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Presently, a highly reliable method for the determination of the minority-carrier diffusion length in
noncrystalline materials is the photocarrier grating (PCG) technique. The theory and the application of
this technique have been essentially limited to the low-electric-field regime, i.e., where the carriers drift
lengths are negligible in comparison with the carriers diffusion lengths. Recently, closed-form solutions
that connect the microscopic mobility-lifetime (pv ) products with the experimentally derived parameter
P have been given for the above regime, thus allowing for the determination of the conditions under
which the interpretation of the experimental results in terms of the minority carrier p~ is justified. In
contrast, for the high-electric-field regime only numerical solutions are available at present. These solu-
tions are not very useful for the unique determination of p~ products, and they do not provide physical
insight into the transport and kinetic processes taking place in the PCG. In this paper we present ana-
lytic solutions for the PCG conductance in the high-field regime by using a diffusion-drift "perturbation"
approach. The results reveal the physical processes in the grating and yield a general explicit relation
between the measured quantities and the microscopic transport and kinetic parameters. The important
prediction of the present theory is that the PCG technique in the high-field regime can yield direct and
unique values for the majority-carrier pw product. The advantage of the PCG, in comparison with the
conventional photoconductivity measurement, which is used for the same purpose, is that it is indepen-
dent of experimental parameters, which are hard to determine. In view of the application of the PCG
method to materials where trapping plays a dominant role, our analysis considers the PCG when trap-
ping takes place, yielding closed-form solutions that include the trapping parameters.

I. INTRODUCTION

In view of the importance of the determination of the
characteristic parameters of photoconductors for the
evaluation of their transport and kinetic mechanisms, the
experimental determination of these parameters has be-
come an area of extensive research. ' The relevance of
these properties to semiconductor devices in general,
and to solar cells in particular, has made the accurate
measurement of the parameters an important stage in the
assessment of the suitability of the corresponding serni-
conductor materials for various applications. The most
informative single parameters that characterize the pho-
toelectronic quality of a material are the minority- and
majority-carrier mobility-lifetime p~ products, which
combine the transport and kinetic aspects of the micro-
scopic processes. The common way to derive the value of
the majority carrier p~ is from the measurement of the
photoconductivity ' (though only within a factor as will
be discussed below), while the experimental determina-
tion of the minority-carrier p~ is usually more complicat-
ed. ' ' Most of the methods suggested and used for the
determination of the latter quantity are suitable only for
crystalline semiconductors where the minority-carrier p~,
or the corresponding room-temperature diffusion length
(which is proportional to v'pr), is large' () 10 pm).
The very few methods that were applicable to crystalline
materials and seemed initially suitable for small p~ ma-
terials, such as amorphous and some polycrystalline semi-
conductors, were found to be inappropriate for the latter

systems. For example, the photoelectromagnetic
method', which is known to be inaccurate even for crys-
tals, was found to be "impractical"' for amorphous ma-
terials, and the surface-photovoltage (SPV) method,
which was found to be successful for crystalline semicon-
ductors, was shown to yield dubious results for amor-
phous semiconductors. "

Following the need to determine the minority-carrier
diffusion length' ' in materials with small p~ values, a
technique, which seems to be suitable for amorphous' '
and polycrystalline' materials has been developed. This
is the photocarrier grating method, which was suggested
four years ago by Ritter, Zeldov, and Weiser. ' More re-
cently, these authors have presented a small-signal
analysis' of the method, which connects the quantity
determined experimentally (the normalized grating am-
plitude, see below) with the microscopic transport and ki-
netic parameters. In their analysis, which will be referred
to herein as the RZW analysis, they have considered the
linearized equations that are obtained under small-signal
steady-state conditions, and they have presented numeri-
cal solutions of these equations.

Very recently' we have derived closed-form solutions
for these equations in the limit of zero applied electric
Aeld, i.e., when the drift lengths of both carriers are much
smaller than the carrier diffusion lengths. This, in con-
trast with the numerical solutions, has enabled the
derivation of the conditions under which the interpreta-
tion of experimental results in terms of the arnbipolar
diffusion length I. is justi6ed.
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It turns out, when one considers the analytic solutions
in the other extreme, that the corresponding numerical
results of RZW are even less informative. Such numeri-
cal results not only obscure the physical process but they
do not reveal the possibility of deriving accurate as well
as unique values for the microscopic parameters (i.e., the
two pr products) from the experimental data. Moreover,
previous experimental works' ' in which the electric-
field dependence was considered, were limited to the low-
(but finite) field regime and yielded ill-defined pr prod-
ucts. The use of the numerical results, ' on the other
hand, required a number of adjustable parameters and
this does not enable a unique derivation of p~ products.
In addition, the fact that trapping effects have not been
considered explicitly in the RZW analysis makes its use
in studying materials with strong trapping effects
difficult. For example, one realizes' that while in the
zero-field-ambipolar limit, the ratios between the carrier
concentration amplitudes are determined by trapping
effects; in the high-field the role of these effects becomes
more subtle.

In this paper we reconsider the pioneering analysis of
RZW noting that the many groups' ' that already uti-
lize the photocarrier grating (PCS) technique did not
make any use of the high-electric-field regime for the
determination of the microscopic parameters. We also
note that the explicit relation between the measurable
quantity (P, see below) and the microscopic amplitudes
have not been given previously. Our present comprehen-
sive extensions of the RZW analysis include a qualitative
physical picture and the basic phenomenological relation
of the PCG as well as a presentation of analytic solutions
for the most general case and in forms by which experi-
rnental results can be interpreted uniquely. Our exten-
sion also includes the effect of trapping in every stage of
the analysis. This is, of course, necessary since the ma-
terials for which the PCG technique is relevant have ap-
preciable trapping effects. As we go along, numerical cri-
teria that are pertinent to the application of the present
method to hydrogenated amorphous silicon, a-Si:H, will
be given. We have chosen a-Si:H as our reference materi-
als in view of the suitability of the PCG method for the
study of its samples' and devices' (proper optical gap
and thin-film form). Indeed most of the previous PCG
studies' ' were carried out on this material.

In Sec. II of this paper we give an illustrated descrip-
tion of a carrier grating in a photoconductor under spa-
tially modulated illumination, and we define the PCG
measurable parameters. The connections between the
qualitative features, which are discussed in that section,
and the quantitative analytic solutions, to be given in sub-
sequent sections, are pointed out. In Sec. III we present
the most general form of the differential equations that
govern the transport process in the presence of a small
spatially modulated carrier generation, as well as the
most general expression for the recombination rate,
which determines the measured quantities. This was
done in some detail in view of the confusion one en-
counters in the case of two-carrier kinetics and trans-
port. ' Finally, the general algebraic equations that re-
sult from the differential equations are presented. While

II. THE PHYSICAL PRINCIPLES
OF THE PHOTOCARRIER GRATING

For the general understanding of the PCG method and
for the clarification of the analysis to be presented in the
following sections we start with a phenomenological
derivation and a qualitative description that illustrate the
physical principles involved in the relation between the
microscopic transport properties and the macroscopic
quantities determined by the experiments. Such a phe-
nomenological derivation was given previously' only for
the Eo =0 case while the corresponding qualitative physi-
cal description for Eo )0 has not been given previously at
all.

Let us consider a film or a slab of a semiconductor that
has a cross section of unity and a uniform conductivity
o.o, and on which a square-wave carrier-concentration
modulation is imposed. Such a modulation, which has an
amplitude Ao.o, is illustrated in Fig. 1. The modulation is
assumed small (b,oo«oo) and of period A. Hence the
length of the sample between the two electrodes is NA,
where N is an integer. For simplicity we assume that the
modulation is only in the carrier concentration, such as
the one that may be achieved by injection or illumination.
Using a notation, the reason for which will become ap-
parent later (see also Ref. 14), we may define and "aver-
age" conductivity of the structure

o j =—,'[(oo+hoo)+(oo —Acro)],

which is just o.o. On the other hand, the measured con-
ductance (say, under constant voltage conditions) will be
determined by the series connection of N resistors, each
of which has the value

Rii =(A/2)[( 0+6 0) '+( 0
—& 0) ] . (2.1)

the analytic solutions of these equations in the general
small-signal case, i.e., the case of an "intermediate" ap-
plied electric field, can be derived from the equations
given in Sec. III, we have chosen to omit this solution in
the present paper. The reason is that the analytic solu-
tion in this case has a very cumbersome expression, and
thus it is quite useless for obtaining unique microscopic
parameters from the corresponding measurements. In
contrast, we show in Sec. IV that in the regime of a high
applied dc electric field (but weak illumination) the ana-
lytic results can be made simple enough to enable the
derivation of unique microscopic material parameters by
a simple comparison with experimental results. This is
done by the application of a "perturbation" approach to
the diffusion versus drift contributions. The results that
follow from such an approach and the experimental eval-
uation that they enable will be discussed in Sec. V. Final-
ly in the Appendix we argue that under the conditions of
the PCG the possible solutions of the coupled homogene-
ous continuity equations are the same as those of the in-
homogeneous equations given in Sec. III. Hence the
solutions presented in this paper are the general solutions
of the problem.
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AG, ((6,. Under these conditions one expects to obtain
the local modulated photoconductivity

o(x)=BO[G, +AG2+AG(x)]r

=Bo(G, +EG2)r[1+yhG(x)/(Gi+bG~)] . (2.5)

'X

However, this expression is correct only if the carriers re-
side where they are generated. Since carriers diffuse,
from regions of higher concentration to regions of lower
concentration, the amplitude of the modulated photocon-
ductivity grating in the steady state will be always lower
than expected from Eq. (2.5). Hence, in the case where
the carrier diffusion lengths are finite but small compared
to A (so that the "square-wave" shape is not significantly
distorted ), we should rewrite Eq. (2.5) as

cr(x) =Bo(6i+ 6 G2)r I 1+[yC(x)b G(x)]/(G, +b G2 ) J,
(2.6)

FIG. 1. An illustration of the square-wave conductivity grat-
ing in a semiconductor. The hatched regions represent the
half-periods where the conductivity is higher than the average
conductivity. The exhibited dependence of the conductivity on
the distance connecting the two end electrodes is characterized
by the period A, the uniform conductivity o.o, and the modula-

tion amplitude ho.o.

Since the measured conductivity, i.e., the conductance
of the structure per unit length, is (XR

~~

)
' (where

%= 1/A), the measured conductivity of the sample will
be

(2.2)

where 0 & C(x) & l.
Following Eqs. (2.2) and (2.6), we may conclude that

the measured photoconductivity of the sample in the
presence of the grating will be

(2.7)

where C'b, G, is some average of C(x)EG (x).
When both the diffusion length of the electrons L„and

the diffusion length of the holes LI, are much larger than
A, the carrier lifetime is long enough for both carriers to
cross the regions of low generation and one obtains a uni-
form carrier distribution. Correspondingly, the values of
the steady-state carrier concentrations will be the same as
those obtained by an "average" generation rate,
G &+AGz, throughout the photoconductor, and thus
C' =0. Hence C' will have values between 1 (zero
diffusion lengths) and 0 (infinite diffusion lengths). One
may then define a measurable quantity P such that

Hence, the most conspicuous effect to be appreciated for
this configuration is that a first-order periodic perturba-
tion induces a second-order decrement in the measured
value of the sample conductivity.

Turning from the above general case of a
conductivity-modulated system to the case of a photocar-
rier grating, we consider a photoconductor under steady-
state conditions. Let us assume that there is a uniform
carrier generation rate G& which yields the photoconduc-
tivity

~&
—B Gr& (2.3)

oo=oi=BO(G, +bG2)r . (2.4)

Now assume that on top of the G&+AGz uniform gen-
eration rate we add a square-wave-modulated illumina-
tion b, G (x ), with period A and amplitude EG„such that

where Bo is a constant and y is the well-known photo-
conductivity exponent. If we apply an additional uni-
form illumination that causes a carrier-generation rate
b, G2, we have to replace Eq. (2.3) with (see Fig. 1)

p= (cr
~~

—cr, )/(cr J
—cr i), (2.8)

which for G, ))b, G2 will be given [using Eqs. (2.3)—(2.6)]
to first order by

P=1—y(C'6«, ) /(G, EG ) . (2.9)

From the above physical picture and from dimensional
considerations one may guess that since C' is physically
determined by the relation between the quantities L„LI„
and A (see above), it will be a function of L, /A and
Ai, /A. Hence the aim of the theory is to provide a rela-
tion between the measurable quantity p (i.e., the quanti-
ties o

~~, oi, and o, or their differences) and the micro-
scopic quantities L, and Ll, . One notes that p of Eq. (2.9)
may be negative even if b, G(x) «G, . For example, in
the square-wave-modulation case, if bG, =(2G, bG2)'
one may have as low a value of p as —1. On the other
hand, from the above discussion it is obvious that with
any periodic grating the highest value of P cannot exceed
+1. In the case where EG, is a function of EG2 (as in
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the above example), the definition of P [Eq. (2.8)] can be
generalized to make it more pertinent to the (most con-
venient though unnecessary' ) experimental procedure'
where EG2 is also a function of the time t. Under these
conditions we may define (do /dG) l(dG/dt) as the varia-
tion of the conductivity due to the time variation of the
excess carrier-generation illumination EG2. Correspond-
ingly, the generalized definition of P will be

P=(do /dG i~/(do /dG), =(dIii/dG ~~i/(dI, /dG), ,

(2.10)

where the subscripts refer to the configurations that yield
o

~~

and o~. We have here that 13 is expressed by the ex-
perimental ratio of the photocurrent variations, which
are obtained, due to the time modulation of EGz, under
the grating-on conditions I~~, and under the grating-off
conditions I~.

While the square-wave carrier-generation case is help-
ful for illustration, it does not represent a very useful
grating in practice since it is hard to impose and accu-
rately analyze such a grating. On the other hand, it is
very easy to impose a sinusoidal grating by using the in-
terference of two coherent and monocohromatic light
beams. ' ' The analysis in this case is in principle simi-
lar to the one used above, except that now R~~ is ex-
pressed by the integral'

Rii
——I [o(x)] 'dx (2.11)

rather than by the sum given in Eq. (2.1).
The configuration of two interfering light beams,

which is designed for creating a carrier-generation grat-
ing, is illustrated in Fig. 2. A light beam of a plane wave

k =2(2m. /A, )sin(5/2) . (2.13)

Hence the spatial grating period associated with this
wave vector is

A=(2'/k ) =A, /[2 sin(5/2)] . (2.14)

Due to the experimentally imperfect light polarization,
one should take into account that the modulated carrier
generation is somewhat weaker than the last term of Eq.
(2.12), and thus an experimental quality factor yo (which
we found to be very close to unity' ) was introduced. '

Using this factor and making the assumptions (which will
be unimportant throughout this paper) of no refiection, a
quantum eKciency of 1, and a uniform illumination ab-
sorption we obtain the carrier-generation function

G (x)=a[F0+2yo+F, Fzcos(kx) ]=G~+ A cos(kx),

(2.15)

where a is the light-absorption coef5cient. Following
these assumptions we have here b, G(x)= Ascos(kx).
Hence the local photoconductivity should be given by

y&
= A&exp(iK& r), with a wave vector K&=(k„k ), in-

terferes at the point r = (x,y) of the photoconductor with
another light beam of a plane wave y2 = A2exp(iKz r),
with a wave vector K2 = ( —k„,k~ ). The corresponding
light intensity of the first beam is F& = 3 „while that of
the other beam is F2 = A z. If the wavelength of the light
is k and the angles of incidence are 5/2, we have
k =(2n. /X)sin(5/2). Hence, the light intensity distribu-
tion along the x direction of the photoconductor's surface
(xz plane where the x axis is defined as the direction per-
pendicular to the planar electrical electrodes which are
presumed to be attached to the sample) is obtained by a
simple superposition of y, and y2. This superposition
yields

F(x)=F, +F 2+2+F&F c2o(sk x)=Fo+A—F(x), (2.12)

where

cr(x)=cr~[1+ A cos(kx+qI)], (2.16)

where 4 is a possible phase shift due to a "broken" sym-
metry introduced by an applied electric field Eo. Using
Eq. (2.5) we see that in the limit of zero mobility or zero
diffusion length the carriers reside where generated and
A =y A /G~. However, because of the redistribution of
the carriers as explained above [with regard to Eq. (2.6)]
the excess photoconductivity will be of a smaller ampli-
tude than this A. In the particular case of the sinusoidal
grating, A is simply given by Eq. (2.15) and thus

A= X/'[2sin(
k= 2m/A

K= 2m/X
k = Ksin(5/2) A = Agyy, ft/G~ =2yoyy, ft+F,F2/Fo, (2.17)

FIG. 2. A cross section (xy plane) of the modulated excess
light intensity hF in a photoconductor, along the spacing be-
tween the two end electrodes attached to it. This excess light
intensity can be obtained by the interference of two coherent
monochromatic light beams (propagating in the xy plane) as
shown in the figure.

where y,z plays here the same role as the factor C' in the
square-wave grating. For reasons that will become aP-
parent below, the term y, ff is called' the "normalized
grating amplitude. " This term is introduced here to
reflect the microscopic redistribution of the carriers due
to diffusion and drift in the sinusoidal grating. For exgm-
ple, in the EO~O case for very large L, /A and L&/A
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values, y,~=0, while for very small L, /A and Lh/A
values, y,ir=1. The important point to note is (again)
that the steady-state amplitude of the carrier grating is
always smaller than the amplitude of the carrier-
generation grating (see below).

Substituting o.(x) of Eq. (2.16) in Eq. (2.11) yields the
sample resistance given now by R

~~

= [Ao i(1 —A )' ]
and thus the measured photoconductivity in the presence
of a grating of N( = 1/s) periods will be'

0.,(1—A ') '"=o.,(1—A '/2) (2.18)

where the last approximation follows the fact that
F2 «Fi. Hence, the measurable grating parameter P is
given by'

+ + + +
']l

~O ~~ ~

o f i j» j& q~'i Ae Ago
P NqA~ XgA Q~ -

~i P 0
C

C: Ah

C3
C.0

C3

L~) Lh

~""" Carriers Generated
Holes
Electrons

P= [cri(1 —A /2) —o, ]/(o. i —o. , ), (2.19)

where the microscopic information is embedded in the
normalized grating amplitude y, ff.

Let us look now more closely at the processes that
determine y,& in an intrinsic photoconductor. For clarity
we start with the case when no electric field is applied.
Under steady-state conditions and a uniform illumination
of intensity I' &+I'2 there will be a uniform concentration
of electrons no and holes po such that no=pa=G&~o,
where ~o is the common recombination time under this
illumination level (see Sec. III B). For simplicity, we ig-
nore here trapping processes (which will be addressed in
Secs. III B and IV B) and use the notation n 0

=n i
[~(Fi+F2)r] for the concentration of the two types of
carriers when the two light beams, impinging on the sam-
ple, do not interfere (e.g., by using two coherent beams
that have perpendicular polarizations' ' ). When a
small-ainplitude light grating is imposed (the beam polar-
izations are made parallel) the carrier-generation function
is as given by Eq. (2.15) and as illustrated in Fig. 3. In
this simple case where a dc field is not applied, there is no
preferred direction in space, and thus there is a symmetry
of the carrier distributions around the carrier-generation
grating which is imposed on the uniform background of
no and po. Under small-signal conditions the recombina-
tion time is essentially the same in the somewhat stronger
and somewhat weaker illuminated regions. Hence, the
steady-state carrier concentrations are such that the ex-
cess carriers that have diffused from the regions of the ex-
cess illumination are present in the regions of deficient il-
lumination. This suggests a sinusoidal dependence (see
the Appendix) of the carrier concentrations such that the
grating amplitudes of the two carrier concentrations can
be expressed by the single values A, and A&. For the
sake of consistency we define here the amplitudes AI, and
A, in accordance with Ref. 17 (P, and N, there). These
are the carrier-concentration amplitudes that would have
resulted if the photoconductor would have been subjected
only to an illumination of amplitude 2y(F, F2)'~ [but
witll rQ 7Q(po )]. Hence, the actual amplitudes of the ex-
cess carriers in the PCG configuration are y A, and y A&.
The advantage of this definition is that it yields a normal-
ized y,z as described above, and that it has a simple phys-
ical meaning (see below). The disadvantage of this
definition is that A, and A& are not the actual carrier-

FIG. 3. An illustration of the distribution of the holes and
electrons under steady-state conditions in the PCS
configuration. The amplitudes of the corresponding carrier
gratings are smaller than the amplitude of the carrier-
generation grating common to the two carriers. Also indicated
in the figure are the regions of excess positive- or negative-
carrier space charge. One notes that in the asymptotic ambipo-
lar case Ah= A„and space-charge neutrality prevails every-
where.

—:cree[1+ A cos(kx)], (2.20)

where q is the (positive) electronic charge and p, and pi,
are the carrier's (so-called band or microscopic) mobili-
ties. One notes of course that while both A, and A& are
proportional to (F,F2)'~, they are not equal to each oth-
er in the general case, due to the difference in the
diffusion lengths of the two charge carriers. It is also
clear that the larger the diffusion length the smaller the
value of these amplitudes. In the case illustrated in Fig.
3, we assume that L, )LI, (or that p, )pl, ,'see Sec. III)
and thus the electrons are distributed more evenly (be-
tween the region of excess illumination and the region of
deficient illuinination) than the holes. On the other hand,
we note that while charge neutrality over a single period
is maintained, within the period the region of excess il-
lumination is positively charged while the region of
deficient illumination is negatively charged. This is since
in the first half of the grating period there are more ex-
cess holes than excess electrons (Ah is assumed larger
than A, ) while in the second half there is a larger
deficiency of holes than of electrons. Hence, in the gen-

concentration amplitudes under the PCG conditions (ex-
cept when y= 1). This point has not been clarified in
Ref. 17 and indeed Eqs. (35) and (36) in that paper are not
consistent in the y&1 case. Having these definitions we
can express the photoconductivity of the PCG by'

o(x)=oi+qy(p, A, +@I,A&)cos(kx)



THEORY OF THE SMALL PHOTOCARRIER GRATING UNDER. . . 1633

eral case, this induced sinusoidal space charge opposes
the diffusion and determines the final resultant steady-
state carrier concentrations. Since the desired physical
information is enclosed in Az and A„we must find the
relationship between these quantities and the measurable
quantity y, ff. This can be done by comparing Eq. (2.20)
with the phenomenological value of 2, as given by Eq.
(2.17). From this comparison we obtain

~ff q(p, A, +ph Ah )/[2y, V'F, F,(~,/F, )] (2.21)

Under the intrinsic conditions ' there is the single
recombination time 7 0 that determines the recombination
process (see Sec. III B) and one can use the simplest rela-
tion between the photoconductivity and recombination
time ' to write

~i«. =q(i h+P )~O

Substitution of Eq. (2.22) into (2.21) then yields

) .ff=q)'(u, A, +s h Ah)

X [qy(~, +~h), ( )',a&F,F, )]-' .

(2.22)

(2.23)

It is obvious then that the task of the theory is to deter-
mine 3, and A&, and to express these amplitudes in
terms of p~-like quantities, thus making it possible to
determine the latter quantities from the measurable P.
We note in passing, one of the important advantages of
the photocarrier grating method: Since A, ~ 3 and
Ah o- Ag, we have A (and thus y, ff) determined from ra-
tios of measurable quantities [Eq. (2.8)] rather than from
their absolute values, which are usually much harder to
determine accurately in the experiments (see Sec. V).

From the above physical picture it is clear that for
L, =L„, one obtains A, = 2&, and no space charge will
be accumulated in either half of a grating period. In the
case shown in Fig. 3 (L, )Lh ) we have assumed that the
electrons' diffusion is essentially independent of the holes'
diffusion, so that most of the excess generated holes
recombine before reaching, say, the center of the region
of lower generation rate, while most of the excess gen-
erated electrons reach this center before they recombine.
If, however, one considers the electrostatic attraction be-

The denominator in Eq. (2.23) is the photoconductivity
that would have resulted had there been an additional,
small, uniform generation rate of an amplitude
2&oa(F,F2)' . We see then that y, ff has a simple physi-
cal meaning: it is the ratio between the amplitude of the
additional photoconductivity in the presence of the grat-
ing and the additional photoconductivity that would have
resulted under uniform generation of the same amplitude.
Hence the name "normalized grating amplitude. "

We may summarize now the relation between the
measurable parameter P [or A, see Eqs. (2.18)—(2.20)] and
the microscopic carrier concentrations and mobilities by

I (1—»/(2)')'o) ]
'"=1'.ff

=(P A +Ah Ah )/I:(P +Ah )~OA

(2.24)

n =no+ A, cos(kx+v) . (2.25)

+ + +
~ ~ ~ + ~ 0

~ ~ ~ ~ ~ ~ ~ ~

c ~o;,~
'I

/ I'0,' g j'0,' g I'i,' $ Ic ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~~o ~ ~ ~ 0
Q)
C3

O Eo

Agro—po

~~.&i b]
Carriers Generated
Holes
Electrons

FICx. 4. An illustration of the distribution of holes and elec-
trons under steady-state conditions of the PCG configuration
when an external electric field Eo is applied. Also indicated in
the figure are regions of excess positive- or negative-carrier
space charge.

tween the two types of carriers, one must conclude that,
if the distance that the carriers diffuse during the dielec-
tric relaxation time ~d is short compared to A, the system
is essentially "locally" neutral. Hence, on the relevant
length scale of the problem, A, we have charge neutrality
and thus AI, =A, . If this is not the case the diffusion
"overcomes" the electrostatic attraction and ("local" )

space charge is formed. As we have shown in Ref. 18,
one can obtain an exact analytic criterion for the
fulfillment of the asymptotic 2, = AI, case, i.e., the ambi-
polar case. Under these conditions the diffusion length is
the same for the two carriers, and it is known as the am-
bipolar diffusion length L.

The question of interest in the present work is what
happens when a dc electric field is applied to the system
illustrated in Fig. 3. The most obvious effect to be ex-
pected is that of charge separation. Under these condi-
tions the peak of the hole concentration will be shifted in
the direction of the field and the peak of the electron con-
centration will be shifted against this direction. Hence,
as illustrated in Fig. 4, the hole grating and the electron
grating will be shifted by the corresponding phases P and
v with respect to the carrier-generation grating. As was
mentioned above, under small-signal conditions, the sepa-
ration of charges is such that the amplitude of the excess
carriers in the region of stronger illumination will be
equal to the amplitude of deficient carriers in the region
of weaker illumination. We expect then that the car-
riers concentrations will be described by

p =po+ Ahcos(kx +f)
and
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Again, there will be a competition between the dielectric
relaxation process that tends to pull the two types of car-
riers together, and the electric-field and the diffusion pro-
cesses that tend to pull them apart. It is further clear
that the carriers with the larger mobility will have the
larger phase and the smaller amplitude. In the extreme
case of a very high electric field, i.e., when the drift pro-
cess dominates the diffusion process and the dielectric re-
laxation, the phases of the carrier concentrations will ap-
proach +m/2 with respect to the generation grating.
From continuity considerations one would expect that
their amplitudes will be related by

Finally, for completeness, let us use Eq. (2.19) in order
to derive the general p(y, ff) relationship. Since A «1
for the small-signal conditions (F,F2 «Fo), one can use
Eqs. (2.17) and (2.19), and the approximation
cri=o(F,. )(1+yF2/Fi), to find that the more accurate
expression for /3 will be

P= 1 —2yoyy, ff[(1+yF~/Fi )]/[(1+2F2/F, )] . (2.32)

In the F2 ((F& limit this reduces of course to the original

p(y, ff) relationship proposed by RZW (Ref. 14) [Eq.
(2.24)], i.e., to

(2.26)
P= 1 2y—oyy'ff . (2.33)

Using Eqs. (2.25) we can generalize the zero-field case
given by Eq. (2.24) to the case that includes an applied dc
electric field. Under these general small-signal conditions
the local conductivity (in the intrinsic no=pa or ni =pi
case) will be given by

cr(x) =q(p, +ph )no

We see now that the measurable quantity P is simply
related to the normalized grating amplitude y,z which is
given by the concentration amplitudes and concentration
phases of the holes and the electrons. As will be shown
below, one can determine these amplitudes and phases
even for the most general case, i.e., the case that includes
the presence of an intermediate electric field.

+qy[p, A, cos(kx+v)+pz Ai, cos(kx+P)] .

(2.27)

III. THE LINEARIZED PHOTOCARRIER
GRATING EQUATIONS

Hence by writing Eq. (2.27) in terms of

cr(x) =cri[1+ A cos(kx+4)],
we obtain

(2.28)

criA /q =y[(p, A, cosv+ph Ahcosg)

+(p, A, sinv+ph Ahsing) ]' (2.29)

and the "effective phase" 4 of the PCG conductivity can
be defined by

t an+=( p A, si nv+ph Ahsi n0 )/(p A cosv+ph Ar, cosk) .

(2.30)

ff [(p A cosv+pg Ap, cosp)

It is apparent already, from the values of v and P and
Eqs. (2.26) and (2.29), that under very high electric fields,
which separate the charges completely, we have 3 =0.
The physical consequence is that although the gratings of
the two carriers are different and separated, their contri-
bution to the conductance is equal and opposite. Hence

ff 0 as if none of the carrier gratings exist. In the gen-
eral case (i.e., for any finite value of the electric field) ap-
plying the integration [Eq. (2.11)]to cr(x) [as given by Eq.
(2.28)] yields the general expression for cr~~. One notes,
however, that in this general case the integration limits
are 4/k &x &(2m+0')/k rather than 0&x &2'/k in
the zero-field case. Hence cr~~ is given as in Eq. (2.18), but
the value of A is determined by Eq. (2.29) instead of Eq.
(2.20). Correspondingly, one finds that

The basic nonlinear differential equations that govern
the steady-state charge Aow in intrinsic photoconductors
have been known for many years. ' However, the linear-
ized equations in the simple ambipolar case and in the
more general case' ' have been considered only recently
in connection with the measurements of the two-carrier
transport in a-Si:H. In this section, we discuss the linear-
ization procedure, and point out the limitations involved
in its application to the PCG configuration. In order to
extend the free-carrier-only approach of RZW to the
more general case of trapping-controlled recombination
and transport, which is relevant to a-Si:H and other non-
crystalline systems, we consider the form of the recom-
bination term. Finally, we present the general algebraic
equations that are derived from the linearized differential
equations in this case. Substituting the solutions of these
equations for Ah and A, in Eq. (2.31) and using Eq.
(2.33) yields the desirable relationship between the experi-
mental PCG conductivity ratio P and the material's pr
parameters.

A. The linearization of the small-signal equations

The carrier concentrations under carrier generation 6
and carrier recombination U, in the steady state, are
determined' by the continuity equation for holes,

G —U —p„E(ap/ax ) —p„p(aE/ax )+D„(a'p/ax') =0,

(3.1)

the continuity equation for electrons,

G —U+p, E(an/Bx)+p, n(BE/Bx )+D, (B n/Bx )=0,

(3.2)

+(p, A, sinv+pz Ahsing) ]'~

X [(p, +ph )BOA ] (2.31)

and the Poisson space-charge equation,

BAE/Bx =(q/e)(p —n ), (3.3)
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where e is the dielectric constant. In this set of equations
one assumes a one-dimensional geometry, i.e., that a con-
stant dc electric field Ep is applied in the x direction and
that the carrier-generation rate G may vary only along
this axis. The total photoexcited carriers concentrations
are p and n (see below), and the resulting electric field E is
composed of Eo and a component bE(x) which may re-
sult from the deviations from neutrality in the material.
For simplicity we assume that the diffusion terms result
from a Boltzmann distribution such that'

and

Di, =k~7 pi, /q (3.4)

D, =k~Tp, /q, (3.5)

where k~T is the thermal energy. In the more general
case (which is relevant to amorphous materials where
there is a continuous-state distribution in the pseudogap)
one has to use the Fermi-Dirac distribution function, and
correct the values of the diffusion coefficients in Eqs. (3.4)
and (3.5) by a factor. ' This correction amounts to
different effective mobilities and does not change the re-
sults given in the present paper. For the present work
and for comparison with experiments it is sufficient to
consider D& and D, as phenomenological diffusion
coefficients which depend linearly on the temperature and
the mobility.

The nonlinear coupled equations (3.1)—(3.3) cannot be
solved analytically and are usually solved numerically for
particular systems and under some simplifying assump-
tions. " The situation can be improved considerably
when a small signal (or a small perturbation) is con-
sidered since mathematically a linearization of the con-
tinuity equations is possible. In the general case of a car-
rier generation G =Go+A, G(x), where Go corresponds to
a uniform generation and b, G(x) to a perturbation
[EG(x) ((Go], one expects solutions of the form

arid

U= Uo+b, U(x),

E =Eo+AE(x),

p =po+bp(x),

(3.6)

n =no+An(x) .

Here Up, Ep, pp, and np are the quantities that prevail
when G = Gp and E =Ep. Under those conditions
Go = Uo, and thus substituting Eqs. (3.6) in Eqs.
(3.1)—(3.3) yields the small-signal equations

hG 6U pi, (EO+ hE—)(asap—/ax )

1,(J,+aJ )(aaE—/ax )+D„(a'aI /ax') =0, (3.7)

In an "intrinsic" photoconductor' for which solutions
are derived in this work, we note that pp =n p.

As was pointed out above, the motivation in turning to
the small-signal (b, G &&Go) case was the prospect of
linearization of Eqs. (3.7)—(3.9). RZW have neglected
terms such as p&EE(asap/ax) and pI, hp(ahE/ax) by
simply labeling them as "second-order" terms.
Mathematically this is justified, since one can choose as a
small AG as one wishes. In practice however, if one is in-
terested in utilizing the results of the theory for the
analysis of experimental data, pertinent to real systems
and real conditions, one has to ensure that these
"second-order" terms are indeed smaller than the other,
"first-order" terms. In particular one notes that even if
bp and An are small, their derivatives may be non-
negligible, and thus in the most general case one cannot
ignore these terms. The conclusion is then that one has
to find the experimental conditions under which it is
justified to neglect these "second-order" terms before
comparing one's experimental results with the results of
the linearized PCG analysis. Since we are concerned in
this paper mainly with the sinusoidal carrier-generation
system, which was found to be experimentally con-
venient' [Eq. (2.15) and Fig. 2], i.e., for

G=Go+EG(x)—=Gi+A cos(kx), (3.10)

where A~ =2yoa(FiF2)', we examine the linearization
of the continuity equations in the presence of such a gen-
eration.

As is argued in the Appendix, in the very-small-signal
limit (i.e., when the linearization is justified) the general
solutions of the second-order differential equations (3.7)
and (3.8) with b, G(x) as given by Eq. (3.10) will be of the
form [see Eqs. (2.20) and (2.25)]

bp(x)= Ahcos(kx+P) (3.11)

An (x) = A, cos(kx +v) . (3.12)

By substituting these solutions in Eqs. (3.7)—(3.9) one can
compare the first-order and second-order terms and find'
the specific conditions under which the linearization is
justified. The important practical conclusion of such
analysis' is that in order to obtain true material parame-
ters, comparisons of the experimental data with results of
the linearized theories' ' should be made under as low
light intensities, of the time-modulated beam F2, as possi-
ble. However, in contrast to the Ep~O case discussed
previously' it is desirable for the determination of unique
microscopic parameters in the Ep~~ case that the Fi
intensity also be as low as possible (see Sec. IV).

In the rest of this paper we consider then the linearized
continuity equations

bG b, U+p, (ED+DE)(ann/ax)—

+p, (no+An)(abE/ax)+D, (a An/ax )=0, (3.8)
hG —AU pI, Ep pgpp

asap BEE
Bx

and

ab.E/a x(q /e)(po no+ b,p —bn ) . —(3.9)

BA
+Dh =0 (3.13)

Bx
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and

4G —d U+ E ~~~ + ~~E
pe o p, no

recombination time also prevails in the special case of a
small perturbation (of uniform or nonuniform illumina-
tion) under ambipolar transport conditions (i.e., An =Ap )

is seen as follows. Equation (3.16) implies that

+D, (d An/dx )=0, (3.14) AU =An( 1 lt„+1/t, ), (3.21)

which for an intrinsic photoconductor (no=po) are cou-
pled via

and thus substituting Eqs. (3.18) and (3.19) into Eq. (3.21)
yields

dAE/dx =(q/e)(Ap An )
—. (3.15)

AU=An /(r„+r~ ) =Ap/(r„+r~ ) . (3.22)

In order to proceed with a more specific form of these
equations we must give a specific form to the excess
recombination term hU. This is done below.

B. The recombination term

In the preceding subsection we have not considered the
kinetics of the recombination process, and have denoted
the recombination term symbolically by U=Uo+b, U.
Since, by definition, the additional recombination rate
6U under steady-state conditions has to be the same for
electrons and holes, and since in general there are quite a
few recombination mechanisms that may be involved, the
best expression of hU seems to be the phenomenological
expression which has been suggested by RZW. ' They
have written the small-signal (additional) recombination
rate as

A U = ( 8 U /Bn ) An + ( 8 U /Bp )„Ap = ( A n It„+Ap /t ),
(3.16)

The result (3.22) is indeed the result that has been ob-
tained (however, difFerently) in the literature" for the
special case of ambipolar transport and Shockley-Read
recombination. We have redeveloped it here in order to
demonstrate that the general approach given by Eq.
(3.16) also yields this expected result (and that the factor
of —, in the definition of t„and t as given in Ref. 17 is in-

correct). The important point to realize is that in the
general case of nonambipolar transport there is no "com-
mon" recombination time, and one has to use explicitly
the two different recombination times t„and t .

In most photoconductors ' shallow trapping also takes
place, and thus its effect on the recombination rate has to
be considered. This is usually done ' by defining the ra-
tio O„between the concentration of the free photoelec-
trons and the sum of the concentrations of both the free
and the trapped photoelectrons. Using the same
definition for holes yields then the condition for charge
neutrality ' n/„O=p/ ~O. Hence Eq. (3.17) takes the
form

where t„and t are phenomenological recombination
times which are defined for an "intrinsic photoconduc-
tor" (i.e., under strong enough background illumination
such that p =n) via Eq. (3.16). Indeed we shall use these
t„and t throughout this paper. However, in order to re-
late these to well-defined kinetics parameters such as the
deep trapping times we will give everywhere the results
obtained using a Shockley-Read-like recombination ex-
pression which has been shown to describe a much more
general recombination process. The Shockley-Read
recombination rate in an insulator is given by'

U=pl(r +8 r„/8„)=n/(r„+O„r /8 ) . (3.23)

We can now apply the above concepts to obtain an ex-
pression for the measurable steady-state photoconductivi-

6

(3.24)

Since under uniform illumination the steady state is
determined by the condition 6 = U one can use this con-
dition and Eqs. (3.23) and (3.24) to write '

U =pn l(n ~~ +p r„), (3.17) o =q G(p, „8+pq ~8)( „r/„8+ r/8 )

t„=r„[1+n r /(p r„)] (3.18)

and

where p and n are the concentrations of all photoexcited
free holes and free electrons, and ~ and ~„are the deep
trapping times of holes and electrons, respectively.
Hence by applying Eq. (3.16) we find that in this case

qGp sr' =qG(p—, +p„)r, , (3.25)

and thus define a common recombination time
r, =(psrs)/(p, +pz). One notes, however, that strictly
speaking the recombination times for the two carriers are
diff'erent [Eq. (3.23)]. The results for the small-signal per-
turbation, (3.18) and (3.19), can be written in the present
case of shallow trapping as

t~ =r~ [1+pr„/(nr~ )] (3.19) (3.26)

Since under steady-state conditions, in an "intrinsic" uni-

formly illuminated photoconductor n =p, we have
and

(3.27)
U=n /(r„+r )=p/(r„+r„) . (3.20)

We may then call ~, =~„+~ the "common" recombina-
tion time for both carriers. That the same common

For the special case of a small signal of additional il-
lumination, under which the conservation of charge neu-
trality of the additional (free and trapped) carriers A&o is
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maintained, we have BbEIBx =(q/e)(p/8 n—IO„) . (3.30)

b,No = b, n IO„=bp /8~ . (3.28)

In the case of charge neutrality, this term vanishes since
one has the condition

=b, n /( r„+O„r~ /8~ ) =AN(—) /rs . (3.29)

We point out again that the result (3.29), which we de-
rived using the definition (3.16), is the same as the result
derived without this definition previously. As in the
case for U we do not have here the same recombination
time for the two types of excess mobile carriers. We note,
however, that this is the situation that is definitely
relevant ' to a-Si:H under the application of a PCG.

Following the above discussion (in which it was as-
sumed that only free carriers recombine) we can conclude
that the continuity equations (3.1) and (3.2) (which de-
scribe the conduction processes in the "extended states")
stay much the same under trapping. The only term that
changes with trapping is the space-charge term, which is
afFected by both the stationary and the mobile charges.
Hence Eq. (3.3) is to be changed to

Using Eqs. (3.16), (3.26), and (3.27), we determine that
the excess recombination rate 6U can be expressed again
by the recombination time of the background carriers,
i.e., by

b, U =bp /( r~ + 8~ r„ IO„)

n /O„=p/8 (3.31)

In the "intrinsic" case considered throughout this work
we only assume that

no IO„=pa IO~ . (3.32)

Hence the fulfillment of (3.31) [or (3.28)] represents an
ambipolar case in the sense that charge neutrality is
maintained but not that hn =Ap, as in the case with no
trapping. In the more general nonambipolar case to be
discussed in Sec. IV, relation (3.32) is fulfilled while rela-
tion (3.31) is not. Hence the Poisson equation for this
condition will be given by replacing p by Ap and n by hn
in Eq. (3.30).

C. The continuity equations under a small photocarrier grating

Following our interest in the carrier distributions un-
der the sinusoidal carrier generation (3.10) and having
the general excess recombination rate [Eq. (3.16)] and the
Poisson relation [Eq. (3.15)] we can now write the corre-
sponding continuity equations (3.13) and (3.14) explicitly.
These equations are' '

DI, (B hp/B—x )+p&EO(Bhp/Bx )+bp(l lt +qphpole)+En(1/t„qphpole— ) = Agcos(kx)

for holes, and

D, (B bn IBx )—p, EO(—Bbn IBx )+bp(1/t qp,

nolo)+An�

(—1/t„+qp, nolo) = A~cos(kx)

(3.33)

(3.34)

for electrons. As we see, these are essentially two cou-
pled, linear, second-order equations. They become con-
siderably simple in the Eo =0 ambipolar (b, n =hp ) lim-

it. ' ' As pointed out already, under an applied electric
field we expect sinusoidal solutions for these equations
such that

obtaining the following four coupled algebraic equations
with the four unknowns, Ah, P, A„and v. These equa-
tions are

Ag —(

Ah

cosg�
)(1/t~ +ph poq /e+ k Dh )

—
( A, cosv)(1/t„pzpoq /e)—

and

bp =
Ah cos(kx +P) (3.35)

and

+( AI, sin(b)pI, Eok =0 (3.37)

b, n = A, cos(kx+v) . (3.36)
( Ag /co)pspE k+0( Agsink)( 1/t +phpoq/~+k Da )

In principle, all one has to do, in order to get the most
general result, is to substitute Eqs. (3.35) and (3.36) in
Eqs. (3.33) and (3.34), and solve for A„v, Az, and P.
Once these quantities are known, one can substitute the
results in Eq. (2.31) in order to make a comparison with
the experimentally determined y, ff.

Carrying out the first step suggested above we have
substituted the steady-state solutions, (3.35) and (3.36),
into the coupled di6'erential equations, (3.33) and (3.34),

As —( A, cosv)(1/t„+ p, noq/e+ k ~D, )

—( A„cosg)(1/t p, noq/e)—
—( A, sinv)p, Eok =0 (3.39)

+( A, sinv)(1/t„pqpoq/e) =0 —(3.38)

for the holes, and



1638 I. BALBERG
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IV. ANALYTIC SOLUTIONS OF THE CONDUCTANCE
IN THE PHOTOCARRIER GRATING

UNDER AN APPLIED ELECTRIC FIELD

In the Eo —+0 limit one assumes' ' that the electric-
field terms of Eqs. (3.1) and (3.2) [or Eqs. (3.7) and (3.8)],

pI, Eo(dip/Bx ) (4.1)

are negligible compared with the other terms in those
equations. This situation corresponds to the case where
competition between the diffusion processes and the
space-charge effects is determining the steady-state pho-
tocarrier distributions in the PCG. Since we found' that
the experimental conditions required in the Eo —+0 limit
are not too stringent, the second question that arises is,
what information can one extract from the electric-field
dependence of the measured quantities P, or y, s. (apart
from gaining physical understanding of the PCG in the
presence of an electric field; see Sec. II). Trying to
answer this question one realizes that the analytic solu-
tions of the general case, which includes the electric-field
terms, are essentially available, since one can simply solve
the algebraic equations (3.37)—(3.40). However, as is ap-
parent from these equations and the solutions' of the
much simpler EO=0 case, the expressions of these solu-
tions in the Eo&0 case are very cumbersome. Since the
purpose of applying the PCG technique is to enable
unique derivation of parameters such as the p~ products,
one has to find conditions that will yield simple analytic
results for y,&. The most natural approach to obtain a
simple expression seems to be that of considering another
extreme case, e.g., the Eo —+0 limit. The latter case is ob-
tained when the electric-field term (4.1) dominates the
diff'usion and space-charge terms [in the continuity equa-
tions (3.1) and (3.2) or (3.37)—(3.40)] so that the latter
terms can be neglected. As we show below, while this
limit is very easy to solve and the analytic results ob-
tained are indeed simple and interesting, they are useless
in the sense that no information can be obtained by their

( A, cosv)p, Eok+( A, sinv)(1/t„+p, noq/@+k D, )

+( A hsing)(1/t —p, ,noq/e) =0 (3.40)

for the electrons. These algebraic equations are the most
general equations that one obtains for the linearized
differential equations which correspond to the conditions
of a small sinusoidal carrier generation superimposed on
a larger uniform carrier background. While in principle
one can simply proceed by solving the algebraic equa-
tions, in practice, the general solutions of Eqs.
(3.37)—(3 40) have very cumbersome expressions. Hence
one should search for some more specific conditions that
can yield simple and unique relations between the experi-
mentally determined y,& and the p~ products so that one
will be able to derive unique values for these products.
Gne set of conditions (the ambipolar ease) was considered
previously' and another set will be derived in the follow-
ing section.

comparison with experimental results. The solution in
this case shows that while the carrier gratings are not
blurred, the contributions of the two types of carriers to
the conductance cancel each other. This Eo~ ao result
on the one hand, and the cumbersome solution expected
for the intermediate Eo conditions on the other hand, in-
dicate that for the purpose of getting a reasonable simple
expression for y,~ one has to consider more specific cases.
Of these cases the more useful ones are of course those
that are generally achievable experimentally and that are
consistent with the linearization described in Sec. IIIA
(rather than those that may take advantage of particular
material parameters). Correspondingly we discuss here
the case of low illumination level and high electric field.
As we show below the corresponding results enable the
most accurate available determination of the p~ products
of the two types of carriers under steady-state conditions.

A. Definition of the high-field regime

In order to quantify our definitions of the various field
regimes, let us evaluate the magnitude of the various
terms in the algebraic continuity equations (3.37)—(3.40).
This is done by using the same reasoning as that pro-
posed in Ref. 18 and mentioned in Sec. III A.

The diffusion term under the small signal PCG is given
(e.g. , for holes) by k Dhbp, while the electric-field term
[Eq. (4.1)] is given by pi, kEobp. Hence the criterion for
the applicability of the Eo =0 approximation is

Eo «(kDi, /pi, ) . (4.2)

Assuming the Boltzmann approximation for the diffusion
term [Eq. (3.4)], we obtain a field that is smaller than the
"diffusion field, " i.e., a field that obeys the relation

E, «k(k~T/q) (4.3)

Eo «1600 V/cm . (4.4)

This criterion for the low-electric-field regime is indepen-
dent of the material measured and depends only on the
temperature and the experimentally controllable parame-
ter k. We further note that this implies very convenient
working conditions since for typical fields of 100 V/cm
one can easily carry out the measurements on various
amorphous' ' and polycrystalline' materials.

The criterion (4.4) can be read in reverse, i.e. , that
fields of the order of 10 V/cm are required for the high-
electric-field regime. Of course it is not enough, however,
to reverse the criterion (4.3) and one has to consider also
the space-charge term ph poq ( hp An ) /e [see Eqs. —
(3.13)—(3.15)]. This term is bounded by pzpoq(~bp~
+ ~b, n

~
)/e. Correspondingly (assuming p, )pl, and thus

~bp ~
) ~b, n

~ ), we see that the criterion for the high-field
regime [when the sinusoidal solutions given by Eqs. (3.11)
and (3.12) are assumed; see the Appendix] consists of the

is to be considered a small field. In practice, for the com-
mon experimental conditions (in mks units), i.e., for
k =2m/10 and room temperature [where
(kii T/q ) = —,', ], this means that the ED=0 approximation
is valid for
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reversal of Eq. (4.4) as well as the requirement [consider-
ing Eq. (4.1) and Eqs. (3.13)—(3.15)] that

2qpo/(ke) «Eo . (4.5)

2X 10 V/cm «Eo . (4.6)

As we will see, however, in Sec. IV C the conditions be-
come more stringent when trapping is present. Since cri-
terion (4.6) yields a much higher value than criterion
(4.4), we conclude that for a photoconductor of
p0=4. 10' cm 3 fields higher than, say, 10 V/cm belong
to the very-high-field regime. For the same photocon-
ductor under a 0.1 AM1 illumination we see that the
very-high-electric-field regime will be for fields higher
than 10 V/cm. This value satisfies both (4.5) and the re-
versal of (4.4). Because of the latter reversal the lower
bound of Eo cannot be further reduced by lowering the
high intensity. For the very high fields we can neglect
the diffusion and space-charge effects and solve the con-
tinuity equations (3.1) and (3.2) by excluding the corre-
sponding terms. As we show in Sec. IVB this is easily
done and one obtains sinusoidal solutions such as those
given by Eq. (2.25).

We should also check whether fields of the order of 10
V/cm are also high enough to be consistent with the
linearization of the continuity equations, i.e., high
enough to ensure that Eo )&DE [see Eqs. (3.7) and (3.8)].
For this purpose we have to estimate the value of hE.
Considering the sinusoidal solutions' and Eqs. (3.7) and

(3.8) we may conclude that the linearization is justified if

Hence in a material with no trapping (see Sec. IV C) the
criterion for the high-field regime is that the value of the
field will satisfy both the reversal of (4.4) and the
fulfillment of (4.5). To get a feeling for the magnitude of
the required fields we must use the material parameters
po( =Goro) and e. As an example, let us consider a typi-
cal "intrinsic" photoconductor (a-Si H) under AM1 il-
lumination. ' In such a material [G0=2 X 10 ' cm s

r0=2X10 s, and a=10 ' (mks units)], we have

po =4 X 10' cm, and thus for our typical grating
(k =2~/10 ) we must require that

term has to dominate the space-charge term the light in-
tensity should not exceed about 0.1 AM1 (for more de-
tails see Sec. IV C). As we show below, the latter case is
the one which is of the most practical value.

B. The photocarrier grating in the very-high-Beld regime

and

b.G &U I,E—,(aa—p/ax ) =0 (4.8)

4G —b, U+p, EO(Bison/Bx ) =0 .

We see immediately from Eqs. (4.8) and (4.9) that

p„(a~p/ax) = ~,(ann/ax),

(4.9)

(4.10)

and since the symmetry and the linearization of the prob-
lem imply that there are no dc terms in Ap and An, one
would expect that

pI, bp(x)= p, bn(x) . — (4.11)

As will be shown below, this expectation is obeyed and
with b, G given by (3.10) the corresponding solutions are

As was pointed out in Secs. I and III, there is a limited
practical use for the full analytic solutions that can be ob-
tained from the algebraic equations (3.37)—(3.40). Con-
sidering the relatively simple results obtained for the
Eo =0 case, ' one would hope that simple enough results
would be obtained for the other extreme, i.e., the Eo~ Oo

limit.
The meaning of the Eo —+ ~ limit is that the drift terms

in Eqs. (3.13) and (3.14) are larger than the space-charge
and diffusion terms in these equations. We note that the
structure of the algebraic solutions (3.37)—(3.40) does not
change by just neglecting one of these terms, and thus the
complexity of the solution is not reduced by this type of
approximation. Hence, the only way to simplify the
structure of the algebraic equations (which appears to be
the only way to modify the form of the solutions; see,
however, Sec. IV C) is by neglecting both terms.

Applying this approximation reduces equations (3.13)
and (3.14) to

bE & (2q Ike) A, «E, . (4.7) bp = Ai, sin(kx) = Ai, cos(kx ~/2)—(4.12)

Since in the PCG configuration Az «po, the fulfillment
of (4.5) ensures the fulfillment of (4.7). In fact, this re-
striction is less stringent than the restriction on the il-
lumination intensities required for the linearization under
the ED=0 conditions. ' We expect then that applied elec-
tric fields larger than at least 10 V/cm (depending on the
illumination intensity, see above) will ensure both the
line arization and the domination of the electric-field
term. We further note [see Eqs. (4.4) and (4.5)] that if we
also want the diffusion term to be significantly larger than
this space-charge term (see below) we have to substitute
1600 V/cm for the value Eo in Eqs. (4.5) and (4.7).
Hence, the regime for which the field term dominates the
diffusion term corresponds to electric fields of the order
of 10 V/cm, and if under these conditions the diffusion

for holes and

b n = —
( Ai pi, Ip, )sin(kx) =( Ai pi, Ip, )cos(kx+rrl2)

(4.13)

for electrons.
Physically, Eq. (4.11) shows that the contribution of

the holes to the conductivity, at some point x, is exactly
canceled out by that of the electrons and Eqs. (4.8) and
(4.9) show that the amplitudes decrease with increasing
Eo. We further note that while the carrier grating ampli-
tudes are different for electrons and holes, the fact that
the net contribution of both carriers is zero, makes it,
from the experimental point of view, indistinguishable
from the case where both amplitudes are zero (i.e., when
there is no grating at all). The above result is interesting
for the understanding of the PCG since it shows that the
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effect of the application of a very high electric field is
separating the two types of carriers as well as blurring the
carriers gratings. The role of these two effects could not
be deduced from the numerical results of RZW. On the
other hand this result is of no practical use since it shows
that the conductivity is the same as the one obtained un-
der complete blurring. Correspondingly the measurement
of the conductivity under the Eo~ ~ conditions does not
enable the derivation of any physical parameter.

Following the above conclusion it may appear at first
that one has to use the full cumbersome solutions of Eqs.
(3.37)—(3.40) in order to get a nonzero y,s; even in the
high-electric-field limit. As will be shown in Sec. IVC,
there is a solution to this problem and with the experi-
mentally accessible conditions of weak enough illumina-
tion and high, but not too high, electric fields, useful
coInparison with the experimental quantity y, ff can be
made. For exploring this possibility let us reconsider the
very high-electric-field case [Eqs. (4.8) and (4.9)] rigorous-
ly using the explicit recombination term [Eq. (3.16)], i.e.,

AU=bp/t +An/t„. (4.14)

p&EokAhcosg+( Ai, sing)/tz+( A, sinv)/t„=O, (4.16)

Ag —( Ahcosg)/t~ —( A, cosv)/t„—p, EokA, sinv=O,

(4.17)

This is done in order to establish the conclusion (4.11)
and to provide the results needed for the procedure to be
suggested in Sec. IV C.

Using a sinusoidal solutions [Eqs. (3.11) and (3.12)] the
differential equations (4.8) and (4.9) become the algebraic
equations

Ag ( At, cosf)le ( Aecosv)/t„+pi, EokAg sing =0,
(4.15)

sing= —sinv and cosP= —cosv is P—=v=vr/2, hence
the expected solution given by (4.12) and (4.13). Having
all the quantities that appear in ydt [Eq. (2.31)] we see
again that the solutions (4.20) —(4.23) yield the value

y,ff=0. We can, however, utilize these results in our
search for y, ff in the case where we keep terms of the or-
der of k&Tk/(qEO) but neglect the space-charge terms.
As we show below, this (high field, low illumination level)
approach is found to be useful for the derivation of a sirn-
ple expression for y, ff in terms of the photoelectronic pa-
rameters.

C. The grating photoconductance under weak illumination
and strong electric field

Let us consider now the expression obtained for the
photoconductance of the grating under the experimental-
ly achievable conditions of very low light intensity and
high electric field, i.e., when kEO) k~Tk Iq))qpole.
This means that the space-charge term is negligible com-
pared with the diffusion term while the diffusion term is
smaller than, but not negligible in comparison with, the
drift term. Here, we show that this expression is amen-
able to comparison with the experimental quantity y, ff,
and is thus useful for a unique derivation of the photo-
electronic parameters of a photoconductor.

Since very much of the interest in the present method
is associated with the experimental work on amorphous
materials, where trapping takes place, let us reconsider
first the relationship between the diffusion terms and the
space-charge terms under the presence of trapping and
high applied field. We saw already that the only terms in
the continuity equations [(3.13) and (3.14)] that change in
the presence of trapping are the space-charge terms.
These terms, under trapping, are given by [see Eqs. (3.15)
and (3.30)]

and

p, EokA, cosv—+(A&sing)/t +(A, sinv)/t„=O .

(4.18)

aIld

(phqpo le)(hp/8 bn /8„)—
(p, qnole)(bp/8 An/8„) . —

(4.24)

(4.25)

Solving the above equations we obtain

A „cosP= Ag tz t„p, (p, t„ph t~ ), /B— (4.19)

and

(pi, qNo8~ Ie)(bp /B~ —bn /8„) (4.26)

In the "intrinsic" case discussed in this paper these terms
may be written as

Ai, sing = —AgkEop, pi, t„t~/B, (4.20) (p, qN, B„/~)(bp/8, An /8„), —(4.27)

where

B= (p, t„pi, t ) + ( kEop, p—i, t t„)
Similarly we obtain

A, cosv= A t„t pi, (pht p,t„)/B—
(4.21)

(4.22)

where Xo is the sum of free and trapped carrier concen-
trations of each of the carriers (i.e., No =no/8 =pa/B~ ).

When we approach the problem from the very-high-
field end we may approximate

~
b, n /b p ~ by p, /pi, (as

shown in Sec. IV B), and thus we may use the estimate

aIld l&p/8„—&n/B. l=lp, B.«pgB, ) —Ill/8, . (4.28)

A sinv= A kEop p~t t /B . (4.23)

Using these results one sees immediately that
p, A, =p&A& and that the only possible solution for

For carrying out our development in k&Tk/(qEO) (see
above) we have to find the conditions under which the
space-charge terms (4.26) and (4.27) are indeed negligible
compared to the diffusion terms k D&hp and k D, hn.
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(qNo/e)~(p, O„)I(pi, O ) —1~ &&k k~T/q . (4.31)

In practice (e.g., in intrinsic a-Si:H where p, 8„»phO&,
see below) this condition finally can be simplified to

(qNoA)(p, O„)I(p, O ) «k'kttT/q . (4.32)

To get a feeling for this constraint we recall that (in
mks units) k ktiT/q =10' . The left-hand side of Eq.
(4.32) has the value 1.6X10 No[p, O„I(pt, O~)] and
thus for a drift mobility ratio of 10, Xp must be smaller
than 6.7X 10' cm . This means that for ro [Eq. (3.25)],
which was measured' in a-Si:H to be =2X10 s, we
determine that the highest allowed carrier-generation
rate consistent with our condition is less than
Go=No/re=3 X 10' photons/cm s (i.e., about 0.015
AM1 or 1.5 mW/cm ). The larger the mobility ratio the
lower the allowed light intensity if the present
"diffusion-field" approximation is to be used. Fortunate-
ly in a-Si:H the ratio of the drift mobilities decreases with
decreasing light intensity, ' so that the conditions con-
sidered here can be approached experimentally. One
may further improve the experimental conditions by
working with as a small grating period [smaller than the
common' '6 smallest grating of (A=6328/2) A] as pos-
sible. This will allow an improvement of the method to
be used by enabling larger and thus more convenient light
intensities.

To obtain the desired solution that has a simple enough
expression let us reconsider Eqs. (3.37)—(3.40) when the
space-charge terms (which contain po ol no) are neglect-
ed. Under this approximation the equations are reduced
to

Ag
—[(A cIso/) /t ](1—k2Dht )

+ ( Ai, sing)pl, Eok —
( A, cosv) It„=O, (4.33)

( Ag cosp )ph Eo k + [( A& sing ) /t~ ]

X(1+k Dht )+(A, sinv)/t„=O, (4.34)

Using the Einstein relations [Eqs. (3.4) and (3.5)] these
conditions become

(No 8~ q /e)
l ( 4p /'O~ bn—IO„)I

&& ( k ktt Thp /q ) (4.29)

and

(NoO„q/e)~(bp/8~ h—n/8„)~ &&(k kttTbn/q) . (4.30)

Applying now the very-high-field relation [Eq. (4.28)]
these two conditions are reduced to

+(p, t„pi, tt, ) —]' (4.41)

where ~p is the common recombination time of the uni-

formly illuminated "intrinsic" material (in which
no =po); for example, in the Shockley-Read-like case
ro=r„+r~ (see Sec. III B). Hence the most concise form
of Eq. (4.41) is

y,ff=2kti TkP't„t I(qEorov B ), (4.42)

where p'=p, ph/(p, +ph) is the "reduced mobility. "
We obtain a closed-form result for the case of very low
light intensities and high electric fields. Using this result
under more specific conditions yields a further
simplification of the expression for y,z. For example,
from Eqs. (4.21), (4.41), and (4.42) one finds that for

P, t„—P~t »kEpPeP„ (4.43)

pi, Al, cosp+p, A, cosv

I

—k~ Tk l(qEo) l(ph Ah»ng —p, A, sinv) .

(4.37)

Similarly one obtains, by subtracting Eq. (4.35) from Eq.
(4.33),

pi, At, sing+p, A, sinv

= [kg Tk l(qEo)](pt, A„cosp p, A—,cosv) . (4.38)

The terms on the right-hand sides of Eqs. (4.37)
(4.38) are then the "corrections" of order (kii Tk/qEo) to
the (zero value, in the very high-field regime; see Sec.
IV B) quantities in the left-hand sides of these equations.
Using the very-high-field solutions [i.e., the zeroth-order
solutions in (kii Tk IqEo) ] (4.19)—(4.23), we obtain

pi, At, cosg+p, A, cosv=2A (ktiTk Iq)(p, pi, t„t /B)

(4.39)

and

ph AI, sing+p, A, sinv

=2A (ktt Tk lqEo)p pht t&(p t p t& )/B

(4.40)

Finally using Eq. (2.31) we find for y, ff the expression

y,ff(P, +Pg ) Agro= [2Agkti TkP, Pi, t„tel(qEoB)]

X[(kEop,pl, t„t )

As —( At, cosg)/t„—[( A, cosv)/t„]

X(1 kD, t„)—( A, sinv)p, Eok—=0,
and

—( A, cosv)p, Eok+ [( A, sinv)/t„]

(4.35)

[see Eq. (4.21)] y, ff can be approximated by

~ff 2k& TkP*t„tz I[qEoro(Petn Ph tp ) ]

On the other hand, for higher fields, i.e., when

kE op, pi, tz t„)&(p, t„pi, tz ), —

(4.44)

(4.45)

X(1+k D, t„)+(Ahcosg)/t =0 . (4.36) or rather (for the common case of a-Si:H, i.e., where

p, t„))pht ) if

Subtraction of Eq. (4.36) from Eq. (4.34), and the use of
DI, and D, [according to (3.4) and (3.5)] yields kpI, t Ep))1, (4.46)
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we obtain

ff 2k~ T/[qEo ro(p +ph ) ] (4.47)

higher electric fields [which correspond to the condition
given by Eq. (4.46)] we have the extremely simple rela-
tionship

We see then that y,z has a reciprocal parabolic approach
to zero with increasing electric field. The results (4.44)
and (4.47) explain the infiection point in the y, ff (Ep)
dependence which was found in the numerical solutions'
when Eo increases from the very-low-field regime to the
very-high-field regime. In a forthcoming paper we will
report the first experimental results for Eo beyond this
inAection point, i.e., for the region considered here. For
the Shockley-Read recombination the last two expres-
sions for y, ff [Eqs. (4.44) and (4.47)] are reduced to

and

yeff= [ o pe n ph p ] (4.48)

=2k' T/[qEo(~ +rq)(p +pi )] (4.49)

where I. is the ambipolar diffusion length, ' i.e.,
L =[2(k&Tp /q)(r„+w )]'~ . The importance of these
results is that by using y,z vs 1/Eo or 1/Eo plots one can
obtain pz information that cannot be obtained otherwise.
In particular Eq. (4.49) yields accurately the most impor-
tant quantity associated with the phenomenon of photo-
conductivity, i.e., (p, +pi, )ro. We should emphasize that
this quantity cannot be determined accurately even from
the most accurate photoconductivity measurements be-
cause of the always existing uncertainty in the generation
rate of the carriers (see Sec. V). It is also important to
note that since q(p, +pl, )7pGp just represents the photo-
conductivity when no grating is present the result (4.47)
is entirely independent of the recombination mechanism
[Eq. (3.16)] and can be written, in the most general case,
in terms of q(p, r„+p&r ) where H and r are the corre-
sponding carrier-recombination times. Hence, the y, ff

measurement under the conditions discussed yields al-
ways the sum of the p~ products of the two carriers.

Turning to the effect of trapping on the behavior of
ff we realize that trapping enters the continuity equa-

tions in our diffusion-field "perturbation" approach only
through the values of tz and t„. Correspondingly we
have to introduce the proper values of t~, t„, and ~o in
Eqs. (4.33)—(4.36).

To carry out this substitution explicitly we need to as-
sume a recombination mechanism. (See Sec. III B.) If we
apply our standard Shockley-Read-like expressions for ~0,t, and t„[Eqs. (3.25) —(3.27)], we obtain

'ro= pere/(pe+pi )

and Eq. (4.44) becomes

(4.50)

y, ff= [2k~ Tk/(qEo)](r„8 +~~8„)

X(p,ph )/Ir„w [(p,8„) —(phg ) ]] (4.51)

This expression is useful for obtaining p~ information
when the drift mobility of one carrier exceeds that of the
other since, as can be clearly seen from Eq. (4.44), it
yields essentially the ratio between the minority- and
majority-carrier p~ values. On the other hand for

y.ff=2ka T/(qEppe&e) . (4.52)

We found then that for this higher end of the high-
electric-field regime we get the very desired p&z& product.
Combining either of the above results with the ambipolar
diffusion length yields then accurate values for the p~
products of both carriers. In the present "intrinsic" case,
but when p, 0„)&p&0, this result provides an accurate
determination of the majority-carrier p~ product. Note
that in a-Si:H under those conditions one actually mea-
sures pewe-(p, w )8„/0, in contrast with the quantity
measured in time-of-Aight experiments which is p, ~„.

V. SUMMARY AND DISCUSSION

In view of the failure of known experimental methods
to determine the p~ product of the minority carrier in
amorphous and polycrystalline (thin-film) materials and
the general inaccuracy in determining the p~ product of
the majority carrier under steady-state conditions, it ap-
pears that the photocarrier grating (PCG) method is a
unique tool for both purposes. From the basic physics
point of view this tool can yield information regarding
the state distribution in the lower half of the band gap
(e.g., by temperature and light intensity variations) as
well as information regarding surface transport and ki-
netic processes' (e.g. , by film thickness and light wave-
length variations). The other advantage of the PCG
method is its potential of becoming a good predictor for
device optimization. From this point of view one would
like to find a characteristic property of the semiconduct-
ing material that may predict the quality of the device
made of it. In spite of the recent progress in the devel-
opment of thin-film devices in general, and those made of
a-Si:H in particular, this challenge has not been met in
a satisfactory manner. Some of the properties (such as
photoconductivity), while being very sensitive to the
"quality" of the material, do not yield an indication as to
the performance of the device (e.g., solar cell) made of
this material. The other group of properties, in particu-
lar those based on sensing the density of states [such as
the photothermal defiection spectroscopy (PDS) method]
while being excellent coarse predictors, are insensitive to
material variations in the range over which solar-cell per-
formance changes drastically. Hence, there is a need
for an experimental property that will be both a good
predictor and a sensitive one. For thin-film devices these
two requirements seem to be fulfilled by the PCG tech-
nique. In particular, since solar-cell performance is very
sensitive to the minority-carrier diffusion length' ' or
the two-carrier drift lengths' ' and since experimentally
the PCG method' ' enables the determination of the
corresponding p~'s with a high accuracy (e.g. , 5%, for L)
this technique appears to be the best method, known at
present, for the fulfillment of the above two requirements.
Preliminary experimental results indicate indeed that
very fine changes in the material (e.g. , minute doping or
gentle light soaking ) significantly affect both the solar-
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f=[1/(rd8 )+k D" ]/[I/(rd8„)+k D, ] . (5.1)

cell performance and the p~'s. We note that the
methods previously used for this purpose ' such as SPV
(even if their interpretation is accepted; see, however,
Sec. I and Ref. 11) have yielded a much lower accuracy in
the determination of L. Hence, even if the results of
these methods have some predictive value they are
definitely, unlike the PCG method, impractical for the
fine tuning of materials used in devices.

Following the above considerations and the wide use of
the PCG technique' ' one has to understand the exper-
imental results that are obtained by it in order to make it
useful for reliable derivation of the photoelectronic pa-
rameters. Since the experimental application of the
method was shown to be relatively simple, ' ' there is
only a need to ensure a correct interpretation of the mea-
surements. In particular, it is important to evaluate the
experimental situations under which the experimental re-
sults can be associated uniquely with the p~ products of
both carriers. The detailed description of the physical
processes in the PCG configuration and the analysis
presented in this paper are a response to this need.

Using the coupled continuity equations of an intrinsic
photoconductor, we have found that for a PCG of a small
enough amplitude (which is superimposed on a uniform
distribution of photogenerated carriers) a general analytic
solution of the conductance can be derived. This system
provides one of the very few cases where analytic solu-
tions of the coupled electron and hole continuity equa-
tions can be found.

A result of significant importance, made possible by
the Eo~0 analytic solution, ' is our definition of the
"ambipolarity" coefficient f, in the case where the ap-
plied electric field is much smaller than the "diffusion
field" (1600 V/cm) at room temperature. This f is given

18

Si:H under AM 1- like illumination L,z =L &. This is due
to trapping effects which yield for this material
0„,0 & 10

Turning to the most general case, which includes the
drift terms (that result from the application of the field
Eo), we found that the analytic solutions are complicated
expressions of the basic transport parameters (i.e., mobili-
ties), the basic kinetic parameters (i.e., recombination
times), and the uniform carrier concentration no. Hence,
while the academic interest in the general behavior of the
conductance of the PCG configuration is satisfied, com-
parison with the experiment does not enable the deriva-
tion of the pr parameters (or a useful combination of
them). Following the success of the ED~0 case dis-
cussed above, ' ' it was natural to expect that the other
extreme Eo~ oo (i.e., neglecting the diffusion and space-
charge terms) would yield a simple expression for the
conductance of the PCG. Indeed, this expectation is
fulfilled but the result is that the contributions of the two
carriers to the conductance cancel each other. Hence,
conductance measurements under these conditions can-
not distinguish between this Eo —+ (x) limit, and the com-
plete blurring of the carrier gratings. Correspondingly,
this limit is useless for the derivation of the above param-
eters from experimental data.

A useful result was achieved in this work by consider-
ing the case where the space-charge term is negligible,
compared with the diffusion term while the latter is
small, but not negligible, compared with the drift term.
This situation can be achieved experimentally since it can
come about as a result of using low illumination levels
and high electric fields. It turns out that for a-Si:H, light
intensities of 1.5 mW/cm (=0.015 AM1) and electric
fields of the order of 10 V/cm will yield these conditions.
%'e found that under such conditions and with increasing
electric fields the measurable parameter y,~ is given by

The knowledge of this coefficient is essential for the
determination of the correct ambipolar diffusion length:

j ff [(2k+ T/q)/(p'r')](1/Eo) . (5.4)

&s=(2k~v /e)(V, '.S "e,re)/ps (5.2)

y,~= 1/(1+k L,'), (5.3)

to the true L z. As we pointed out previously i8, 26 for a

from the experimentally measurable parameter y,z [or P,
see Eq. (2.24)]. If f is not known or is not equal to its
ambipolar value, f=8„/8', the apparent ambipolar
diffusion length, which is determined from the measure-
ment of P by using Eqs. (2.24), may only yield an upper
bound for the true ambipolar diffusion length. We note
that this diffusion length is the quantity that is associated
with the minority-carrier transport in devices, i.e., in uni-
formly illuminated photoconductors. The analytic ex-
pression given by (5.1) further tells us how to approach
the ambipolar limit in order to determine the desired
diffusion length L z. It is seen that the stronger the ap-
plied uniform illumination Fo and the larger the grating
period A, the closer will be the experimentally derived
length L,z, which may be defined from the measured y, ff

by

o. =qgpp(, (5.5)

one knows that the accuracy derived from the corre-
sponding measurement is much smaller. The reason is
that the uncertainties in 6 (due to light scattering, light
reAection, light intensity distribution and back refiection,
and unknown quantum efficiency) and in o. (sample di-
mensions, contact effects) can accumulate to an error of a
factor of about 2. A factor of 2 in the value of p&z may
be important, both from the basic physics (e.g., ratio be-

Hence, the slope of a y,z vs 1/Eo plot will yield the sum
of the mobility-lifetime products. For the rather general
Shockley-Read-type recombination (when trapping
effects are considered) this sum is given by the value of
p &~0. Combining the experimental result under these
conditions with the result for L , which is achieved un-
der ambipolar carrier distribution [Eq. (5.2)] enables a
unique determination of the p~ products of both carriers.
%'hile one may argue that the p~ product can be de-
rived directly from the simple measurement of the photo-
conductivity, which is given by [Eq. (3.37)]
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tween time-of-flight and steady-state pr's ) and the de-
vice physics (e.g., such a factor is expected to cause a
significant variation' between fill factors, 0.66 instead of
0.56, in the operation of a-Si:H solar cells) points of view.
We should point out that our proposed determination of
the p&v.& product under specific field and light intensity
conditions does not limit the experimental derivation of
the products to these conditions. This is since one can
use a single y,s vs Eo measurement [see Eq. (5.4)] in or-
der to determine a reference p&~& point, and then obtain
the various dependences of p&~& by the measurements of
the corresponding dependences of o..

In conclusion, the present analysis makes the photocar-
rier grating method a practical and reliable method for
determining the minority- and majority-carrier p~ prod-
ucts. This is true in particular for materials for which the
determination of these products is dificult because of
their relatively small p~ values.
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APPENDIX

In all previous calculations of the photoconductance in
the PCG configuration, ' ' as well as in the present pa-
per, the inhomogeneous transport equations have been
solved for Ap and An. The question that arises is whether
those solutions are the most general ones, i.e., whether
the solutions of the corresponding homogeneous equa-
tions are the same as those of the inhomogeneous equa-
tions. Apart from the interest in the mathematical com-
pleteness of the problem this question has an interesting
nontrivial physical meaning, i.e., do the carriers form
sinusoidal gratings that follow the exciting sinusoidal il-
lumination or is the grating periodic but nonsinusoidal?
In principle, while the periodicity is inherent to the prob-
lem, the carrier diffusion and drift may distort the
sinusoidal shape (by creating, say, a squarelike or, in the
case of an applied field, a sawtoothlike grating). This is
not a trivial problem since, for example, it is obvious that
for a square-wave-imposed illumination the carrier grat-
ings under finite diffusion will not be square waves.
Hence the form of the homogeneous solutions can shed
light on the physical processes in the PCG. Here we ar-
gue that even in the most general case discussed in this
paper (i.e., of the intermediate fields) the carrier gratings
due to a sinusoidal generation are always sinusoidal.
Consequently with the boundary conditions of the prob-
lem the solutions of the homogeneous equations are the
same as those of the inhomogeneous equations. A
rigorous proof for this argument, which is based on the

two-carrier picture, will be given elsewhere. For brevi-
ty we just outline here the one-carrier solution of this
problem.

It is well known' that the solutions of the one-carrier
homogeneous equation are of the form

bp ~b, G exp[ —(x —xo)/Ld ], x &xo, (Al)

where Ld is a typical decay distance of the carrier con-
centration in the direction of the applied field and xo is
the position of the carrier generation. Similarly,

bp CC b, G exp[ —(xo —x)/L„], x &xo, (A2)

+exp
Q

f" p cos(kxo )dx&& . (A3)

Hence,

bp ~ [k + (1/Ld ) ]
'

t [cos(kx) ] /Ld +k sin( kx ) ]

+[k +(1/L„) ) 'I[cos(kx)]/L„—k sin(kx)] .

(A4)

In the general two-carrier case more terms of the same
type are to be included but this does not change the end
result, i.e., that the general solution of the homogeneous
equations can be written in the form

Ap icos(kx+4) . (A5)

If no electric field is introduced, I d =L„and
bp cccos(kx) as suggested previously. ' ' Hence, the
solutions of the homogeneous equations have the
sinusoidal form. One can further show that the PCG
boundary conditions provide exactly the same solutions
for the homogeneous equations as those of the inhomo-
geneous equations. This leads to the conclusion that the
solutions [Eqs. (3.11) and (3.12)] suggested in this paper
[i.e., solutions of Eqs. (3.37)—(3.40)] are indeed the gen-
eral solutions of the PCG configuration.

where L„ is a typical decay distance in the opposite direc-
tion. One notes, of course, that in the two-carrier prob-
lem the corresponding Ld and L„are different from those
of the one-carrier problem given in the classical text-
books' and more exponential terms are to be included.
If we assume that the carriers are generated at a narrow
slit of width dxo and the absorbed illumination Aux is Po,
then hG cc Podxo. In our case goo- cos(kxo) and thus the
combined contribution of all narrow slits to the carriers
concentration at x will be

r

x Xo
bp cc b G exp exp cos(kxp)dxo

Ld
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