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We define an interatomic potential for silicon. As with previous work, this potential is based on bulk
interactions that are adjusted to describe ‘“covalent — metallic” phase transitions instead of small-
amplitude atomic vibrations. It includes the transfer of bond strength from dangling bonds to back
bonds. However, this potential has been slightly modified to reduce its range. With the modified poten-
tial we determine the energies and structural properties of Si,, where n <30. For n < 10, we find this po-
tential leads to a significant improvement over previous work for both the binding energies and the bond
lengths of these clusters when compared with quantum-mechanical methods. For 10<n =20 we find as
before, and in agreement with experiment, that Si, clusters follow an icosahedral pentagonal growth se-
quence with n=13 and 19 being special structures. For 20<n =30 we find this growth sequence is
weakened, but a general pentagonal sequence is retained. We examine the role of back-bond strengthen-
ing by varying the strength of the corresponding interaction. We find that with increasing back-bond
strength a “first-order” phase transition occurs that mimics the bulk “covalent — metallic” transition.
The ability to vary this interaction will allow us to examine intrinsic differences in the nucleation of co-
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valent versus metallic clusters.

I. INTRODUCTION

Classical interatomic force fields offer many practical
advantages over first-principles quantum calculations in
the study of the structure and properties of matter con-
taining more than a few atoms. Such fields are well
known in the study of interactions of closed-shell atoms
in terms of central forces. However, open-shell atoms
may interact through mixtures of central two-body and
directional, or many-body, valence forces. A particularly
interesting case is silicon, which has a rich phase diagram
containing both metallic and semiconductive phases.
Cohen and co-workers' have calculated the equations of
state of these phases from first-principles pseudopoten-
tials with great accuracy. They have been successful in
predicting high-pressure phases as well as superconduct-
ing ones. Their work has stimulated many recent
efforts>~ !> to generate classical force fields which can
reproduce their equations of state and simultaneously
predict other properties as well. We obtained'*!® the
best fit to date to their equations of state by using a “non-
classical” angular dependence on bond angle. This
dependence scaled as ~cos(36), instead of the usual form
cos(0), where 0 is the bond angle. Our approach leads to
both an angular and a radial cutoff and demonstrated the
novel and profound conceptual content of the pseudopo-
tential work.'

Atomic clusters are subject to strong surface forces
generated by broken, or dangling, bonds which transfer
bond strength to back bonds. We found it necessary to
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include these forces to obtain compact structures in
“reasonable” agreement with molecular-orbital'®!” and
pseudopotential results'®!® for Si, clusters with
3=<n =10. Our chief aim was to use this force field to
calculate cluster structures with n > 10. We achieved this
aim!® and succeeded in explaining anomalies® in chemi-
cal reactivity of Si, clusters in terms of pentagonal
(icosahedral) structures.

At present there are serious unresolved questions
about the reactivities of Si, clusters with » =30 which
are obtained in experiments with different time and pres-
sure scales, i.e., short times and high pressures versus
long times and low pressures, both in cluster formation
and chemical reactions. At the same time, the validity of
our method has been questioned?* because of discrepan-
cies in detail between our results and those obtained from
first principles for n =10, and doubts have been raised
once again as to the possibility of successful classical
modeling of widely varying systems with a few-parameter
classical field. We have therefore reexamined our expres-
sions for the force field, especially its back-bonding com-
ponent.

We find that with minor modifications of our previous
potential we obtain an excellent fit to the first-principles
results for Si, with 3 <nr <10 both as regards to the clus-
ter energies and average bond lengths. Our modified po-
tential gives much the same results for clusters with
n =10 and for surface or bulk defect energies as the old
potential, as we expected, but now we are more confident
of the overall accuracy of our approach.
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II. CLASSICAL INTERATOMIC POTENTIAL
FOR SILICON

The transcription of quantum-mechanical bonding
properties for covalent solids into classical potential force
fields is certainly nontrivial as our understanding of the
covalent bond is far from complete. The process of tran-
scription will no doubt be based on intuition instead of an
analytic approach. Also, considering that quantum
forces are nonlinear and nonlocal, we might expect some
counter intuitive classical forces, e.g., larger three-body
interactions than two-body interactions. Here we review
briefly our previous work!® and define the modifications
in our refined potential.

A. Defining a crystalline force field

The traditional approach to the problem of defining a
force field appropriate for Si is usually based on the dia-
mond structure and small perturbations away from this
structure. For example, many of the potentials involve
the interatomic vector R;; between the atoms i and j.
The interactions are often based on the magnitude of this
vector and the dot product R;;R ;. The key difference
between our approach and that of previous force fields is
that we choose our angular function in a physical, rather
than a geometrical way. The explicit expression for our
force field is

E[{R}]= 3 [4 exp(—B;R})/R}
i’j
i<j

_gijeXp(‘BzRizj)/Rij] . 1

R;; is the interatomic distance between (i,j) and the
many-body interactions are contained within the factor
8;;- We wish g;; to be large for covalent systems (struc-
tures with large bond angles) as compared to metallic sys-
tems. We define g;; as

8i;=801+8&:15;S;i @)
where
S;=1+(cos(36,;)) ,
(f(eijk)>=[f]/[1] ’
[f(6)]= % F (0 )exp(*kIG?jk )exp(—sz[}k) )
k=i, j

with R =(R;; + Ry )/2. 6, is the angle formed by R;;
and R;;. This form represents a very-short-ranged func-
tion which has sharp angular and radial cutoffs. The fac-
tor S;; ranges from O for metallic structures with small
bond angles to 2 for covalent systems. Also, for
O <m/3 (>2m/3) we saturate cos(36,;) so that
cos(36;;; )=—1 (+1). The parameters 4, 3, B,, &o, and
g, are determined by fitting the equation of state at T =0
K for various polytypes of silicon as determined by
Cohen and co-workers.! Values for these parameters are
given in Table I. Our potential yields one of the most ac-
curate ‘“classical” representations of the quantum-
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TABLE 1. Parameters for the interatomic potential as out-
lined in Egs. (1)-(5). The parameters for the bulklike interac-
tions are unchanged from previous work (Refs. 14 and 15).

Parameters for the bulk terms

A(ey*§2)= 182.44 BAA*)=0.151
Bi(A™")=0.550 g (eVA)=2.644
go(eV A)=7.08 M= /m)*
AM(ATH=0.1733

Parameters for the dangling-bond terms

A(AH=0.025
p=11.0

z(A7)=0.0851
a=1.4

mechanical phase diagram for silicon to data. Even
though we did not fit to the B-tin structure of the hcp
structure, the pressure dependence and the structural pa-
rameters for these crystals are in good agreement with
the quantum-mechanical results.

B. Dangling-bond corrections to the bulk force field

If we apply our potential in Eq. (1) to small silicon
clusters, our results are not unexpected. We find the
structure of Si, (n > 8) resembles small fragments of the
diamond structure as we have only included bulklike in-
teractions. It is important to realize that such a finding
implies that the ground-state crystal structure for our po-
tential must be ‘“diamondlike”. This has not been the
case for several other potentials. It is also important to
note that the structure for Si, is not in agreement with
the findings of quantum chemistry. Quantum chemistry
calculations have suggested the structure of Si, resembles
close-packed structures.'®!” Our bulk potential does not
reproduce these results as we have not considered under-
coordinated structures of silicon, i.e., “‘dangling-bond”
structures. To remedy this situation, we must consider
undercoordinated species.

Specifically, the transfer of bond strength from dan-
gling to back bonds can produce more compact or more
“metallic” structures. (We will call structures in which
the average coordination exceeds four “metallic” and
those structures for which the average coordination is
less than or equal to four “covalent.”) This transfer will
depend on the angle 6,; between the dangling bond and
the back bond. We define a “dangling-bond vector” D;
as follows:

D,=— 3 R exp( —-MR,-‘})/ S exp(—ARY) . ()
J J
VEall Viatl

For covalent systems, we expect large reconstructions.
For metallic systems, we expect smaller reconstructions.
We define a term to describe the back bonding as

Q;;=1+zD;sin[a(0;; —7/3)] . @)

For crystalline systems, D; vanishes and Q;;=1. In our
previous work, we assumed for each interaction ij,

Ago/g80=—Ag1/81=m(Q;Q;; —1) . (5a)
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The change vanishes for the crystalline case. This form
assumes that the back-bond strengthening has the same
range as the bulk interactions. Only the prefactors g
and g, are modified. While we obtained qualitatively
correct structures for small clusters with this form, the
bond lengths did not scale properly for low coordinated
species. We noted in our previous paper!® that the bond
lengths significantly increased for low coordinated
species. Moreover, the bond lengths tended to be too
large for the higher coordinated species. This was also
verified by Andreoni and Pastore.?*

In order to correct this flaw in our potential, we have
modified the dangling-bond correction so that our new
form is as follows:

Ago/go=—Ag1/8;

As in our previous work, we have effectively separated
the problem in two parts: crystalline structures and clus-
ter structures. We need to determine four back-bonding
parameters: z, a, u, and A;. Again, we used the
molecular-orbital  studies of Raghavachari and
Rohlfing!®!7 for the structural properties and energies of
Si,, clusters with n <10 to fix the parameters.

Physically we expect that the range of bonds altered by
the presence of a dangling bond would not be equal to the
range of the bulk interactions in Eq. (1). For example,
the range of the perturbation of a surface in silicon, such
as the ideal Si(111) surface, is known to be significantly
less than a few bond lengths. With our previous poten-
tial, the presence of the dangling bond resulted in all
bonds being altered with a range determined by the
.Gaussian decay constant of [5,. Since B, is determined
purely by “bulklike” interactions, we cannot expect it to
be accurate for cluster interactions. By choosing the
form of Eq. (5b), we alter the range of the exponential by
taking the decay constant of the dangling-bond correc-
tion to be twice 3,. We tried other variations of this de-
cay constant, but found that this value was optimal in
terms of achieving accurate bond lengths for small Si
clusters when compared to the quantum results. A
significant alteration of our potential is that the value of
p must be altered to reflect the shorter range. We also
found it necessary to change the value of a in Eq. (4) to
preserve the original structures. Perhaps the most
difficult parameter to adjust is A;. This parameter con-
trols the range of atoms which contribute to the
dangling-bond vector. If the range is too short, we find
that internal surfaces, or better, density fluctuations can
occur. In our original potential, for larger clusters, i.e.,
n %25, we found internal voids could easily form. The
potential in this situation takes advantage of surface
creation without significant reduction of the bulk interac-
tions. If we increase the range of this parameter, we
suppress the formation of voids. At present, the available
cluster data are not sufficient to fix A;; we need to know
the structure for silicon clusters with n >20. As a rough
guide, we expect that A;=~1/R}, where R, is the range
of a metalliclike bond. In our previous potential, we used
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a value for Ry, ~2.35 A, or the diamond bond length. In
fce silicon, this number corresponds to about ~2.7 A, or
A;=0.02 A™* The value which we found preserved our
previous results for the topology of the clusters, but did
not introduce density fluctuations was A;=0.025 A4
The previous value was A;=0.033 A™* In summary, the
new parameters for the back-bonding term are given in
Table 1.

III. STRUCTURAL PROPERTIES OF Si,
CLUSTERS WITH n <10

Examining the structural properties of Si, cluster with
n <10 offers some advantages in that these clusters have
been studied via quantum chemistry,'®'%17 and pseudo-
potential methods.!®!® These quantum-mechanical
methods offer us a “standard” by which we can judge the
merits of our interatomic force field results. Unfor-
tunately, there are some inherent drawbacks to this pro-
cedure. Differences exist between some of the quantum
results: notably between the generalized valence-bond
approach of Messmer and co-workers!® versus the
Hartree-Fock-based approach of Raghavachari and
Rohlfing!®!” and the local density work.!®!® We have
concentrated on the latter approaches as they form a con-
sistent set. Another issue which complicates the problem
is that small clusters often exhibit Jahn-Teller distortions
and multiple bonds, which are not included in “classical”
interatomic potentials. We cannot expect to obtain de-
tailed, quantitative agreement with a force field approach
for these small clusters. Our goal is more limited at this
stage. Namely, we wish to obtain structures for Si, clus-
ter with n <10 which are in “reasonable” agreement with
the small clusters so that we may be able to predict the
properties of larger clusters, e.g., n >20. Our goal for
these clusters is to obtain plausible structures which can
then be examined in detail via more sophisticated ap-
proaches. Moreover, by construction, our potentials for
large clusters must eventually converge to the correct
crystalline structure as the surface correction will become
a small perturbation for a sufficiently large cluster.

As with our previous work, we used a molecular-
dynamics simulated annealing program to determine the
lowest-energy structures.?’ At present it is not possible
to explore large clusters with ab initio molecular dynam-
ics. However, we can use simulation techniques to ex-
plore quite large clusters with our classical potentials. A
standard Langevin-type equation of motion? is integrat-
ed using the interactions as outlined above. Initially, a
random assemblage of atoms is considered. These atoms
interact via our interatomic potential in a hypothetical
viscous heat bath. The temperature of the bath is con-
trolled so as to nucleate clusters from an initial high tem-
perature. Details of this method are presented in our ear-
lier work.!®

In Fig. 1 we illustrate the binding energy per atom and
the average bond length, normalized by the bulk crystal
value, for silicon clusters with n <10. By increasing the
back-bonding strength via an increase in the value of the
parameter u, we increase the binding energy of the clus-
ters as compared to our previous work. This is the case
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FIG. 1. Binding energies and the average bond length for Si,
clusters. The quantum-mechanical results for the binding ener-
gies (a) are from Raghavachari and Rohlfing (Refs. 16 and 17).
The quantum-mechanical results for the average bond length (b)
are from Andreoni and Pastore (Ref. 24). The modified force
field work is from the present potential and the original force
field work is from Refs. 14 and 15. The bond lengths were nor-
malized to the bond length in the silicon diamond crystal.

even though the range of the interaction has been shor-
tened in the new potential. As expected, the average
bond length is shortened with an increased binding ener-
gy. For clusters, with n = 6, the agreement between the
quantum results'®!” and our new potential is quantitative
and a considerable improvement over the previous poten-
tial. However, for n <6 significant differences remain.
The bond lengths are too long compared to quantum-
mechanical calculations?* and the binding energy is con-
siderably less. This is not a surprising result. As in our
previous work, we found that for low coordinated Si
species, the bond length increases instead of decreasing as
one might expect. The traditional chemical explanation
for this effect is that “double” bonds can form for under-
coordinated species, e.g., the Si dimer has a shorter bond
length than the bond length in the silicon diamond crys-
tal. As noted elsewhere,?* one expects such a result for a
classical potential such as a Lennard-Jones potential.
Since we have not included ‘“‘double” bonds, or similar
“quantum’ effects, we cannot expect our potential to
reproduce the quantum results in such situations.
Another comparison which can be made with quantum
calculations concerns the size dependence of the fragmen-
tation energy. We define the fragmentation energy Ej, as

E,=E(n)—[E(n—m)+E(m)], (6)
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where the choice of m minimizes E;. This expression
does not include the effects of kinetics; we compare here
the equilibrium differences between the most stable clus-
ters as function of size.

The details of the fragmentation process which involve
products Si, where n <6 are not expected to be
represented with high accuracy. The energy for these
clusters is not well reproduced by interatomic potentials.
In general, we under estimate the binding energy of such
clusters. Thus for n <12, all Si, clusters determined by
our potential will fragment into Si,_; and a monomer.
However, if we examine the fragmentation energies in-
volved without regard to details of the fragmentation
process, our results are credible. In Fig. 2 we compare
our calculated values with the fragmentation energies as
determined by quantum chemistry.'®!” The fragmenta-
tion energies for these clusters have also been examined
via pseudopotential—local-density methods'®!® with re-
sults similar to the quantum chemistry work. As expect-
ed, the primary difference between the quantum chemis-
try and the pseudopotential—local-density method is that
the latter produces larger binding energies and fragmen-
tation energies. This difference can be as large as ~1-2
eV. Since we have constructed our potentials to repro-
duce the quantum chemistry work, we compare to these
results.

The largest discrepancy between our fragmentation en-
ergy and the quantum chemistry work concerns the frag-
mentation of Sigz. We note that the energy for fragment-
ing Sig exceeds that of Si; and Siy which is contrary to
both the quantum chemistry and pseudopotential—local-
density work. This discrepancy is not confined to our in-
teratomic potential, but is true for the work of Tersoff*
and that of Bolding and Andersen.!’ Interestingly, the
quantum work and our potential yield very similar struc-
tures for Si; and Sig. Si, is a bicapped pentagonal struc-
ture and Sig is a bicappped octahedron. In our calcula-
tion, this octahedron is capped on adjacent faces. In the
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FIG. 2. Fragmentation energies for small clusters as defined
by Eq. (6). The quantum results are from Raghavachari and
Rohlfing (Refs. 16 and 17). The original force field is from Refs.
14 and 15. The modified force field is from the present intera-
tomic potential.
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quantum calculation, opposite faces are capped. It is
possible that the difference is structural energies is a true
“quantum” effect. Namely, Jahn-Teller distortions are
known to exist for the eight-atom structure. If this dis-
tortion were to lower the energy of the cluster by~0.1
eV/atom, then the discrepancy between our classical po-
tential and the quantum work would be eliminated.

In terms of the detailed structures for the clusters, we
retain the same topology as obtained with our previous
potential. For the most part, these structures are similar
to the quantum-mechanical results.'®!” However, some
notable differences occur. For example, Si; is an equila-
teral triangle; the quantum structure is not equilateral,
but has a base angle of 80°. Our structure for Si, is a
tetrahedron whereas the quantum chemistry results are
planar. For Sis ¢ we find symmetric, close-packed struc-
tures while the quantum chemistry work suggests that
the structures are distorted by Jahn-Teller forces. How-
ever, we agree for Si; and our structures for Sig_,, are
“competitive,* i.e., they lie close in energy to the quan-
tum chemistry ground-state structures. As discussed by
Andreoni and Pastore,?* the classical structures tend to
be separated by larger energy differences than the quan-
tum results. This is not a surprising result. For a classi-
cal potential, the variables which determine the energy
are equal to the physical degrees of freedom, i.e.,
the set of position vectors: {R;}. Quantum mechani-
cally, the degrees of freedom are represented by the
wave-function manifold, i.e., a many-body wave func-
tion: Y(R,R,,...;r,1,,..) with the electronic coordi-
nates given by r;. One would expect these extra electron-
ic degrees of freedom to yield a lower ground state energy
and reduce differences in the structural energies as com-
pared to a purely classical description.

IV. STRUCTURAL PROPERTIES OF Si,
CLUSTERS WITH 10<n =30

As the cluster size increases, several difficulties become
manifest. The number of competing structures is no
longer small; it becomes impractical to create an invento-
ry of structures. Statistical methods become necessary to
explore possible ground-state structures. Moreover, we
are unable to compare to results from quantum-
mechanical methods. For Si,, n * 10, no quantum results
exist at present as the number of atoms in the cluster pre-
cludes ab initio methods for determining total energies
except for special candidate structures. We expect our
method to be most successful for this regime.

In Fig. 3 we plot the binding energy for our clusters as
a function of size. One expects that the “binding energy
versus size” curve will be converged better than the
specifics of the structural properties of an individual clus-
ter. On the scale shown in this figure, the increase with
size is linear. For a larger span of cluster size, one might
expect to see an n!/3 correction if bulk terms dominate.
If we fit our calculated values of E(n) vs n to
E(n)=a+bn, we find a=—5.52 eV and b =4.27
eV/atom. Since b =lim,_, ,[E (n)/n] corresponds to the
binding energy for an infinitely large cluster, one can
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FIG. 3. The binding energy of Si, clusters for n <30.

compare this to the cohesive energy of silicon in the dia-
mond structure. The cohesive energy of silicon is 4.63
eV/atom or about 8% larger than the value extrapolated
from Fig. 3. Since the number of surface atoms for these
clusters is a significant fraction of the total number in the
cluster, we expect a value lower than that for the crystal.

In Fig. 4 we plot the binding energies per silicon atom.
The nature of the structures is reflected in the icosahedral
behavior of the cluster at » =13 and 19 where an abrupt
increase in the binding energy is observed. For Si, where
n > 20, the pentagonal growth structure is not reflected in
a characteristic increase in the binding energy of n =23
which would be the next “special” structure. This is also
reflected in the experimental work of Jarrold and co-
workers.?>*® Si;; and Si;, exhibit little reactivity with
ethylene, oxygen, or water as contrasted with other clus-
ter size, but no special behavior was observed for larger
clusters.

In Fig. 5 we illustrate the average coordination as a
function of cluster size. This measure of the structure is
only a rough guide as it is difficult to define a precise
definition of a “bond.” We have used a cutoff of 2.7 A,
but the results are somewhat sensitive to the cutoff em-
ployed. For Si,, n <10, we find a monotonic increase of

Binding Energy (eV/atom)

3.50

10 15 20 25 30

Cluster Size

FIG. 4. The binding energy per atom for Si, clusters for
10=7n =30. We find special structures at n =13 and 19 as ex-
pected for icosahedral cluster growth. The crystalline cohesive
energy is 4.63 eV /atom.
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FIG. 5. The average coordination per atom for Si, clusters
for n <30. We find special structures at » =13 and 19 as ex-
pected for icosahedral cluster growth.

coordination with cluster size. At n =13 there is a local
maxima for the icosahedral structure. After the com-
pletion of the icosahedra, the coordination tends to de-
cline as we cap off the core structure until the ‘“double”
icosahedra forms at n =19. For n > 20, the icosahedral
structure remains a building block, but the structures are
less regular.

In Fig. 6 we illustrate the fragmentation energy as a
function of cluster size. The structures at n =4, 6, 13, 15,
and 19 are particularly stable against fragmentation. A
general decline in the fragmentation energy is noticeable,
particularly above n =20. One might speculate as to
whether the clusters in this size regime are approaching a
transition to a different type of cluster structure, e.g., one
somewhat removed from an icosahedral-based scheme.
An issue open to conjecture is at what size the
icosahedral, or close-packing, geometry becomes unstable
against a more open, “diamondlike” cluster. As one in-
creases the cluster size, we expect such a transition as the
binding energy per atom for the diamond crystal is
significantly larger (see Fig. 4) than for the cluster
geometry in this regime. In Fig. 7 we illustrate the struc-
ture of the clusters for n >20. For n =20, the structures
are similar to those determined by our earlier work.
Icosahedral units are apparent in the structures, but the

Fragmentation Energies (eV)
Y

0 10 20 30
Cluster Size

FIG. 6. Fragmentation energies for Si, clusters for n =<30.
The fragmentation enrgies are defined by Eq. (6).
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FIG. 7. Structures for Si, for 21 <n =<30.

structures do not correspond to a simple ‘“‘capping” off of
the surfaces of the double icosahedra for n > 22.

V. THE ROLE OF BACK-BONDING IN SILICON
CLUSTERS: FIRST-ORDER COVALENT
TO METALLIC STRUCTURAL TRANSITIONS

One advantage we have in using empirical potentials is
that we can easily vary potential parameters and gain in-
sights into how various structures form. A key issue is
the transition with back bonding strength from ‘“under-
coordinated” to “over-coordinated” clusters: from clus-
ters with less than four bonds per neighbor to clusters
with more than four bonds per neighbor. A parameter
which dominates this “under-coordinated” to ‘“‘over-
coordinated” transition is the parameter u in Eq. (5b). If
we set this parameter to zero, under-coordinated struc-
tures are produced as only bulk interactions are present.
As we increase this parameter, eventually the back bonds
are strengthened to such an extent that the structure
“switches” over to an ‘“‘over-coordinated” structure. The
nature of this transition is of some interest. In the con-
struction of the potential, we included an explicit
“metal”-to-*“‘semiconductor” transition into the nature of
the bonding. This “semiconductor-to-metal” transition
occurs in the behavior of silicon under pressure where the
change is from a fourfold structure (diamond) to a sixfold
structure (white tin). It also occurs in the melting transi-
tions where silicon transforms from a semiconductor
solid to a metallic liquid with an average coordination on
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the order of 5. Both of these transitions are first order
with an abrupt change in the coordination.

We hope to model our potential to obtain similar be-
havior in our clusters. By increasing the back-bonding
strength, we expect to find an abrupt change from a semi-
conductor structure where the average coordination is
less than four to a metallic structure where the average
coordination is greater than four. For all the clusters we
have examined, we find that there is a narrow region in
parameter space where this change from covalent to me-
tallic structures occurs. In Fig. 8 we illustrate the aver-
age coordination for Si, where n =5, 10, 15, 20, 25, and
30. Determining a criterion for the average coordination
here is nontrivial. We used a larger cutoff than for the
average coordination in Fig. 6. When we alter the
dangling-bond interactions, the bond length may change;
however, the topology of the cluster does not. By using a
larger cutoff (~3 A), we represent changes in the topolo-
gy better than if we use a smaller cutoff. Also, we start
each cluster from the same initial configuration so that
changes in the interaction parameter will dominate the
changes is structure. Nonetheless, our annealing process
is statistical and small random changes in the structure
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FIG. 8. Variation of cluster structure as measured by the
average coordination with the back-bonding parameter p as
defined in Eq. (5b). Illustrated is the average coordination for
clusters, Sis,,, for m =1,2,...,6. The lines are a guide to the
eye and illustrate the abrupt change in coordination which
occurs with back-bonding strength.

CHELIKOWSKY, GLASSFORD, AND PHILLIPS 44

occur which result in differences in the average coordina-
tion. This is evident in the behavior of Si;, which exhib-
its coordination fluctuations with changing values of u.
However, the topology of the cluster structure of Si is
not significantly altered.

We consider changes from =0 to 11. Small values of
u result in a covalent network, i.e., fivefold sixfold rings.
For u~4-35, we see an abrupt change in the coordina-
tion. For larger values of u, the cluster becomes metallic,
i.e., coordination greater than four. In Fig. 9 we illus-
trate these structures for a Si,; cluster. For u=0 the
cluster is open with an average coordination near 2. As
we increase u to a value near 4, we find a structure which
has characteristics of both a close-packed structure and
an open structure. Part of the Siy, structure has nucleat-
ed a metallic “seed” which appears similar to a bicapped
pentagonal structure as we found for Si;. For large
values of u, the cluster has become close packed. The
rapid transition between open and close-packed struc-
tures is “first order” in the sense that it occurs abruptly
as a function of u. Just as for a true “first-order” transi-
tion, we find some fluctuations near the transitions re-
gion. No doubt many of these fluctuations are Kkinetic in
that if we annealed for a longer period of time, the transi-
tion might be even sharper.

As the cluster size grows, we expect that eventually the
crystalline environment must be obtained. For small clus-
ters, the surface term is dominant and a fairly small value
of u will change the structure of the cluster from covalent
to metallic. However, for sufficiently large clusters, the
volume term will dominate. For the surface term to drive
the cluster into a metallic structure, a large value of u
will be required. The value of the transition for Si,, is
about u=4 and for Si,; is about u=4.5. If we were to
infer a value of n, which would correspond to a covalent

FIG. 9. Structure for Siy, as function of the back-bonding pa-
rameter. The three structures shown correspond to (a) no
back-bonding term (u1=0), (b) the structure at the transition
(Fig. 8) (u=4.5), and (c) the structure for the assumed value of
the back-bonding strength (u=11).
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structure for Si,, we expect on the basis of a crude extra-
polation for n,=~100. At this point, u=10 would result
in a covalent structure. Unfortunately, the cluster size
range we examine here is not large enough for us to make
a quantitative estimate of this trend. In fact, n =5 has a
higher transition value for u and the transitions for other
values of n are not so well defined as for n =10 or 20.
Quantitative estimates for the cluster size at which the
transition from a close-packed cluster to an open struc-
tures takes place have ranged from n ~10*-20°. Most of
the estimates are in the range n =~50-100, which is con-
sistent with our work here.?®

VI. CONCLUSIONS

We have constructed an interatomic potential for sil-
icon. This potential is similar to our previous work as it
is based on bulk interactions which were adjusted to de-
scribe “covalent— metallic”” phase transitions instead of
small-amplitude atomic vibrations. It includes the
transfer of bond strength from dangling bonds to back
bonds. However, our new potential has been slightly
modified so that the range of such dangling-bond correc-
tions is shorter than that of the bulk interactions.

We applied this potential to Si, clusters where n < 30.
Molecular dynamical simulations were used to nucleate
clusters. For n <10 we found that this potential led to a
significant improvement over previous work for both the
binding energies and the bond lengths of these clusters
when compared to quantum-mechanical methods. For
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10<n <20 we found in agreement with experiment, and
with our previous work, that Si, clusters follow an
icosahedral pentagonal growth sequence with » =13 and
19 being special structures, i.e., icosahedral structures.
For 20<n =30 we found that this growth pattern is
weakened, but elements of pentagonal growth sequence
are retained.

One major advantage of our approach is that we are
able to vary the back-bonding interactions and control
whether the structure is open or close packed. For small
values of the back-bonding interaction, the cluster is
open. As the strength of the back-bonding parameter is
increased the cluster undergoes an abrupt change from an
open to a close-packed structure. We found that this
transition is first order in nature and occurs
over a very limited range of parameter space. Thus,
“covalent— metallic” transition of the clusters mimic the
behavior of the crystalline forms of silicon. Our ability to
vary this interaction will allow us to examine fundamen-
tal differences between covalent and metalliclike clusters.
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