 10 20 30 40

Length (units of )

FIG. 3. Conductance fluctuations as a function of the length
L for systems corresponding to those shown in Fig. 2. The
universal value obtained by the perturbation for quasi-one-
dimensional wires is indicated by a horizontal arrow. The local-
ization lengths are indicated by the vertical arrows.

H. TAMURA AND T. ANDO 44

channel number is not so large (W /A =2.75), the nearly
ballistic regime and the localized regime overlap with
each other and the fluctuation is always strongly depen-
dent on the length. As the channel number increases and
the localization length becomes larger, the maximum
fluctuation increases and there appears a length region
where the fluctuation stays independent of length (the
universal region). The maximum fluctuation for
W /Ar=10.25 is close to but slightly smaller than
0.73e%/h derived by the perturbational method for the
quasi-one-dimensional metallic wires.!> !>

The appearance of the universal region is not surpris-
ing because the perturbational calculation shows that the
fluctuation is independent of length even in pure 1D,
where, however, the localization effect is essential and the
perturbation fails. With the increase of the number of oc-
cupied 1D subbands, the localization effect is reduced
and there appears a finite length region where the pertur-
bational treatment is valid and 6G can be independent of
length. On the other hand, it is an open question whether
the absolute value of 6G in the present multisubband sys-
tem should be the same as that calculated perturbational-
ly in pure 1D systems. Iwabuchi and Nagaoka have stud-
ied effects of intersubband scatterings in a 2D system
with two occupied subbands and have demonstrated that
the absolute value of 8G is the same as that of pure 2D
systems.®!

A crossover occurs from 1D to 2D when the broaden-

H W/ag=10.25

*[‘.‘ l/lF
| L W=l a 5125 |

“’{ }* ’ = 205
L T

h

=D 4 Y
* “W “‘“”4*“42414““#”””“”

06 » B

Fluctuation (units of e2/h)

|4

-------- Perturbation

1
04 0 10 20

Length (units of 1)

FIG. 4. A crossover of conductance fluctuations from 1D to
2D when the number of the occupied subbands is 20. The solid
squares correspond to a wire where the broadening is larger
than the level separation and the subband structure is smeared
out. They are close in the region 3/ S L < 10! to the dotted line
obtained by the perturbation calculation for metallic wires. The
triangles are the same data as those in Fig. 2. The vertical ar-
row indicates the length corresponding to the 2D square. The
universal values obtained by the perturbation for quasi-one-
dimensional wires and 2D squares are indicated by the horizon-
tal arrows.
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ing of the subbands exceeds their separation and the sub-
band structure is smeared out. Figure 4 shows calculated
8G for I /Ap=2.05 together with that for / /Az=51.25in
the case that the number of occupied subbands is 20. For
I1/Ap=2.05 the situation is closer to that of metallic
wires, i.e., the broadening is larger than the largest sub-
band separation [#/7= 1.6(Ey ., —Ey )] and the wire

width is larger than the mean free path (W /I =5). The
numerical result is in good agreement with that by the
perturbation represented by the dotted line in the region
21 <L < 10! including the length corresponding to the 2D
square W =L. When the length is larger than ~ 10/, the
fluctuation becomes smaller due to the localization effect.

A brief comment on effects of the evanescent states is
worthwhile. The evanescent states correspond to virtual
processes in scatterings. Therefore, by their inclusion the
higher-order Born scatterings from a single impurity can
automatically be taken into account. The major part of
the effects noted in recent papers?>2% is probably those of
such higher-order Born scatterings. In this paper, we
have chosen 7 as small as possible (and also assumed
equal amounts of attractive and repulsive impurities) in
order to reduce the higher-order Born effects. Conse-
quently, the evanescent states have little influence on the
conductance except when the Fermi level lies just below
the bottom of an excited subband, where the subband
broadening cannot otherwise be treated properly. In fact,
the calculated conductance suffers little change even if
the evanescent states are completely neglected, when the
Fermi level lies in the middle of the bottoms of two adja-
cent subbands.

C. Magnetic field

An example of calculated conductance as a function of
the magnetic field is shown in Fig. 5. We consider a sys-

s T : I I 1 T
N5 | N.=4 Ne=3 | Ng=2
51 : 1
= |
Nu) é
© 41 : RLTYS dddddd
o °.® .. i %ee ., °
E o o0 .0. i L] ..
=3} .. : .. . -
V] o 3
o ! H
c * o
S : : o
S22t ° " ' .
o) . H |
5 : i Pe
© ; " .

1} L/1=3.00 ' : 3 ]
W/xp=2.75 '
U/xp=51.25 : :

0 " | " b | H 1 . H1 "

0.0 0.1 0.2 0.3 0.4 0.5

h&)c / EF

FIG. 5. Conductance as a function of the magnetic field for
L/l=3 and W /Ar=2.75. The number of occupied subbands
N, changes at the magnetic fields indicated by the vertical dot-
ted lines.
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tem characterized by W/Ap=2.75 and [/Ap=51.25
with fixed length L =3/, where the fluctuation becomes
nearly maximum in the absence of magnetic fields, and
we vary the magnetic field at a fixed value of the Fermi
energy. In the presence of very weak magnetic fields
(#iw./Ep S1X1072%), the conductance increases slightly
from the value at zero field probably due to a reduction in
the weak localization effect. At higher magnetic fields,
the conductance exhibits an oscillatory dependence on
the field.

This behavior can be understood simply in terms of the
magnetic-field dependence of the mean free path. The
mean free path of each subband® is shown in Fig. 6.
Whenever the Fermi level is close to a subband bottom,
the mean free path decreases drastically due to the diver-
gence in the 1D density of states. The decrease in the
conductance at each subband bottom corresponds to this
strong enhancement of scattering effects. Except at such
magnetic fields the mean free path increases gradually
with magnetic field. In magnetic fields, electrons are
pushed toward the wire edges, the overlap between wave
functions associated with positive and negative velocity
becomes small, and backscattering rates are lowered. At
the magnetic field (#w,/Ep=~0.4) where the channel
number changes from 3 to 2, the mean free path increases
by several orders of magnitude and exceeds the system
length. Correspondingly, the conductance rapidly ap-
proaches the quantized value G=2N_.e?/h. In such a
strong field well-defined edge states are formed and the
backscatterings between the edge states are completely
suppressed. An electron in the edge states can move bal-
listically through the sample except when the energy is in
the region of broadened bulk Landau levels where the
edge states are strongly mixed with the bulk levels.®
Edge states with a long mean free path in high magnetic
fields have been the recent subject of both theoretical’*®3

10% . 1 T T T L

F W/Ap=2.75 ]

104 ——— n-{ /—;

p e n=2 E

F ——— n=3 ]

103 E—— n=4 E

— n=5 3

I 2 3

= | 1

10 .

i L=34

100 3

107" E
10—2 " N " .

0.0 0.1 0.2 0.3 0.4 05

FIG. 6. Mean free path of each subband as a function of the
magnetic field for the same system as that in Fig. 5.
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and experimental®~® investigations.

Figure 7 shows the corresponding result of the fluctua-
tion. The reduction in the fluctuation which can be seen
in weak magnetic fields (%o, /Ep S 1X 107 2) corresponds
to the suppression of the contribution from the so-called
“particle-particle channel” predicted by perturbational
calculations.'? "> As a matter of fact, the flux penetrat-
ing through the sample is BLW ~13h/e for
fio, /Ep~1X1072. When the magnetic field is increased
further, the fluctuation gradually decreases except in the
vicinity of the fields where the subband depopulation
occurs. This can be explained by the gradual approach of
the system to the ballistic regime due to the increase in
the mean free path. In strong magnetic fields
(Aiw, /Er 2 0.45) the fluctuation becomes negligibly small
corresponding to the quantization of the conductance it-
self.

Figure 8 shows G as a function of L for W /Ap=5.25
and ! /Ar=51.25 in the weak field #w,/Er=3X10"3 to-
gether with G at B =0. In terms of the magnetic flux,
each area normal to the field with length / and width Wis
penetrated by BIW /(h/e)=2.5 flux. In the magnetic
field the conductance becomes larger than that at B =0
at every length due to the reduction of the localization
effect. The localization length, denoted by the vertical
arrow, is 16.7%0.6 in units of / smaller than twice of the
value at B =0. This decrease of the localization effect is
a result of the change in the universality class of the sys-
tem from orthogonal to unitary, i.e., due to the breaking
of the time-reversal symmetry by a magnetic field. This
fact has been shown in various methods.®’ "% The exact
doubling of the localization length in quasi-one-
dimensional metallic wires in magnetic fields has been
suggested by various methods.>> >’

Figure 9 shows the corresponding results for the fluc-
tuation. The universal region can now be clearly seen as
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FIG. 7. The fluctuations as a function of the magnetic field
for the same system as that in Fig. 5.
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FIG. 8. Conductance as a function of the length L for
W/Ar=5.25 in the magnetic field corresponding to
fiw, /Ep=3X10"3 compared with that at B =0. The magnetic
flux penetrating through the area with length / and width W is
BIW=2.5h/e. The localization lengths are indicated by the
vertical arrows.

well as the reduction of 86G in comparison with 8G at
B =0, when the sample is shorter than the localization
length (L <15/). The actual amount of the reduction is
slightly smaller than that predicted by perturbational cal-
culations [8G(B)/8G(B =0)~0.8 in contrast to

08 —_—
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FIG. 9. Conductance fluctuations as a function of L in the
presence of the magnetic field compared with those at B =0 for
the same system as that in Fig. 8. The localization lengths are
indicated by the vertical arrows. The universal values obtained
by the perturbation calculation in quasi-one-dimensional wires
are indicated by the horizontal dotted line (B =0) and the
dashed line (BLW >>h /e).
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1/V/2=0.71]. This difference is to be expected because
the mechanism leading to the reduction is absent in pure
1D wires with a single occupied subband. When the sam-
ple becomes longer than the localization length, G some-
what increases and then begins to decrease in the region
L >351. It is quite interesting that the magnetic field
enhances 8G in the localized regime, while it reduces 8G
in the universal region.

IV. SUMMARY AND CONCLUSION

In conclusion, we have calculated conductance fluctua-
tions in quantum wires both in the absence and in the
presence of magnetic fields. It has been shown that with
increasing length L the fluctuations increase in the region
L <1 with [ the mean free path and start to decrease
when L exceeds the localization length £&. When only a
few subbands are occupied, £ is comparable to / and there
is no universal region where the fluctuations stay in-
dependent of L. When many subbands are occupied, § is
much larger than [(§=~N_] with N, the number of occu-
pied subbands) and there appears a universal region for

I SL S& The absolute value of the fluctuation in the
universal region is close to that obtained for quasi-1D
systems by the perturbational method. We have also
demonstrated that the dimensional crossover from 1D to
2D systems or from quantum wires to metallic wires
occurs when the broadening exceeds the subband energy
separations. In the presence of a weak magnetic field, the
universal region becomes wider due to the reduction in
the localization effect and the fluctuation itself is reduced.
In strong magnetic fields where edge states with an ex-
tremely long mean free path are formed, the conductance
is almost quantized and the fluctuation nearly vanishes.

ACKNOWLEDGMENTS

We would like to thank H. Akera for useful discus-
sions. This work is supported in part by the Industry-
University Joint Research Program ‘“Mesoscopic Elec-
tronics” and by a Grant-in-Aid for Scientific Research on
Priority Area “Electron Wave Interference Effects in
Mesoscopic Structures” from the Ministry of Education,
Science and Culture, Japan.

IFor a review, see S. Washburn and R. A. Webb, Adv. Phys. 35,
375 (1986), and references therein.

2C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb,
Phys. Rev. B 30, 4048 (1984).

3Y. Gefen, Y. Imry, and M. Ya. Azbel, Phys. Rev. Lett. 52, 129
(1984).

4M. Biittiker, Y. Imry, and M. Ya. Azbel, Phys. Rev. A 30, 1982
(1984).

SM. Biittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev.
B 31, 6207 (1985).

SR. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz,
Phys. Rev. Lett. 54, 2696 (1985).

7G. Timp, A. M. Chang, P. Mankiewich, R. Behringer, J. E.
Cunningham, T. Y. Chang, and R. E. Howard, Phys. Rev.
Lett. 59, 732 (1987); A. M. Chang, G. Timp, T. Y. Chang, J.
E. Cunningham, P. M. Mankiewich, R. E. Behringer, and R.
E. Howard, Solid State Commun. 67, 769 (1988).

8M. L. Roukes, A. Scherer, S. J. Allan, Jr., H. G. Craighead, R.
M. Ruthen, E. D. Beebe, and J. P. Harbison, Phys. Rev. Lett.
59, 3011 (1987).

9C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H.
Ahmed, D. C. Peacock, D. A. Ritchie, J. E. F. Frost, and G.
A. C. Jones, Phys. Rev. B 38, 8518 (1988).

10B. J. van Wees, H. van Houten, C. W. J. Beenekkar, J. G. Wil-
liamson, L. P. Kouwenhoven, D. van der Marel, and C. T.
Foxon, Phys. Rev. Lett. 60, 848 (1988).

D, A. Wharam, T. J. Thornton, R. Rewbury, M. Pepper, H.
Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A.
Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).

12B, L. Altshuler, Pis’'ma Zh. Eksp. Theor. Fiz. 41, 530 (1985)
[JETP Lett. 41, 648 (1985)].

I3P. A. Lee and A D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

14B. L. Altshuler and D. E. Khmelnitshii, Pis’ma Zh. Eksp.
Theor. Fiz. 42, 291 (1985) [JETP Lett. 42, 359 (1986)].

I5p. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35,
1039 (1987).

16C, L. Kane, R. A. Serota, and P. A. Lee, Phys. Rev. B 37,
6701 (1988).

17Y. Imry, Europhys. Lett. 1, 249 (1986).

18A. D. Stone, Phys. Rev. Lett. 54, 2692 (1985).

IN. Giordano, Phys. Rev. B 36, 4190 (1987).

20X, C. Xie and S. Das Sarma, Phys. Rev. B 38, 3529 (1988).

21K. Tankei, A. Sawada, and Y. Nagaoka, J. Phys. Soc. Jpn. 58,
368 (1989).

22B, Kramer, J. Masek, V. Spicka, and B. Velicky, Surf. Sci.
229, 316 (1990).

233. Datta, M. Cahay, and M. McLennan, Phys. Rev. B 36, 5655
(1987).

24M. Cahay, M. McLennan, and S. Datta, Phys. Rev. B 37,
10 125 (1988).

25M. Cahay, S. Bandyopadhyay, M. A. Osman, and H. L. Gru-
bin, Surf. Sci. 228, 301 (1990).

268, Bandyopadhyay, M. Cahay, D. Berman, and B. Nayfeh, in
Proceedings of the Fifth International Conference on Super-
lattices and Microstructures, Berlin, 1990 [Supperlatt. Mi-
crostruct. (to be published)].

27R. Harris and A. Houari, Phys. Rev. B 41, 5487 (1990).

28D. J. Thouless, J. Phys. C 6, L49 (1973).

29K. Ishii, Prog. Theor. Phys. 53, 77 (1973).

30P. Erdés and R. C. Herndon, Adv. Phys. 31, 65 (1982).

31H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).

32D, S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

33M. Biittiker, Phys. Rev. Lett. 57, 1761 (1986).

34M. Biittiker, Phys. Rev. B 38, 9375 (1988).

35A. D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384
(1988).

36H. U. Baranger and A. D. Stone, Phys. Rev. B 40, 8169 (1989).

37R. Landauer, IBM J. Res. Develop. 1, 223 (1957); Philos.
Mag. 21, 863 (1970).

38Y. Isawa, H. Ebisawa, and S. Maekawa, J. Phys. Soc. Jpn. 55,
2523 (1986); S. Maekawa, Y. Isawa, and H. Ebisawa, ibid. 56,
25 (1987); Y. Isawa, H. Ebisawa, and S. Maekawa, in Ander-



1800 H. TAMURA AND T. ANDO 44

son Localization, edited by T. Ando and H. Fukuyama
(Springer-Verlag, Berlin, 1988), p. 329.

39M. Biittiker, Phys. Rev. B 35, 4123 (1987).

40H. U. Baranger, A. D. Stone, and D. P. DiVincenzo, Phys.
Rev. B 37, 6521 (1988), C. L. Kane, P. A. Lee, and D. P.
DiVincenzo, ibid. 38, 2995 (1988), D. P. DiVincenzo and C.
L. Kane, ibid. 38, 3006 (1988).

41S. Hershfield and V. Ambegaokar, Phys. Rev. B 38, 7909
(1988). S. Hershfield, Ann. of Phys. 196, 12 (1989).

42A. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A. Webb,
Phys. Rev. Lett. 58, 2343 (1987).

43W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jack-
el, D. M. Tennant, and A. D. Stone, Phys. Rev. Lett. 58, 2347
(1987).

44P. W. Anderson, Phys. Rev. B 23, 4828 (1981).

45See, for example, Y.-C. Chang, and J. N. Schulman, Phys.
Rev. B 25, 3975 (1982); 31, 2069 (1985), and references cited
therein.

46P. F. Bagwell, Phys. Rev. B 41, 10 354 (1990).

47T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).

48T. Ando, J. Phys. Soc. Jpn. 36, 1521 (1974); 37, 622 (1974); 37,
1233 (1974).

49P, W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fish-
er, Phys. Rev. B 22, 3519 (1980).

50E. Abrahams and M. J. Stephen, J. Phys. C 13, L377 (1980).

51B. S. Andereck and E. Abrahams, J. Phys. C 13, L383 (1980).

52J. Sak and B. Kramer, Phys. Rev. B 24, 1761 (1981).

33A. D. Stone, J. D. Joannopoulos, and D. J. Chadi, Phys. Rev.
B 24, 5583 (1981).

54D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).

55K. B. Efetov and A. I. Larkin, Zh. Eksp. Theor. Fiz. 85, 764
(1983) [Sov. Phys. JETP. 58, 444 (1983)].

560. N. Dorokhov, Zh. Eksp. Theor. Fiz. 85, 1040 (1983) [Sov.
Phys. JETP. 58, 606 (1983)].

573 .-L. Pichard, M. Sanquer, K. Slevin, and P. Debray, Phys.
Rev. Lett. 65, 1812 (1990).

58A. D. Stone, K. A. Muttalib, and J.-L. Pichard, in Anderson
Localization, edited by T. Ando and H. Fukuyama (Springer-
Verlag, Berlin, 1988), p. 315; K. A. Muttalib, J.-L. Pichard,
and A. D. Stone, Phys. Rev. Lett. 59, 2475 (1987).

59A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546
(1981).

60T. Ando, Phys. Rev. B 42, 5626 (1990).

61S. Iwabuchi and Y. Nagaoka, in Proceedings of the Third In-
ternational Symposium on Foundations of Quantum Mechan-
ics, edited by S. Kobayashi, H. Ezawa, Y. Murayama, and S.
Nomura (Physical Society of Japan, Tokyo, 1990), p. 288.

62Gee, for example, H. Akera and T. Ando, Phys. Rev. B 41,
11967 (1990).

63T. Martin and S. Feng, Phys. Rev. Lett. 64, 1971 (1990).

64S. Komiyama, H. Hirai, S. Sasa, and T. Fujii, Solid State
Commun. 73, 91 (1990).

65B. W. Alphenaar, P. L. McEuen, R. G. Wheeler, and R. N.
Sacks, Phys. Rev. Lett. 64, 677 (1990).

66B. L. van Wees, E. M. M. Willems, L. P. Kouwenhoven, C. J.
P. M. Harmans, J. G. Williamson, C. T. Foxon, and J. J.
Harris, Phys. Rev. B 39, 8066 (1989).

67P. A. Lee and D. S. Fisher, Phys. Rev. Lett. 47, 882 (1981).

68U. Krey, W. Maass, and J. Stein, Z. Phys. B 49, 199 (1982).

69T. Ando, Phys. Rev. B 40, 5326 (1989).



