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The persistent current of a mesoscopic ring pierced by a magnetic flux and the conductance of the
same sample in an open geometry are two quantities that measure the sensitivity of the spectrum to the
boundary conditions. We study the content in harmonics of the variation with the flux of the energy of a
single level. This content is different from the harmonic content of the total energy. We find that there
is a well-defined relation between the harmonic content of the persistent current and the correlation
function of these currents on an energy range equal to the Thouless correlation energy E, =AD/L .
These results provide a self-consistency check between the various analytical and numerical results relat-
ing the conductance to the single level and total flux dependence of the persistent currents.

I. INTRODUCTION

The recent experimental discovery of persistent
currents in an array of mesoscopic disconnected copper
rings has increased the interest for a theoretical study of
these currents. ' The existence of a persistent current in a
ring pierced by a magnetic Aux has been predicted by
Buttiker, Imry, and Landauer. This effect, reminiscent of
the diamagnetism of aromatic molecules, is an equilibri-
um property of the ring: the current is given by
I= —BET/BP, where ET is the total energy and P is the
Aux inside the ring. It is well known that, using a gauge
transformation, the spectrum of the electrons in such a
ring is identical to the spectrum of electrons in zero Aux,
with a change in the boundary conditions. Instead of
having a periodic boundary condition, the wave function

2i n.P/Po
obeys %'(x+L)=~it(x)e ', where L is the perimeter
of the ring, P the magnetic flux, and Po the flux quantum
h/e. As a consequence, the persistent current directly
measures the sensitivity of the spectrum to the boundary
conditions.

Theoretical investigations of the persistent current
started three years ago, first in a one-dimensional (1D)
ring and then in a multichannel ring. ' The second
case is not a trivial generalization of the first one and has
a different physical behavior. In particular, it is charac-
terized by a metallic regime which is absent in 1D. The
Aux dependence of the persistent current is a complicated
function which depends on the details of the microscopic
realization of the disorder. The probability distribution
of the current is characterized by its incan value (I(p) )
and its root mean square I,„(y), where ( ) is an average
over disorder and number of electrons; p=2irg/$0.

It has been shown, first in 1D, and then in multichan-
nel systems, " ' that (I(P)) is finite and periodic in
$0/2, provided that the number of electrons is kept fixed

in each ring. A grand canonical average does not yield
this half-flux quantum periodicity and is exponentially
small. The experimental results of Levy et al. agree with
this prediction. ' More recently, it has also been shown
that interacting electrons contribute also to a nonzero
average, even in the grand canonical ensemble. ' ' ' At
the moment, experiments cannot decide yet between the
two mechanisms.

The typical amplitude of the current has been estimat-
ed, with a Green-function method, and has been found to
vary as I, (tp=n/2)-Iol, /L —e/rD. l, is the elastic
mean free path. Io is the 1D zero disorder current:
Io=euI;/L where U„ is the Fermi velocity. ~D is the
diffusion time in the ring. The typical current can also be
written as I, -Io(M, tt/M), where M is the number of
channels and the quantity M,z introduced by Imry is the
effective number of conducting channels. ' M,z is identi-
cal to the dimensionless conductivity of a strip having the
same dimensions and amplitude of disorder than the ring,

GhM =g=ff
2

On the other hand, it has been shown by the same au-
thors that the typical value i, of the single-level current
(also calculated at tp=n/2) scales as &g. There is, of
course, a great interest in understanding these relations
between the persistent current which is an equilibrium
property of the ring and the conductance which is a
transport quantity. A crucial step in this direction has
been made by Thouless when he showed that the conduc-
tance is a measure of the sensitivity to the boundary con-
ditions:

(1.2)

g is the mean interlevel spacing and the "Thouless ener-
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gy" E, is the typical curvature of the levels

(1.3)

This quantity also measures the correlation between lev-
els and is the characteristic energy for finite-
temperature effects. (Except for the Thouless energy E„
our convention is to use small letters for single-level
quantities and capital letters for total quantities. )

To characterize the sensitivity of the spectrum and cal-
culate the conductance, other quantities have been intro-
duced such as the change in the energy of a level from
periodic to antiperiodic boundary conditions
5e = ~e(0) —e(~) ~. The typical value of this quantity has
often been used, mainly for computational purpose, as a
measure of E, .

The Thouless argument relates the conductivity to a
typical single-leUe/ quantity. The connection with the
analytical results of Ref. 8 where the total current is
found to scale as~ (instead of the single level c-urrent
which scales as &g) is thus not completely straightfor-
ward. The aim of this paper is indeed to show that these
three relations between the conductance and the per-
sistent current are consistent within one another when
taking into account the harmonic contents of the Aux
dependence of the energy levels and the correlations be-
tween the level currents in an energy range equal to E,

The dependence of 5e, =( ( 5e ) )' vs g is still contro-
versial. It has been investigated numerically on a wide
range of sizes and values of the disorder. These results,
already published, agree with 5e, ~g'~ /M. ' Riedel
showed that this behavior can be deduced with a
correspondence argument from the weak-disorder regime
which is well understood. ' On the other hand, it has
been shown recently that 5e, is related to the Auctuation
of the number of levels in an energy range equal to
E, . ' ' This last quantity is related to the so-called
universal conductance Auctuations and depends only log-
arithmically on g. Since there is not yet agreement on the
variation 5e, (g), we will assume in the following a varia-
tion 5e, ~g~/M with 0&P& —,

' (5e, ~lng/M for P=O.
We show in Appendix A that P necessarily obeys these
inequalities) and we will study the consequences of such a
behavior on the harmonic content of several quantities.
Our main results in the metallic regime are then written
in terms of this unique parameter and are the following.

(i) For a single level, the typical harmonics of the ener-

gy scale as g ~/p ~+'~ up to a value p ~v'g, indepen-
dent of P. This result means that the &g first harmonics
of the single-level current scale as p

'

(ii) There is a relationship between the harmonics (I )
of the average total current and the typical harmonics of
the typical single level current (i ), -

II. HARMONICS CONTENT OF THE ENERGY
LEVELS

In the following, we characterize the Aux dependence
of the energy levels by their content in harmonics A, :

e(P) = gApcos(py) withe=2m.
0o

(2.1)

Depending on the way the A, vary with p, the Aux depen-
dence of the levels as well as the single-level current
i(p)= —Be/BQ and the curvature c(y)=B e/Bqr will be
dominated by the first harmonics or, on the other hand,
will contain contributions of higher harmonics. Our first
physical ingredient is that the harmonics for a given level
are uncorrelated. This is exact in the vanishing disorder
limit (when averaging on the number of electrons) and
there is no physical reason why disorder would introduce
correlations between them. We have also checked this
absence of correlations numerically. (The ratio
(Apk, ~ ) /(Ap )(A,~ ), with pAq is found to be of the or-
der of 1/N when the averages are taken over N levels and
N sufficiently large, typically of the order 1000.) The typ-
ical values of 5e = ~e(0)—e(m)~, i(y) and c(q&) are then
obtained from the following summations:

(5e ) = g (k„)[cos(pm. )
—I],

p=1

4m
, y p'&~,'&»n'(p~),

(t'0 p =1

(2.2a)

(2.2b)

& '(q)&= yp'&&,') o '(pq).
p=1

(2.2c)

A reasonable ansatz for the p dependence of the typical
values of the A, is that they decay as a power law:

(Ap) =(A, , )p . Moreover, the fact that these three
quantities have different dependences versus g implies the
existence of a cutoff p, a function of g, above which they
decay faster (in order to ensure the convergence of the
rest of the series). The above quantities are thus func-
tions of this cutoff' (except when the series converge) and
when p )) 1 and —,

' ~ a & —,', they scale as

5e o-ii, (Xlnp if a= —,'), (2.3a)

independently of P.
(v) We also discuss the correlation functions

of the level currents first &g harmonics I p(n )
=(ip(n'+n)ip(n'))„. . Its Fourier transform presents a
sharp low-frequency cutoff below p /g. This last result,
together with the preceding ones, yields indeed the first
Vg harmonics of the total current proportional to g~+'/
p ~+ ~ and provides a strong argument for /3=0 in order
to be consistent with previous analytical results. ' '

)
M &ip)

2~I0 P
i, (ir/2) ~ A, ,p

277

0
(2.3b)

(iii) As a result, the (Ip )'s scale as g ~/p ~ up to

(iv) At low fiux, the average current varies as (I ) ~ gy,

c (0) ~ g p5/2 —a (2.3c)

where the index t means a typical value. For example,
A, i, =((A, i ) )'~ . Table I and Appendix A present a logi-
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TABLE I. Dependence of the three quantities of interest the cutoff p, for various values of the ex-
ponent a. "Const" stands for a constant which has no dependence on g. See Appendix A.

5e, /A, ,
i, (m./2) /A

c~(0~/

1/2 —a
pm

3/2 —a
pm

5/2 —a
pm

lnp const
3/2 —a

pm
5/2 —a

pm

lnp

const
const

5/2 —a
pm lnp

const
const
const

cal way to show that a must be contained in these
limits, since from Refs. 22 and 8, c,(0)=E, o-g and

i, (n/2) .~ &g /M we deduce the cutoff dependence

(2.4)

independent of the exponent a. This result has to be op-
posed to the one obtained in the ballistic regime, where
p scales linearly with the number of channels (cf. Ap-
pendix B). We believe that this is related to the intrinsic
difference between the ballistic and diffusive motions
where the characteristic time scales vary respectively,
linearly and quadratically with the length scales. The im-
portant difference between the typical value of the band
current at n/2, i, (n/2) ~ &. g /M and its low flux value:
i, (q&) ~gq&/M is thus directly related to the harmonics
content of the energy levels. The crossover between this
linear behavior at low flux and the saturation ~&g at
larger flux occurs when y is of the order of the inverse of
the cutoff p, i.e., Ip„=1/&g. At this flux, the typical
excursion of a level is of the order of the interlevel dis-
tance. ' On the other hand, in the ballistic regime, y„ is
of the order of 1/M because of the linear dependence of
the levels at low flux.

We can also deduce from these formulas the relation
between a and the exponent P of the dependence of 5e„

of a cannot allow us to conclude between P=0 and P= —,'.
We have also measured directly 5e, versus disorder.

This has been done extensively on a wide range of sizes
and values of the disorder. Our results are depicted in
Fig. 2 where the quantity M5e, is plotted versus 1/g [Fig.
2(a)] and ln(1/g) [Fig. 2(b)], for rings of different sizes.
The data corresponding to a number of channels M ~ 100
can be well fitted by a g~ behavior where P=0.25+0.05,
as already published. ' However, one can see that the
same data can also be described by a logarithmic depen-
dence of g, but the range of validity of this fit is different
from the previous one. More recently, we have per-
formed numerical calculations on rings of size
64 X 14 X 14 (this represents 3 h of computing time for
each value of disorder, on a Cray-2 computer). When de-
scribed by a power law g~, these results lead to a very
small exponent P-0. l. On the other hand, a logarithmic
variation still describes the data quite well. These results
thus seem to indicate that 5e, varies logarithmically with

g, in agreement with the recent analytical results of Refs.
16 and 20. However, we do not understand why the be-
havior 5e, (g) is so much size dependent, since the varia-
tion I, (g) of the typical current versus g is already found
correctly in small sizes. Moreover, we are still puzzled by
the following point: since the harmonics of the single-
level current vary as p'~ ~ (up to &g), the value P=O

a =2P+ —,'. (2.5)

Let us now compare these result with our numerical
simulations on the Anderson model. The transfer term is
taken as a constant t between first neighbors. The field
effect is simply to change the boundary condition along
the ring so that the transfer term gets a phase factor
exp(2irrglgo) after one loop around the ring. Open
boundary conditions are taken in the two other direc-
tions. The disorder is given by a random choice of the
on-site energy between —W/2 and W/2. We have stud-
ied the flux dependence of the energy levels on rings of
various sizes and disorder, and measured its content in
harmonics. The typical values of the first ten harmonics
of the energy levels are shown in Fig. 1 for several values
of disorder W/t. We notice a first behavior A~, ~ 1/p
with a=0.75+0.25 and then A~, ~ 1/p for larger p.
The position p of the crossover is proportional to
&M /W where W is the amplitude of the disorder.
Since, according to elementary scattering theory, I, varies
like 1/W and g =Ml, /L, this result agrees with

p ~ v'g expected from our previous argument. More
precisely, since A~, ~ g~/Mp and using the relation
(2.5), we expect that MA~, g'~ vs p/&g is a universal
curve. This universal behavior is found numerically and
shown in Fig. 1. From this curve, the numerical estimate

0.1 =
I I I I I I I I

I o ~ xI ~

0.01 =

rC

0.001 =

0.0001 =

0.1

I I I I I I I I

0.2 0,5 1
pW/WM

FICx. 1. Typical values of the first ten harmonics of the ener-
gy levels for several values of disorder and number of channels
in a universal plot. Stars: 64 X4 X4, W/t = 1.4 Plusses:
64X4X4, W/t =2. Crosses: 64X8X 8, 8'/t =1.4. Circles:
64X8X8, W/t=2. Black circles: 64X14X14, W/t=1. 4.
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I I I I I I I I The argument connects the Aux derivative of the average
of the total energy to the typical variation of the Fermi
level

( hE(y) ) = 2n—o ( he~(p) ), (3.1)

0 ~
Nli

%II

where no is the average density of states. This formula
can be rewritten in terms of the total and single-level
currents. Assuming again no correlation between har-
monics, one gets immediately

novr
&I(y) &

= g p&A,
' &sin(2pq)

NO, =I
(3.2)

o
0.5 1

I I I I I I I I I I I

2 5 10 20
LW /M

50

or, using the expression of the unit current
Io =euF /L =2M /no go,

I I I I I I I I

with

(I(y)) = g (I )»n(2py)
p=1

(3.3)

(a)

( )
M &Ip&

2~Io p
(3.4)

X

i' Xr'l1

where i is the p
' harmonic of the level current,

i = 2mp A, /Po. Using the above results, one gets

nor.
(I(y)) = (A, , ) g p' sin(2pg)

0o
(3.5)

X„,
/ l'L

o.5
0.5

I I I I I I I I I I I

2 5 10 20
LW /M

50

FIG. 2. m5e, vs L W /M ~ g for different ring sizes. Crosses:
64X8X8, stars: 64X10X10; black circles: 64X14X14. (a)
On a double logarithmic scale. (b) On a semilogarithmic scale.

implies that these harmonics increase with their order.
We have shown analytically (Appendix B) that the typical
harmonics of the single-level current i~, are independent
of p in the zero-disorder limit. Such an increase in the
diffusive regime seems to us very unphysical.

or using Eq. (2.5) and the dependence A, , (g)

Io 2M
g'~ y p 'Psin(2py). (3.6)

This current has the Po/2 periodicity. The coefficient
p= —' implies that the harmonics of the average total
current decrease as 1/p. On the other hand, p=O (Refs.
15 and 16) implies that the &g first harmonics have the
same order of magnitude. It is interesting to notice that
at low Aux both results give the same behavior
(I(y) ) ~gy because the different harmonics content is
compensated by a different prefactor. This behavior is
valid until y, =1/v'g, where (I(y)) attains its max-
imum value &g.

In numerical simulations, ' the average current has
been estimated from the quantity

III. AVERAGE CURRENT

The quantities we have discussed so far are the single-
leuel currents which a priori are not measurable. Howev-
er, it has been shown numerically that, when the averages
are performed at fixed number of particles, there is a rela-
tionship

(I )„I,= ( E~(~)+E~(0) 2E~(rr/2) )~. —
0

(I )„I,has the following harmonics content:

(I )„I,= g [1—cos(pm. ) ]
p=1

v'g

g ~ g p ~ '[1—cos(pm)].
2M

(3.7)

(3.8)

between the second harmonics of the average current and
the typical first harmonic of the single-level current. "
By that time, this relation could be justified only in the
localized regime. " Imry' has demonstrated its validity
also in the diffusive regime (see also Refs. 15, 16, and 19).

This calculated quantity provides a good estimation of
the second harmonics of average current (Iz ) if one as-
sumes that the contribution of high harmonics decays
faster than 1/p (i.e., p) 0). However, when p=O, all the
even harmonics up to &g contribute to (I)„I,
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Io g» o

M )2p M
(3.9) (I )

I,
calc ~M

(3.10)

100 I 1 I I I I I I

(a)

Our numerical results concerning (I )„i, are shown in
Fig. 3 for rings of various sizes. On Fig. 3(a), the ratio
r =MW(I)„i,/&L is plotted versus W. The data, al-
ready published, ' obtained with a number of channels
M &»00 are consistent with r =const in the diffusive re-
gime, i.e.,

However, as for 5e„our recent numerical results with
bigger size show a different behavior. They cannot be de-
scribed with relation (3.10), because the ratio r is found to
increase with 8' in the whole diffusive regime. On the
other hand, Fig. 3(b) shows that a logarithmic behavior
of (I)„i, vs g: (I)„i,=(Io/M)(A+BLng) well de-
scribes all our data. The dimension less coeKcient B is
found of the order of 0.1 (within plus or minus 10%) in
agreement with analytical results which yield
B =1/4m ' '

The previous discussion of the harmonics content also
lead us to reconsider the numerical estimate of the ratio:

10 = xxx
X

X

gl 0g

(I)„„

where (i )„„was defined in Ref. 12 as

2

(3.1 1)

0.1 =

I Gy&~
X
+X~
0

24o

24'o

( [e„(0)—e„(vr ) ] )„

2

(3.12)

0.01
0.2

I I I I I I I

0.5 1

0
X

5 10 20

This quantity has the following harmonics content:

(i )„„=g " [1—cos(par)] .
p=1 5'

(3.13)

05 0

0.4—
0

—X
0.3— 0

I I I I I I I I

(b)

The ratio (3.11) was considered as an estimation of
(Iz ) /(i i ). This is correct only if P) 0. However, given
the harmonics content of (I )„„and (i )„i, [see Eqs.
(3.18) and (3.13)], the analytical result (3.4),
(I„)=(M/2vrIo)((i ) /p ), valid for each p, implies that

A
v

0.2—
WI/ X 0ii

X
x

+
100—

I I I I I I I I

0.1— 10 =

Q Q I I I %$sgkm ~

2 4 6
1n(LW /M)

A"

v

0.1 =() 88
E, ghI + O+I~ ~gI~

oo

0 ++y,t
f3 ++ )Ir

%4+ +~~ 'Pic
yg )'C rR
I IW

FICi. 3. (a) Plot of the quantity (I)„„Xv'MLW vs disorder
8'(in t units) for various sizes of the ring. Circles: 64X4X4;
crosses: 64XSXS; squares: 128X8X8; stars: 64X10X10;
plusses: 128X10X10; black circles: 64X14X14. Note that
(I )„„v'MLW is nearly independent of W only in the diffusive
regime whose extension in 8 corresponds to I, &L &Ml, . (b)
M(I)„„vs lug. Circles: 64X4X4; crosses: 64X8X8; squares:
128 X 8 X 8; stars: 64 X 10X 10; plusses: 128 X 10X 10; black cir-
cles: 64X14X14.

0.01
0.2

i I i I I I

0.5 2
W

I i I I I I

5 10 20

FIG. 4. M((I)„~,/(i') „„)vs disorder for different sizes of
the ring. Circles: 64 X4 X4; plusses: 64 X 8 X 8; squares:
128XSX8; stars: 64X10X10; black circles; 64X14X14. In
the localized regime, the averages have to be done differently
since the distribution of currents is not normal.
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(3.14)

which agrees very well with the numerical results (Fig. 4).

IV. CORRELATIONS BETWEEN LEVELS

We are now interested in the correlations between the
currents of different levels in the diffusive regime. The
first harmonics A, I(n) of successive energy levels are de-
picted in Fig. 5 as a function of their label n. They are
obtained from simulations on a ring of dimensions
128 X 10X 10, for two different values of the disorder. In
the first case, 8'/t=1, the electronic motion is nearly
ballistic. One can see that A, I(n) presents oscillations
whose periodicity is nearly equal to M, the number of
channels in the system [Fig. 5(a)]. The function XI(n) is,
however, not completely smooth but presents a certain
roughness on a scale shorter than M. The noise spectrum

B,(f) of the quantity A, I(n), i.e. , the average square of its
Fourier transform, is shown in Fig. 6(a). One can see a
peek at a frequency 1/M, followed by a power-law decay
at higher frequency B,(f) ~ 1/f. With increasing disor-
der, for W/t =2, the quantity A, I(n) does not present any
clear oscillations any more [Fig. 5(b)]. However, from its
spectral analysis, it can be seen that it is not a white un-
correlated noise but it presents strong correlations on the
scale of the order of M, Ir. At high frequency, B,(f) de-
cays as a power law but there is a sharp cutoff at low fre-
quency below which B,(f ) is very small. It is easy to ver-
ify that this cutoff scales as 8', i.e., as the inverse of the
conductance g (Figs. 6 and 7). Since in the diffusive re-
gime, the correlation energy scales as the inverse square
of the system length, we expect the correlation of the
higher harmonics to be correlated on an energy scale
varying like E, /p . These results suggest that it is possi-
ble to write

A~(n)= f, U (f)cos(2~fn)df (4.1)

I I I I ) I I I I i I I I I ( I I I I i I I I I

(&)

40000--

20000

10

I I I I I I I I

(a)

-20000—
107

-40000—
I I I I I I I I I I I I I I I I I

1000 1200 1400 1600 1800 2000

40000
(b)-

20000--

10

106

I I I I I I I

I I I I I I I I I I I I I

(b)

0 10 I I I I I I I I

I I I I I I I

I I I I I I I-

—20000 10

4pp()p
0 200 400 600 800 1000 100000

O. O1 0.02 0.05 0.1 0.2 0.5

FIG. 5. The first harmonics A, &(n) of successive energy levels
as a function of their label n, for a ring of dimensions
128X10X10. (a) W/t =1, the system is nearly ballistic; quasi-
periodic oscillations are clearly seen. (b) W/t =2, the oscilla-
tions are buried into the noise.

FIG. 6. Noise spectrum B,(f) of the quantity A, &(n) for
several values of the disorder. (a) W/t =1; (b) W/t=1. 5; (c)
W/t =2; (d) W/t =3. The size of the ring is 128 X 10X 10.
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I I I I I I I I 0 ~ 0004
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0.0002
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o.oooo
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~00000
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FIG. 7. Same data as in Fig. 6 after renormalization of the
frequency and the noise spectrum by, respectively, the inverse of
the Thouless energy and the conductance. 0.00008

with a power-law frequency decay:
0.00006—

g»
(U (f)&'=Il (f)=

g Y p
(4.2)

0.00004

0.00002

We show in a forthcoming paper that such a form can
also be justified analytically. The exponent y also de-
scribes the decay of the current correlations for n ~ M, ff,

I (n)=(i (n'+n)i (n')&„~p n'-r
2P

p n2a —2 1 —r' (4.3)

1,(n ) is depicted in Fig. 8 at weak disorder. It presents
oscillations for n )M,ff. These oscillations are not visible
anymore at higher disorder.

The harmonics I (N) of the total current
I(N, y)= g,.

I i(n, y) can thus be simply expressed in

terms of this correlation function

0.00000

Q 00008
0 20 40 60 80 100

FIG. 8. Correlation function I &(n) of the first harmonics of
the energy levels in a ring of dimensions 128X10X10. (a) At
weak disorder (8'/t=1), it presents oscillations for n )M,&.

(b) These oscillations are not visible anymore at higher disorder
( 8'=2).

I (N) =p f U sin(2~fn )df,( )

2/g ~ 2'f
(U (f) & &,', ,g'

&I,(N)'&=p'f, ', , df= ',
p /g 4m' p

(4 4)
of the typical total current ((I (N) &)'/ scale as 1/p / .
One recovers a well-established result. ' '

The content in harmonics of the total current is much
weaker than for the single-level current. As a result, the
total quantities 6, =(B E„/Bp )„ I,(P=~/2), and oE,
have the same behavior versus disorder and scale as g ( 6,
has actually a g ln g behavior).

2P+ 2

2(x+ 2 V. CONCLUSION

2P+ 2

4p+ 3

(4.5)

Since we know that (I (N) & scales as g, this implies
P=O. As an important result we find that the harmonics

We have shown that, in a mesoscopic ring, there are
precise relations between the sensivity of the energy levels
to the boundary conditions, their content in harmonics,
and the correlations on an energy range equal to the
Thouless energy E, =AD/L . These relations can be ex-
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pressed in terms of a single exponent P which describes
the dependence versus the conductance g of the typical
energy shift 5e, of the levels between periodic and an-
tiperiodic boundary conditions

5e, = ( [e(0)—e(n. )] ) '

if P=Olng
M

The first v'g typical harmonics of the energy levels A.„,
decay as

13

P~ ~ 2P+ 1/2
p

These relations are well confirmed by numerical simu-
lations. The exponent P is, however, difficult to deter-
mine numerically since it appears to depend on the size of
the system studied, even in a range where the linear vari-
ation of the typical current versus Le is well obeyed.
From the previous results performed on sizes
L X&M X&M with L=64, 128 and M(100, it was
found that the data could be well described by an ex-
ponent P=0.25. Computations with larger number of
channels M ) 100 are rather consistent with P=O. , i.e., a
logarithmic dependence of 5e, vs g. A possible reason for
this difference could be that, for too small M, the motion
is not always diffusive in transverse directions. The log-
arithmic behavior obtained for larger M is in agreement
with the analytical calculations which describe a diffusive
motion in the three directions. ' ' The study of the
correlation functions of the A, (n) also confirm the value

=0.

help of R. Friesner. The Laboratoire de Physique des
Solides is "Unite associee au Centre de la Recherche
Scientifique No. 2."

APPENDIX A

Since the three quantities shown in Table I have a
different dependence on g, this implies that a (—,. In this
case, the fact that c, (0 )/i, (m. /2) scales as &g immediate-
ly implies that p~ =&g. If a was smaller or equal to —',
the ratio i, (m /2)/5e, should be proportional to p =&g.
Since i, (m/2) is also proportional to &g, this would im-

ply that 5e, =const. In such a case, A, &, would scale as
g ~ '~ . The condition a ( 1/2 would then imply a de-
crease of A, , when g increases, which is physically im-
possible. As a result, only values of —,

' (0, & —,
' are compa-

tible with our physical results. From Eq. (2.5), this im-
plies 0 (P (—,'.

APPENDIX B: WEAK DISORDER

In the following, we discuss the content in harmonics
of the single-level current in the limit of vanishing disor-
der where an analytical derivation is possible. The
current i(P) is the derivative of a function e(i)}) which
contains 2M+2 sharp alternating minima and maxima
between —Po/2 and Pp/2. The current can thus be writ-
ten as

2

i(ip) =-
mL
M+i

+s g ( —1)' [sgn(~p —ip;)+sgn(ip —y;)],4

(Bl)

where E( —I)'b, ; is the amplitude of the i'" discontinuity
located at ip=+y;. b,;)0 and a=+1. Since i(m)=0,
there is a sum rule
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2
AT= 8

mL i=0
(
—1)'

2
'

or

The Fourier transform of the current is then

27Tp A, g M+1
i = = g (

—1)'b, ;cos(pip;}
4o p0o;=p

(B2)

(B3)

M
( 1)i 1 )M+1

i = + g [b,, cos(pip;) —b,;+,cos(pip;+1)]+
p o 2;=p

or, by adding and subtracting b, ;cos(p1p;+, ) in the square brackets

5M + 1cos(P &) (B4)

b, , + ( —1) hM+, cos(p~}

p4'o . 2

P(iP +I 1P ) . P(f'+1+% }+ g ( —1 }' b, ;sin sin + (b, ;
—b, , +1)cos(pip;+, )

i=0
(B5)
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The three terms of this sum are, respectively, of order 6,Myosin(pm/M),
and b, /N, where N is the index of the

level, so that the first and third ones are negligible (for
N ))1). Since the average value of (y, +, —y; ) is m /M,
the remaining term is written as

As a result, the typical band current i, is independent of
M and of order Io.

The same kind of calculation can be done for the total
current. In this case, the discontinuities have all positive
sign. As a result the main contribution to I is

sin(p ~/M)
g

—1 'b, , sin
2MQO, o

' 2 p 7r/M
(86)

m'E PV'i ' (pm/M) (89)

This very good approximation describes the single-level
current as a succession of square functions. If we now
approximate the sin(x)/x function by a constant for
x 1 and assume that the y, are sufficiently randomly
distributed in order that Iop)M, I, ~&M

P
(810)

so that the typical values of the harmonics decay like 1/p
for all p

(
M

'2

@sin(pp;) l
M(k;)=Mlol2.

i=a
(87) This last relation together with Eq. (BS) means that the

M first harmonics of the band current are strongly corre-
lated on an energy range containing M levels,

We obtain that the typical values of the M first harrnon-
ics have all the same order of magnitude and decay like
1/p for p )M: p ~ M, I, ~ Mi, /p. (811)

Io
p ~M OC

M

On the other hand, for p ~M the harmonics are com-
pletely uncorrelated

Iop)M, ip, ~&M
P

(88)

I~, =&Mi (812)
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