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Theory of Coulomb-blockade oscillations in the conductance of a quantum dot

C. W. J. Beenakker
Philips BesearcI71 Laboratories, $600 JA Eindhoven, The ¹therlands

(Received 28 November 1990)

A linear-response theory is developed for resonant tunneling through a quantum dot of small
capacitance, in the regime of thermally broadened resonances. The theory extends the classical
theory of Coulomb-blockade oscillations by Kulik and Shekhter to the resonant-tunneling regime.
Both the cases of negligible and strong inelastic scattering in the quantum dot are considered. Effects
from the non-Fermi-Dirac distribution of electrons among the energy levels (occurring when kT is
comparable to the level separation) are fully included. Explicit analytic results are obtained for the
periodicity, amplitude, line shape, and activation energy of the conductance oscillations.

I. INTRODUCTION

The discreteness of the electron charge manifests itself
in the conductance as a result of the Coulomb repulsion
of individual electrons. The transfer by tunneling of one
electron between two initially neutral regions, of mutual
capacitance C, increases the electrostatic energy of the
system by an amount of e /2C. At low temperatures and
small applied voltages, conduction is suppressed because
of the charging energy. This phenomenon (first reported
by Gorteri in 1951) is known as the Coulomb blockade of
single-electron tunneling. 2

The Coulomb blockade can be removed by capacitive
charging (by means of a gate electrode) of the region be-
tween two tunnel barriers. 2 4 The series conductance of
the tunnel junctions shows oscillations as a function of
the gate voltage, due to the periodic modulation of the
charging energy. The theory of these Coulomb blockade-
oscillations was developed by 1&ulik and Shekhter. s s

Theirs is a classical theory, in which the discreteness of
the energy spectrum in the region confined by the tunnel
barriers is ignored. That is an excellent approximation
in metals, where the energy-level separation is in general
much smaller than both the charging and the thermal
energy.

The situation is difFerent in a semiconductor. In the
two-dimensional electron gas of an inversion layer or het-
erostructure, the Fermi wavelength can be as large as
50 nm. That is two orders of magnitude larger than
in a metal, and within reach of today s microfabrica-
tion techniques. Resonant tunneling studies have demon-
strated energy-level separations LE & 0.1 meV in sub-
micrometer-size regions in a two-dimensional electron
gas, confined electrostatically by means of gate electrodes
on top of a GaAs —(Al, Ga)As heterostructure. " For typ-
ical capacitances C & 10 5 F, and at millidegrees Kelvin
temperatures, one then has e jC AE )& kT In this.
regime the classical theory of the Coulomb-blockade os-
cillations has to be replaced by a theory which includes
the efFects of the discreteness of the energy spectrum.
That is the problem addressed in the present paper.

Our analysis is a linear-response theory, which yields

the conductance of the quantum dot in the limit of van-
ishingly small source-drain voltage. That is the appro-
priate limit for the Coulomb-blockade oscillations. The
charging energy manifests itself in a difFerent way in the
nonlinear current-voltage characteristics, in the form of
a stepwise increase known as the Coulomb staircase s.
Averin, I&orotkov, and Likharev have recently investi-
gated the eA'ect of a discrete energy spectrum on the
Coulomb staircase, » and the present work proceeds
in a similar way.

The experimental motivation for this theoretical work
came from the observations of conductance oscillations
periodic in the density of a two-dimensional electron gas
which is confined to a narrow channel. The efFect
was discovered by Scott-Thomas et a/. , who interpreted
it in terms of the formation of a charge-density wave or
"Wigner crystal. " In Ref. 17, van Houten and the au-
thor proposed the alternative explanation of Coulomb-
blockade oscillations, where the charging energy is as-
sociated with a region of the narrow channel delim-
ited by two dominant scattering centers. The issue of
Coulomb blockade versus Wigner crystal has led to a
lively debate, which has not yet been settled. We
hope that the theory presented here will contribute to-
wards a resolution.

The outline of this paper is as follows. In Sec. II we
formulate the problem of the influence of the charging
energy on resonant tunneling through a quantum dot,
which is weakly coupled to two electron reservoirs. Our
main assumption is that the thermal energy exceeds the
width of the transmission resonance, so that the con-
ductance peaks are thermally broadened. We special-
ize to the linear-response regime in Sec. III, and obtain
an expression for the conductance [Eq. (3.14)] which can
be evaluated straightforwardly, given the energy spec-
trum and tunnel rates. The present theory takes fully
into account that the distribution of electrons among the
energy levels in the quantum dot is diferent from the
Fermi-Dirac distribution [cf. Eq. (4.14)], whenever the
thermal energy is comparable to the level separation-
a fact which has so far not been generally appreciated
in this field. Limiting forms of the conductance formula
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(3.14) in the classical and resonant tunneling regime are
derived in Sec. IV. Up to that section we consider the
case of no inelastic scattering in the quantum dot (but
only in the reservoirs). In Sec. V we turn to the opposite
case of strong inelastic scattering in the quantum dot.
The results are applied to the Coulomb-blockade oscilla-
tions in Sec. VI, where simple analytical expressions are
obtained for their periodicity, amplitude, line shape, and
activation energy. We consider in that section only the
conductance oscillations as a function of electron density
(corresponding to oscillations as a function of gate volt-
age in the experiments mentioned above). The influence
of the charging energy on the conductance oscillations as
a function of magnetic field (i.e. , on the Aharonov-Bohm
effect), has been analyzed in Ref. 19.

II. FORMULATION OF THE PROBLEM

VVe consider a confined region which is weakly cou-
pled via tunnel barriers to two electron reservoirs. The
confined region, or "quantum dot, " has single-electron
energy levels at E& (p = 1, 2, . . .), labeled in ascending
order and measured relative to the bottom of the poten-
tial well. Each level contains either one or zero electrons.
Spin degeneracy can be included by counting each level
twice, and other degeneracies can be included similarly.

f(E —E~) = 1+ exp (2.1)

In Fig. I we show schematically a cross section of the
geometry, and the profile of the electrostatic potential
energy along a line through the tunnel barriers.

Because the number of electrons N localized in the
quantum dot can take on only integer values, a charge
imbalance, and hence an electrostatic potential difFerence

P(Q) can arise between the dot and the reservoirs in equi-
librium (Q = —Ne is the charge on the dot). We adopt
the simple approximation usually made in studies of the
Coulomb blockade, z of expressing P in terms of an effec-
tive capacitance C between dot and reservoirs,

4(Q) = Q/C+ 4ext, (2.2)

including also a contribution P,„t from external charges.
The electrostatic energy U(N)—:Ju

' P(Q')dQ' then
takes the form

U(N) = (Ne) /2C —Neg, „t. (2.3)

Each reservoir is taken to be in thermal equilibrium at
temperature T and chemical potential EF. A continuum
of states is assumed in the reservoirs, occupied according
to the Fermi-Dirac distribution
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FIG. 1. (a) Schematic cross section of the geometry studied in this paper, consisting of a confined region ("quantum dot")
weakly coupled to two electron reservoirs via tunnel barriers (hatched). (b) Profile of the electrostatic potential energy (solid
curve) along a line through the tunnel barriers. The Fermi levels in the left and right reservoirs, and the discrete energy levels
in the quantum dot, are indicated (dashed lines).
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In a two-dimensional electron gas, the external charges
are supplied by ionized donors and by a gate electrode
(with an electrostatic voltage Vsst, , between gate and
reservoir). One has Pext = /donors + (1Vsat;e& where n (as
well as C) is a rational function of the capacitance ma-
trix elements of the system. The quantity Q,„t, = Cg,„t,
plays the role of an "externally induced charge" on the
dot, which can be varied continuously by means of V «
(in contrast to Q which is restricted to integer multiples
of e). In terms of Qext, one can write

U(N) = (Ne —Q,„t,) /2C —Q,„,/2C, (2.4)

which is equivalent to Eq. (2.3). We emphasize that Q,„t,
is an externally controlled variable, via V@~«, regardless
of the relative magnitude of the various capacitances in
the system.

A current I can be passed through the dot by applying
a potential difference V between the two reservoirs. The
tunnel rate from level p to the left and right reservoirs in
Fig. 1 is denoted by I'~ and I ", respectively. We assume
that both kT and AE are » h(I' + I'") (for all levels
participating in the conduction), so that the finite width
hI' = h(I' + I'") of the transmission resonance through
the quantum dot can be disregarded. This assumption
allows us to characterize the state of the quantum dot by
a set of occupation numbers, one for each energy level.
(As we will see, the restriction kT, AE » hI' results in
the conductance being much smaller than the quantum
e2/h, which is a necessary condition for the occurrence
of the Coulomb blockade. ) We also assume conservation
of energy in the tunnel process, thus neglecting contri-
butions of higher order in I' from tunneling via a virtual
intermediate state in the quantum dot. ' In this sec-
tion, and in Secs. III and IV, we assume that inelastic
scattering takes place exclusively in the reservoirs —not
in the quantum dot. The effect of inelastic scattering in
the quantum dot is considered in Sec. V.

Energy conservation upon tunneling from an initial
state p in the quantum dot (containing N electrons) to
a final state in the left reservoir at energy E~' (in excess
of the local electrostatic potential energy) requires that

E~'(N) = E + U(N) —U(N —1) + ileV. (2 5)

Here rl is the fraction of the applied voltage V which
drops over the left barrier. (As we will see in Sec. III,
this parameter rl drops out of the final expression for
the conductance. ) The energy conservation condition for
tunneling from an initial state E" in the left reservoir to
a final state p in the quantum dot is

E"i(N) = E& + U(N + 1) —U(N) + ale V, (2.6)

E'"(N) = Erp + U(N + 1) —U(N) —(1 —g)eV,

(2.8)

where E'" and E~" are the energies of the initial and
final states in the right reservoir.

The stationary current through the left barrier equals
that through the right barrier, and is given by

x (6„„pf(E"(N) —Ey )
-6„„,,P —f(E~ '(N) —E~)]}.

(2.9)

The second summation is over all realizations of occu-
pation numbers (ni, nz, . . .}:—(n;} of the energy lev-
els in the quantum dot, each with stationary probability
P((n, }). (The numbers n, can take on only the values
0 and 1.) In equilibrium, this probability distribution is
the Gibbs distribution in the grand canonical ensemble:

where [as in Eq. (2.5)] N is the number of electrons in the
dot before the tunneling event. Similarly, for tunneling
between the quantum dot and the right reservoir one has
the conditions

E~'"(N) = Ep + U(N) —U(N —1) —(1 —g)eV,

(2 7)

P,q((n;}) = Z ' exp
() En; + U(N) —NEykT (. (2 1o)

where N = P, n;, and Z is the partition function,

Z = ) exp — ) E;n; + U(N) —NE~
1 t'=

kT ~.
(2.11)

The nonequilibrium probability distribution P is a stationary solution of the kinetic equation

—P((n;}) = 0 = —) P((n })6 p
I' f(E"(N) —Ey) + rp f(E""(N) —EJ;)

—) P((n;})6„ i (r„1—f(E~ (N) —Es) + I'"„1—f(E~'"(N) —Ez)j }

P(ni, . . . , ni, i, 1, n„+i, )6o„p
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x (I'„' 1 —f(E~'(N+ 1) —Ep) + I'„" 1 —f(E~'"(N+ 1) —Ep) )
P(ni, . . . , np i, 0, np+i, . . .)6g„,i

P

x I'„' f(E"(N —1) —Ep)+ I'p f(E'"(N —1) —Es') (2.12)

The kinetic equation (2.12) for the stationary distribution function is equivalent to the set of detailed balance equations
(one for each p = 1,2, . . .)

P(ni, . . . , np i, 1, np+i, . . .)(I'„'[1—f(E~'(N + 1) —Ep)] + I'" [1 —f(E~'"(N + 1) —Ep)]}

—P(ni ~ np-i 0 np+i, )[Ip'f(E" (N) —Ep ) + I pf(E*'"(N) —Ep)] (2 13)

with the notation N—:P,.&„n;.
A similar set of equations formed the basis for the work of Averin, Korotkov, and Likharev on the Coulomb staircase

in the nonlinear I-V characteristic of a quantum dot. To simplify the solution of the kinetic equation, they assumed
that the charging energy e~/C is much greater than the average level spacing AE. In the present paper we restrict
ourselves to the regime of linear response, appropriate for the Coulomb-blockade oscillations. Then the conductance
can be calculated exactly and analytically.

III. LINEAR RESPONSE

The (two-terminal) linear-response conductance G of the quantum dot is defined as G = I/V in the limit V —+ 0.
To solve the linear-response problem we substitute

(3.1)

into the detailed balance equation (2.13), and linearize with respect to U. One finds

P q(ni, . . . , np i, 1, np+i, . . .) {4(ni, . . . , np i, 1,np+i, . . .)(I'„'+ I'p)[1 —f(s)] —[1pq —I'p(l —rl)]kTf'(c))

= P q(ni, . . . , np i, 0, np+i, . . .) j&'(ni, . . . , n„ i, 0, n„+i, . . .)(I'p + I'p) f(s) + [I'„' g —I'p (1 —rl)]kT f'(s) ), (3 2)

where f'(s) = df(s)/ds, and we have abbreviated s = Ep + U(N + 1) —U(N) —Ep.
Equation (3.2) can be simplified by making subsequently the substitutions

1 —f(s) = f(s)e'~"~, (3.3)

—c/kT
Peq(nl » np —1& 1& np+1 &

~ ~ ) —Peq(nl »~ ~ ~ np 1& 0& np+1 &
~ ~ )e— ) (3.4)

kTf'(s)(1 + ' "
) = —f(s). (3.5)

The factors P,q and f cancel, and one is left with the simple equation

r„"
@(ni ~ ~ ~ np-1 1 np+1 ~ ~ ~ —@(ni ~ ~ ~ np —1 0 p+1 ~ .) +

I&( — 9.I' +F"'p
The solution is

(3.6)

( I,".

@((n;})= const+ ) n;
~

' —g ~

.
g

I&l + I»' (3.7)

The constant first term in Eq. (3.7) takes care of the normalization of P to first order in V, and need not be determined

explicitly. Notice that the first-order nonequilibrium correction 4' to Pq is zero if g = I',"/(I'; + I',". ) for all i,. This
will happen, in particular, for two identical tunnel barriers (when g = &, I'I = I',"). Because of the symmetry of the
system, the distribution function then contains only terms of even order in V.

Now we are ready to calculate the current I through the quantum dot to first order in V. I inearization of Eq.
(2.9), after substitution of Eq. (3.1) for P, gives
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I = —e ) ) rpP, q((n;))(h„„opkTf'(s) + 6„„irjkTf'(c) + @((n;))6„,Of(s) —@((n;})6'„ i[1 —f(s)])
p In, )

2p ) ) r„'P„((n;})S„„,f(E„+V(N + 1) —V(N) —E~)

x [@+4(ni, . . . , np i, 1, np+i, . . .) —@(ni, . . . , np i, 0, n„+i, . . .)]
I'„I'„") )," " P,q((n;})b„„of(E„+V(N+ 1) —U(N) —Ep).

p (~.) P I
(3.8)

In the second equality we have again made use of the identities (3.3)—(3.5), and in the third equality we have substituted
Eq. (3.6). Notice that the parameter rl has dropped out of the final expression for I

Vk define the equilibrium probability distributions

P.(N) =).P„(~,})~-~... = -' "'""'",
) exp[—Q(N)/kT]

(3.9)

F.q(Ep IN) =
p N ) .P.q((n))b „,ib~, ~, ,

(=exp
l ) exp — ) E;n; 6„„ib~~ „,.kT ) -

~
kT . ; (3.10)

Here Q(N) is the thermodynamic potential of the quantum dot, and P(N) is the free energy of the internal degrees
of freedom:

Q(N) = j(N) + U(N) —NEp, (3.11)

1
&(N) = kTln )— exp l

—„)E;n; b~g „'d), A~

The function P,q(N) is the probability that the quantum dot contains N electrons in equilibrium; the function
F,q(Ep ~

N) is the conditional probability in equilibrium that level p is occupied given that the quantum dot contains
N electrons. In terms of these distribution functions, the conductance G = I/V resulting from Eq. (3.8) equals

e'~ Z) )," " P,q(N)[l —F (Ep ~
N)]f(Ep+ U(N+1) —U(N) —Ep).

p=1 N=Q

In view of Eqs. (3.3) and (3.4), Eq. (3.13) can equivalently be written in the form

2 ~ oo I)1
G — ) )," " P,q(N)F, q(Ep ~

N) [1 —f(E„+U(N) —V(N —1) —Ez)].
p=1 N=l

This equation is the central result of the present paper.

(3.13)

IV. LIMITING FORMS
OF THE CONDUCTANCE FORMULA (3.14)

Equation (3.14) reduces to the result of Kulik and
Shekhter in the limit kT )) AE, i.e. , when the discrete
energy spectrum may be treated as a continuum. In that
classical limit one may approximate F,q(Ep l N) by the
Fermi-Dirac distribution

F;q(Ep ~
N) = f(Ep —p(N)) if kT && AE, (4.1)

where the cliemical potential p(N) is to be determined
from the equation

) f(E„—p(N)) = N.
p=l

The distribution function Peq(N) takes its classical form

exp( —[U(N) + N(p —Ep)]/kT}

) exp( —[U(N) + N(P —Ep )]/kT)

(4 3)

where p is the chemical potential of the dot in equilib-
rium. The summation over p in Eq. (3.14) may be re-
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d»(~)[I f(~—+~)] = ~(1 —e '"
)

' —= g(~)

The conductance becomes

(4.4)

e2p r'r"
IT r~+r

x ) P, ) „(N)g(U(N) —U(N —1)+p —EP)

placed by an integration over E, multiplied by the den-
sity of states p(E) in the quantum dot. If kT « p, EP,
one may in general disregard the energy dependence of
the density of states and of the tunnel rates. One can
then carry out the integration by means of the formula

that P«(N) is negligibly small for N unequal to either
Nmin or Nmin 1, so that

Peq(Nmin)

exp[ —O(N~;„)/kT]
exp[—Q(N;„)/kT] + exp[—Q(N;„—1)/kT]

= f(A;„) if kT«AE . (4.8)

In the second equality we have used that Q(N)

i E; + U(N) —NEp in the low-temperature limit.
Since, moreover, F«(E~ ) N) = 1 in this limit, Eq.
(3.14) reduces to

r' . r".
2 ~min ~min fI(~ )Il + Ir

&min &min

if hI' « kT « b,E, (4.9)
if AE « kT «P, , EP, (4.5)

where we have used the identity
where 1" and p are evaluated at energy p, and we have
used that p(N) const—:P for all N for which P~~~, (N)
dift'ers appreciably from zero. Equation (4.5) is the result
of Kulik and Shekhter. s

If, in addition to kT » AE, also kT » e /C (while
still kT « p, , EP ), then the effect of the charging energy
may be ignored as well. In that limit one has g(z) = kT,
so that Eq. (4.5) reduces to

r'I"G=e p, =G ifAE, e /C«kT«p, EP.r~+I
(4.6)

The high-temperature resistance 1/G is the sum of the
tunnel resistances I/ezpi' and 1/e2pI'" of the left and
right barriers.

In the low-temperature regime kT « AE (while still
kT » hI'), Eq. (3.14) can also be written in a simplified
form. In that regime the term with p = N = N~;„gives
the dominant contribution to the sum over p and ¹ The
integer N;„minimizes the absolute value of

A(N) = Erv + U(N) —U(N —1) —Ep. (4.7)

We denote A~;n = K(N~;„). By definition, N~;n is such
I

f(~)[I —f(&)] = —kTf'(&). (4.1O)

if kT « e /C, (4.11)

where the entropy S(N) of the quantum dot is obtained
from the free energy in the usual way

X(N) =) E, TS(N). — (4.1S)

Equation (3.14) now takes the form

Equation (4.9) can be seen as the usual resonant tunnel-
ing formula for a thermally broadened resonance, gener-
alized to include the eR'ect of the charging energy on the
resonance condition.

Finally, we consider the limiting form of Eq. (3.14)
in the regime kT « e2/C of large charging energy,
but with comparable thermal energy and level spacing
(kT 4E). Then the sum over N reduces to the single
term N Nm j~ but the sum over p has to be retained.
Moreover, instead of Eq. (4.8) one has

P, (N;„) = f(Q(N;„) —Q(N;„—1))
= f(A;„—TS(N;„) + TS(N;„—1))

2 ~

Ilgwu

G = ) i" "„F,q(E„ i N;„) [1 —f(A;„—E~ I,.+EP)]
P=l P P

x f(A;„—TS(N;„)+ TS(N;„—1)) if kT « e /C. (4.13)

The sum over p in Eq. (4.13) cannot be simplified fur-
ther if kT AE, but can be evaluated numerically in a
straightforward manner (once the energy levels and tun-
nel rates are given).

It is worth emphasizing that, in this regime kT b,E
of comparable thermal energy and level spacing, the dis-
tribution F«(Ep ( N) of N electrons among the levels
in the quantum dot divers appreciably from the Fermi-
Dirac distribution (4.1). For example, in the case of a

I

two-level system (Ei, Eq) with N = 1, one has from the
Gibbs distribution the result

e —E„/aT
lkT + g EglkT

EP —Pl'1+exp
/

with p = ~z(Ei + E2) T*—:2T. (4 14)
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The distribution function can, in this case, be written in
the Fermi-Dirac form, but with a fictitious temperature
T* which is one-half the true temperature T T.he differ-
ence between the true distribution and the Fermi-Dirac
distribution (when kT AE) was properly accounted
for in some of the previous work —but not in several
more recent publications.

V. EFFECTS OF INELASTIC SCATTERING

Only elastic tunneling events contribute to OP/Ot in
the kinetic equation (2.12). Inelastic scattering is as-
sumed to take place exclusively in the reservoirs, not in
the quantum dot. In the present section we relax this
assumption. One effect of inelastic scattering is to in-
crease the width h(I'i + I'"):—hl',

~
of the transmission

resonance by an amount hI';„. We continue to make
the assumption kT )) hI' = h(1 ~+ I';„) that the thermal

energy is much greater than the resonance width, so that
this effect of inelastic scattering does not play a role. A
second eA'ect of inelastic scattering is to thermalize the
distribution of electrons among the levels in the quantum
dot. This thermalization occurs on the time scale of the
energy relaxation time r, . Generally, r, & 1/I';„. We con-
sider here, for comparison with the previous sections, the
case r, « 1/I' i of full thermalization. The analysis given
below thus applies to the regime hr, ~ && hI';„&& kT.

Full thermalization means that the conditional proba-
bility distribution function F(E&

~
N) (which is the prob-

ability of finding level p occupied given that the quantum
dot contains N electrons) retains its equilibrium form
(3.10) also for a nonzero applied voltage. Only the prob-
ability P(N) of finding N electrons in the quantum dot
may differ from the equilibrium distribution (3.9). In-
stead of the set of detailed balance equations (2.13), one
now has the single equation

P(N + 1) ) F, (E„~ N + 1)(I'„'[I—f(E~'(N + 1) —Ey )] + I'„"[1 —f(E~'"(N + 1) —E~)]}
@=1

= P(N) ) [1 —F, (E„(N)][I'„'f(E" (N) —Es) + I'"f(E""(N) —EF)]. (5 1)
p=1

@(N+ 1) = @(N)+, „—g,
(I'")~
+ N

with the notation

(5 2)

We substitute P(N) = P«(N) [1 + (eV/kT) @(N)], and
linearize with respect to V. A similar calculation as de-
scribed in Sec. III leads to the recursion relation

P, (N)(F'") = P, (N+ 1)((F'"))N+1

The conductance G in the case of no inelastic scatter-
ing, obtained in Sec. III [Eqs. (3.13) and (3.14)], may be
written in the present notation as

Gt'h«~ kT ) P«(N) (Fi Fp)
N=O + 1V

N ((I ))iv((F ))iv
kT )- «((1'+ I'"))~ ' (5 4)

where the double brackets denote

(F)iv —= ) . F~[1 —F«(Eu I N)]
@=1

xf(Ep + U(N + 1) —U(N) —Ey ). (5.3)

There is no need to solve Eq. (5.2), since only the difFer-
ence iII(N + 1) —@(N) appears in the expression for the
current.

The resulting conductance Gih, „ in the case of rapid
thermalization may be written in the two equivalent
forms

(5.7)

Equations (5.4) and (5.7) become identical if either the
tunnel rates for the two barriers I'„and I"„" are diAerent
but independent of the level index p—or if they are the
same. (In particular, one has Gt,h„= G in the regime
hr « I-T « AE where only a single thermally broad-
ened resonance contributes to the conductance. ) The
equivalence of G and Gqh«~ under these conditions is
special for the linear-response conductance. The non-
linear current-voltage characteristic depends on the rate
of inelastic scattering even for level-independent tunnel
rates.

The regime kT & hr cannot be treated by the method
used in this paper. For noninteracting electrons, the in-
Quence of inelastic scattering in this regime was studied
by Stone and Lees4 and by Buttiker. z Their result (for
kT « hF « b,E) is that the conductance has the Breit-
Wigner form:

x [1 —f(E~ + U(N) —U(N —1) —E~)].
(5.5)

ez I'I'" r
h F'+ 1"" (s/h)z+ (I'/2)~

(5.8)

The two expressions for the conductance in Eq. (5.4)
are equivalent because of the identity

Here g is the degeneracy of the resonant level, and s is the
energy separation of that level from the Fermi level in the
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reservoirs. Inelastic scattering has the effect of reducing
the conductance on resonance by a factor I' ~/(I ~+ I';„).
This is to be contrasted with the regime hI' « kT « LE,
where inelastic scattering has no effect on the conduc-
tance. The reason for the equivalence of G and G|,h, „ in
the latter regime is that the thermally averaged conduc-
tance —jGBw f'(s) ds f GBw ds/kT is independent
of I';„.24

A few words on terminology, to make contact with
the resonant tunneling literature. Tunneling in the
regime I',i &) I';„of the previous sections is referred to as
"coherent resonant tunneling"; In the regime I',

~ && I';„
of the present section it is known as "coherent sequential
tunneling. " Phase coherence plays a role in both these
regimes, by establishing the discrete energy spectrum in
the quantum dot. The classical, or incoherent, regime is

entered when kT or hl';„become greater than AE. The
discreteness of the energy spectrum can then be ignored.

VI. APPLICATION TO THE
COULOMB-BLOCKADE OSCILLATIONS

A. Periodicity

The periodicity of the Coulomb-blockade oscillations
can be obtained from the low-temperature expression
(4.9) for the conductance of the quantum dot. That equa-
tion describes a series of peaks centered at L;„=O. In
view of Eqs. (2.3) and (4.7), the resulting condition for a
conductance peak is that

EF = Etv+ V(N) —U(N —1)
e2

= E~ + (N —q)
——eP,„„ (6.1)

for some integer N (which then by definition equals
N~;„). Equation (6.1) equates the equilibrium electro-
chemical potential of the quantum dot to the Fermi en-

ergy of the reservoirs. For an elementary derivation of
Eq. (6.1), involving only equilibrium considerations, see
Ref. 19.

The conductance of the quantum dot oscillates as a
function of the Fermi energy (or electron density) of the
reservoirs. Each period the number of electrons in the
quantum dot changes by 1. The periodicity AE~ follows
from Eq. (6.1). If Ey is increased at constant P,„q, one
has simply

ing the voltage on the gate electrode which defines a
confined region in a two-dimensional electron gas. A
change in gate voltage may also affect the shape of the
confining potential, and hence the single-electron levels
E&. The determination of the gate-voltage periodicity of
the Coulomb-blockade oscillations is for these reasons a
rather complicated electrostatic problem, which we will
not address in this paper. Note that such a calculation
will also have to take into account the fact that the elec-
trochemical potential p q, between gate and reservoirs
is the experimentally adjustable variable, rather than the
electros/atic potential V~q, .

B. Amplitude

Observation of the Coulomb-blockade oscillations
requires suIIiciently low temp eratures, such that
kT( max(AE, e~/C). Concerning the temperature de-
pendence of the amplitude of the oscillations, we dis-
tinguish the two asymptotic regimes kT « AE and
AE « kT « e'/C.

If kT « LE, only a single energy level in the quan-
tum dot participates in the conduction. This is the level
labeled by N;„ in Eq. (4.9). The peak height G
according to that equation, is given by

e I I
G .„=, if hl' « kT « 2 E,4k' I~+ r. (6.3)

where the tunnel rates refer to level N~;„. Note that Eq.
(6.3) holds regardless of the relative magnitude of AE
and e~/C. The peak height increases monotonically as
kT/AE —+ 0, as long as kT is greater than the resonance
width hI'. The Breit-Wigner formula (5.8) implies for
kT & hI' a saturation of the peak height at a value which
is at most ge /h.

In the case AE « kT « e /C, a continuum of en-

ergy levels in the quantum dot participates in the con-
duction. This is the classical regime studied by Kulik
and Shekhter. s We include a discussion of this regime
for completeness and for comparison with the resonant
tunneling regime kT ( AE If b, E. « kT « e2/C,
only the term N = N;„contributes to the sum in
Eq. (4.5), where N~;„mi i nizme tshe absolute value of
b, (N) = U(N) V(N 1)+tJ E—~ [bei—ng the c—lassical cor-
respondence to Eq. (4.7)]. We define Am;„= A(N;„).
Equation (4.5) reduces to

2

AEy = AE+ —= EE*. (6.2)
e2p 1'I"

G=, P,),(N;„)y(E;„)kT 1'+ I'"

The periodicity of the conductance oscillations is gov-
erned by the "renormalized" level spacing LE*. In the
absence of charging effects, LE~ is determined by the
irregular spacing AE of the single-electron levels in the
quantum dot. The charging energy e~/C regulates the
spacing, once e~/C & AE. The spin degeneracy of the
levels is lifted by the charging energy. In a plot of G
versus E~ this leads to a doublet structure of the os-
cillations, with a spacing alternating between e2/C and
AE+ e /C.

Experimentally, both E~ and P~„|,. are varied by chang-
e2~ I /I'r

G =, if AE « kT « e'/C, (6.5)

e2p &min

kT I' + I'" exp(A~;„/kT) —exp( —A;„/kT)

if AE « kT « e'/C. (6.4)

In the second equality we have used Eq. (4.3) for the
classical distribution function, together with the fact that
P,~,(N) = 0 if N g N~;„, N;„—1. The peak height
resulting from Eq. (6.4),
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FIG. 4. Conductance vs Fermi energy for a two-level sys-
tem, consisting either of two nondegenerate levels (solid curve,
for Ei ——0.25e /C, E2 = 0.75e /C), or of a single twofold
degenerate level (dashed curve, for Ei ——E2 ——0.5e /C).
The plot is calculated from Eq. (3.14), for kT = 0.05e /C,

= 0, and for level-independent tunnel rates. The con-
ductance is normalized by Go =—(e /kT)1'I'"(I'+ I'")

connection with experiments on tunneling through metal-
oxide-semiconductor structures. To illustrate the gen-
erality of the present theory, we show how their special
case follows directly from Eq. (4.13).

We apply Eq. (4.13) to a degenerate two-level system

(Ei ——Ez = E, I'1'" ——I'z'" —I' "). The first of the two
conductance peaks corresponds to Nmj„—~, +mj~ —E+
U(1) —U(0) —EF = s. Each of the two levels is occupied
with equal probability, F«(E

~
1) = &, and the entropies

I

are given by S(1) = kin 2, S(0) = 0. Consequently, Eq.
(4.13) reduces to

e2
[1 —f(s)]f(s —kT ln 2)

e2 I'l I'
(3 + —e/kT + 1 e/kT) —1

ITr~+I (6.8)

E. Activation energy

The renormalized level spacing b, E* = AE + e /C,
which according to Eq. (6.2) determines the periodicity
of the Coulomb-blockade oscillations, equals twice the ac-
tivation energy of the conductance minima. To see this,
we consider first a two-level system (Ei& Eq = Ei+AE),
for a Fermi energy E~ = Ei + z&E + 2[U(2) —U(0)]
halfway between the two conductance peaks. If both lev-

els have the same tunnel rates, this point is by symmetry
the minimum of the conductance doublet. Starting from
Eq. (3.14), one finds after some algebra that at this value
of EF the conductance minimum G;„equals

The second peak of the doublet is the mirror image of
the first, and is given by Eq. (6.8) on redefining s

[E+—U(2) —U(1) —Ey ]
The conductance doublet for a twofold-degenerate en-

ergy level is plotted in Fig. 4, as a dashed curve. Each
peak is slightly asymmetrical, falling off more rapidly on
the side facing the other peak of the doublet. The peak
height is (6 —4~2)(e /kT)I' I'"(1' +I'"), in agreement
with Glazman and Matveev. z The solid curve shows the
eff'ect of removal of the degeneracy (e.g. , by the Zeeman
energy in the case of spin degeneracy). Once the level
splitting LE && I-T, each of the two conductance peaks is
given by Eq. (4.9). The peaks have become symmetrical,
and are about 25% smaller than in the case of degenerate
levels. 27

e' I'I" + f(s-) + 1 —f(s+)
F„f(s+)[I—f(s )]f(, ) 1 f(, )

with s+—:2(AE+ e /C):—~DE*, s—:~(AE —e /C). (6.9)

e2 I'/ Pr;„=2, [1+f(s )]exp( s+/kT). —(6.10)

It follows that Gm;„depends exponentially on the tem-

If e~/C && AE, one has s+ s, so that Eq. (6.9)
is just twice the expression (4.9) for a single thermally
broadened resonance, evaluated at 2LE from the max-
imum. For a non-negligible charging energy, one cannot
simply construct the doublet as a superposition of two
individual resonances, and the more complicated expres-
sion (6.9) is needed. Equation (6.9) can be simplified
if the separation of the peaks is much larger than t,heir
width, which implies kT « b,E+ez/C. Then f(s+) can
be approximated by zero in the quotient of Fermi-Dirac
distributions appearing in Eq. (6.9). The result is

I

perature; G;„ocexp( —E q/AT), with activation energy

E„,= —,'(nE+ e'/C) = —,'aE*. (6.11)

The exponential decay of the conductance at the min-
ima of the Coulomb-blockade oscillations results from
the suppression of tunneling processes which conserve en-
ergy in the intermediate state in the quantum dot (cf.
Sec. II). Tunneling via a virtual intermediate state is not
suppressed at low temperatures, and contributes a small
temperature-independent residual conductance.

The result (6.11) for the activation energy, derived for
a two-level system, holds more generally when only two
levels compete in the conduction. This occurs in the
resonant tunneling regime kT && LE. In the classical
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regime kT )) AE a continuum of energy levels has a
non-negligible tunnel probability, and the analysis has
to be modified. Equation (4.5) is then the appropriate
starting point. The resulting activation energy turns out
to be e /2C, still consistent with Eq. (G.ll).
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