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We derive an exact functional differential relation for the physical Green s function go(1;2) in terms
of its retarded and advanced counterparts and the equal-time function go(1;x2, t, ). This exact, formal,
functional differential relation is a variant of the generalized Kadanoff-Baym GKB ansatz, and we exam-
ine the approximations involved in reducing it to the GKB ansatz.

I. INTRODUC'/ION: REVIEW OF GAUGE PROPERTIES

The microscopic quantum dynamical formulation of a
Boltzmann-type transport equation involves the appear-
ance of the physical Green's function g~ (1;2) in the
scattering term (upon an approximate Green's function
factorization' ) resulting in a closed integro-differential
equation. Kadanoff and Baym (KB) proposed an ansatz
which expresses the physical Green's function in terms of
a spectral function related to the retarded and advanced
Green's functions and the physical Green's function at
equal time go (1;xz, t, ) expressed as a nonequilibrium dis-
tribution function. However, this ansatz violates the
group property of the time evolution operator for finite
external field. Recently, Lipavsky, Spicka, and Velicky
proposed a generalized KadanofF-Baym (GKB) ansatz
which maintains a semigroup property of the time evolu-
tion operator, in that its validity is limited to zero scatter-
ing time. In this paper, we derive an exact functional
differential relation for the physical Green's function
go(1;2) in terms of its retarded and advanced counter-
parts and the equal time function g~ (1;x2, t i ), which con-
stitutes an exact result, albeit formal. This exact func-
tional differential relation is a variant of the GKB ansatz.

In the presence of current producing external elec-
tromagnetic fields A( 1 ) and P( 1 ) turned on at time to
[A&(1) in four-vector notation], one must address the
gauge properties of the Green's function. The potentials
appear explicitly in the one-electron part of the Hamil-
tonian H as

0'(t, ) = Jdx, 4 "(I+)h(1)q (I),

and %,% are the field operators (spin is ignored here).
Scattering interactions (phonons, impurities, etc. ) are de-
void of any explicit appearance of the potentials, and are
in fact gauge invariant. In consequence of this, one
shou'd immediately expect that the gauge-dependent part
of the Green's function (with scattering) should be the
same as the gauge-dependent part of the one-electron
Green's function, as it arises from the gauge transforma-
tion properties of %' and II . The latter have the same
form with and without scattering. Schwinger extracted
the gauge-dependent part of the Green's function in con-
stant uniform electric and magnetic fields and also for
plane-wave fields, but in the absence of scattering interac-
tions. Ashby and Serimaa et al. obtained correspond-
ing results for arbitrary electromagnetic fields, expressed
in terms of the Wigner function. In all cases, the gauge-
dependent factor of the Green's function has the form
exp[ie fzdx&A&(x„)] where I. is a straight trajectory
joining (x„t, ) and (x2, t2). In the absence of scattering,
we may express this result in terms of the spectral weight
A (1;2) of the retarded and advanced Green's function
6+(I;2) 2 (1;2) is defined by

A (1;2)=i[6+(1;2)—G (1;2)],
where

(2)

G+ (1;2)=+g+(t i
—t2 )[6) (1;2)—G ( (1;2)],

with q+(t) as the Heaviside step function and
(t)=1—g+(t). Here, G~ is the null-scattering, null-

source limit of the generating Green's function G~ which
is defined quite generally by

where

h (p, x;t)= ' +eP(x, t),p —e A(x, t)
2m

Tr[S(t, +r; t, )(4(1)4'(2))+]
G (1;2;t, ) = —ie(1;2) , (4)

Tr[S(t, +r;t, )]
(1)

where
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e(1;2)=+1

for fermions accordingly as t, ~t2 and the weighting fac-
tor S ( t, +r; t, ) is given in terms of time development
generated by the complete Hamiltonian H, which in-
cludes all scatterings, self-interactions, and sources as
well as external fields [H, (t)=H(t)+H'(t) where H(t)
and H'(t) are given in Eqs. (12) and (14) below]

t, +r
S(t, +r;t, ) = exp i f— dt H, (t), (5)

C

with r= i/k—T, kT is thermal energy. ([ ] refers
to the negative time ordering. ) In this G &, G & (as well as

g &,g & below) are defined in the usual way in accordance
with the two time orderings of (ql( l)ql (2))+ under the
trace. The generating Green's function G di6'ers from the
physical Green's function g defined as

Tr[po(4(1)4 t(2))+]
g (1;2)= i —(s1;2) (6)

Tr[pol

in that the weighting factor of the trace for G is
S (t, +r; t, ) instead of the initial equilibrium density ma-
trix po for g in the absence of sources and external fields
(but including scatterings and self-interactions). It should
be noted that when the real time parameter t, is less
than the time to at which the external fields are turned
on, then G (1;2)~g (1;2) for null sources.

Since the absence of scattering processes makes possi-
ble a purely one-electron description, A (1;2) may be
written alternatively as

where
~
x, t ) is the eigenvector of the density operator for

a single electron. In these terms, the extraction of the
gauge dependence is given by (no scattering and no

sources)
r

A (1;2)=exp ie f dx A„(x„) A '(1;2) . (8)
L

Here A '(1;2) is the gauge-independent part of the spec-
tral weight function. As we have purely one-electron dy-
namics in the absence of scattering, the field operators
evolve in time according to

4(1)= fd x'G+ ( I; x', t 0)4( x', t 0) (9)

4 (2)= fdx'4 (x', to)G (x', t0, 2), (10)

II. SCATTERING CONSIDERATIONS AND GROUP
PROPERTIES: DEVELOPMENT OF AN EXACT

FUNCTIONAL DIFFERENTIAL VARIANT
OF THE GKB ANSATZ

In the presence of scatterers (phonons, impurities, etc.),
the time evolution of 4 and 4 can no longer be de-
scribed by the retarded and advanced electron Green's
functions [Eqs. (9) and (10)] alone, because of coupling to
other dynamical fields. In this case, we consider the total
Hamiltonian H, (t) to be comprised of a part including
electron kinematics, fields, self- and scattering interac-
tions H ( t) and a source part H'( t), where

for t, and t2 later than the turn-on time of A„(x„), to.
Clearly, the physical Green's function has the same
gauge-dependent factor as above,

g&(1;2)=exp ie f dx„A„(x&) g&'(1;2) (11)
L

with g &' ( 1;2 ) gauge independent (no scattering, no
sources).

H(t, )= J dx, @t(1+)h(1)4(1)+gH, [Q (t, )]

+—,
' f dx, f dx2qlt(1 )alt(x2, tl+ )u(x, —x~)4(x2, t, )4(1)+fdx, + qlt(1+)4(l)HI[Q (t, ),x, ] . (12)

In this, [Q (t)] are state variables of the scatterers, HI[Q (t),x] describes the interaction between electrons and
scatterers, and g H, [Q ( t) ] is the kinematic Hamiltonian of the scatterers. We assume

[P(t), Q (t)]=[ql (t), Q (t)]=0. (13)

For the source Hamiltonian, we employ the non-gauge-invariant form

H'(t, )= fdx, [4 (1)g(l)+$*(1)4(1)]+g[Q (t, )] i(lt, ), (14)

with electron particle sources g', g* and scatterer sources il . The associated electron field equation of motion may be
written in the form

i —h (1)—g*(1)—f d(3) V(1;3)i i —g HI i .,xl Tr[S(t, +st, ) q(ll)4 (2)]=0,
Btl 5g(3+ ) g'*(3)

and its adjoint counterpart is
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$T $T QT
Tr[S(t, +T;t, )1p(1)1p (2)] —i —h (2)—g(2) —f d(3)i i + V(3;2)—g HI i,x2

Bt2 5$*(3) g'(3+) 5q (tp)
=0,

with V(1;2)=u(x, —xz)5(t, —t2). Following Schwinger, we employ an asymmetric point of view which involves an
auxiliary variational operator which generates interaction dynamics involving the electron-electron and electron-
scatterer Hamiltonian couplings. In this, we define A(1;2} and A (1;2}as variational differential operator counter-
parts of spectral weight, as given by

T

11 t1 5A(1;2)=exp i —f d(3) f d(4) i i V(3;4)+ QHt i,x4 5(3;4)
5n.(t4

and

5g(4+ ) 5$'(4)
(17)

(1;2)= A (1;2)exp i f—d (3)f d(4)i + ig'(3+ ) 5$'(3)
5T 5T $T

X V(3;4)i i + +HI i ., x3 5(3;4)
g(4 ) 5g (4) ga t3

(18)

In Eqs. (17) and (18), A (1;2)= (x„t,~x2, t2 ) differs from
the corresponding one-electron quantity of Eq. (7)
(without all scattering and self-interactions) in that the
effects of sources are present here. The variational
derivatives with a superscript T in the above equations
act to the left, whereas those without a superscript T act
to the right. These variational differential actions apply
to A (1;2) and any other functionals multiplied into
A ( 1;2) (unless interrupted by the symbol g which indi-
cates termination of the action of variational derivatives).
In accordance with Schwinger's interpretation, we may
think of a single electron as moving under the inhuence
of the other electrons of the medium and of the scatter-
ers. The variational derivatives are regarded as the state
variables of the medium electrons and the scatterers. For
convenience, we define associated retarded and advanced
auxiliary variational Green's function operators as

0+ (1;2)= i ri+(t, —t—2) A (1;2) (19)

5 . 5
l 1

5$(x3 t3 ) g'(x3 t3)

acting on A (1;2)= (x„t, ~x2, tz ) yields

(X„t,~% (X3, t3+ )%(X3,t3)~X2, t2)

if t3 is between t I and tz, and noting that
( x3, t

&
)p(x3, t, ) just measures the electron density at

t, with eigenvalue 5(x1—x3) in its operation on the densi-
ty eigenstate ~x„t, ), we obtain

i + i C+ (1;2)=5(x, —x3)C+ (1;2)6 . 5
g'(x3, t 1+ ) 5$*(x3,t, )

(21)

and

5 . 5(1;2)i i =5(xz —x3)C (1;2) .
g'( 3, txz+ ) g*(x3,t2)

(1;2)=ig (t, t, )A T(l;—2) .

Using the fact that the variational derivatives

(2O) (22)

With Eqs. (17)—(22) in view, one may readily verify that

. c}
l

Btl
—h(1) —g*(l)—fd(3)V(1;3)i i, —+HI i,x, G+(1;2)=5(1;2)5 . 5 5

5g(3+) 5$ (3) 5g (t1)
(23)

and

a' $T $T $T
(1;2) i —h (2—) —g(2) —g Hl ~ i ., x2 —f d (3)i i V(3;2) =5(1;2).

Bt, 5r} (t&) 5$*(3) g'(3+) (24}

In Eqs. (17) and (18) we may verify the extraction of the gauge dependence in the presence of scattering and self-
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interactions by noting that such interaction effects are generated by the action of the combination
[i5/5$(3+ ) ][i5/5$*(3)] which induces field operators in the density formation 0 t(3+ )4(3), which is gauge invariant:
subsequent to such action, we take the zero-source limit, and then we may employ Eq. (8) to extract the gauge depen-
dence of the associated retarded and advanced auxiliary variational Green s-function operators, whence

r

C+(1;2)=exp ie f dxpA„(x„) G+(1;2),
L

(25)

for t, and t2 later than the turn-on time of A, to. 0+(1;2) is of course gauge independent in the null-source limit. We
note that the initial values of C+ are given by

Cy(x„tQ ', x2, to)=+i5(xi —x~)+. (26)

and furthermore, for t„t~ ) to, 0+ obeys the homogeneous counterpart of Eqs. (23) and (24). With this in view, one
may readily verify that the forward time development of Tr[S(t, +r;t, )4(1)% (2)], starting from its initial value at
to, is given by

Tr[S(t, + rt, )4(1)qj(t2)]=fdx3f d xC4+(1; &x, t )OTr[S(t, +r;t, )4(x3, to)alt(x4, to)]C (x~, t0, 2)

=exp ie f dx„A„(x„)
L

X f dx3 f dx4G &(1; x3t o) Tr[S(t, +r t, ) Il(x3, to)4t(x~ to)]C '
(x4 to;2) (27)

(with the limit of null sources understood after the action of the variational derivatives is carried out) since for
t„tz ) to, Eqs. (23) and (24) assure the vanishing required by Eqs. (15) and (16) and at the initial time t, =t2 = to, the
spatial 5 function of Eq. (26) assures the initial value of Tr[S(t, + tr, )4(1)4 (2)]. The physical Green's function,
g & (1;2), may then be expressed ' ' as

g&(1;2)= lim exp ie f dx„A„(x„)
c 0

fdx3f dx4C '+(1; x3t 0) Tr[ S(t, +r;t, )4(x3, to)4t(x~, to)]C '
(x4, to;2)

X
Tr[S(r, +r;r, )]

(28)

after the null-source limits $~0 and q ~0 are taken. In this, we have noted that the gauge-dependent exponent is
given by

1

exp ie dx„A„(x„) =exp ie dx„A„(x„)
L 2

1 (x4, tp)
=exp ie dx„ A„(x„) exp ie f dx„ A„(x„)P P P

It should be remarked that

Tr[S ( t, + t, r) 4(x3 r Q
)%' (x4, to ) ]

is certainly gauge invariant since there is no external field before to. Similarly, we obtain

f dx3 f dx4G '+(1;x3, to)Tr[S(t, +r;t, )4 t(x3, to)4(x4, to)]G '
(x4, t0, 2)

g&(1;2)= lim exp ie dx„A (x )—+tp . L Tr S(t, +r;t, )
(29)

in the null-source limit. In regard to gauge it is clear that the extraction of gauge dependence for the physical Green s
function is given by

g&(1;2)=exp ie f dx„A„(x„) g&(1;2), (30)
I.

in the presence of scatterers, as in their absence, in the null-source limit $~0 and il ~0.
It is worthwhile to observe that 0+ obeys group properties in accordance with Eqs. (17)—(22) as
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x3 + 1;3 + 3;2 = — x3exp t F i,i;i;t
5 . 5 . 5

3 t g (t) ri

for t, ) t3 ) t2 with

X A (1;3)exp dt F i,i, ;i;t A (3;2)0
5 t ' g'(t)' 5' t '

5 . 5 . 5= —fdx exp dt F i,i;i;t
5 t ' g'(t)' 5rtt '

E3

Xexp f dt F i,i;i;t A (1;3)A (3;2)
5$(t) ' 5(*(t) ' 5g(t) '

1 5 5 . 5 . A012
5 t 5/*(t) 57) t

iC+—(1;2) (31)

5 . 5 . 5 . . 5 . 5F i,i;i;t3 = i —dx3 dx4 i + i v, (x3,'x4)
5$(t, ) 5g*(t, ) 5g(t, ) 5$(3+ ) g'(3)

5 . 5 . 5+ QHt L, 4X5(X3—X4) i + l
5g.(t, )

'
5$(X4, t,+ ) 5$'(X4, t, )

In this we have employed the corresponding group property of 6+. Similarly,

f dx3G (1;3)G (3;2)=iG (1;2) .

Employing Eq. (31), we rewrite Eq. (27) for t, & t2 as

Tr[S(t, +r;t, )4(l)4 (2)]=fdx3f dx4f d X5G+(1; X5t )2C +( ~x, tz, 3Xt0)

XTr[S(t, +rt, )4'( X3t 0)4 (X4, t0)]G (X4, t0', 2),
so that

fdx3C+(1;X3,tz)Tr[S(t, +r;t, )P (X3, t2)+(X2, tz)]

Tr[S(t, +r;t, )]

Similarly, for t, & t2, we obtain

f d TXr3[S(t, + t,r)4 ( „xt&)4( X3t, )] G(x3, t„2)
Tr[S(t, +r;t, )]

(32)

(33)

(34)

It is useful to define a differently normalized Green's
function

and

Tr[S(t, +r; t, )P(1) P (2) ]G') (1;2)= i-
Tr p

Tr[S(t, + t, )r4 (2)4(l)]
G'( (1;2)=i

Tr po

(35)

(36)

where we choose pp as the initial equilibrium density ma-
trix in the absence of sources and external fields [as
defined in connection with Eq. (6), including scattering
and self-interactions]. Then we may rewrite Eqs. (33) and
(34) in a compact form as

g+(1;2)= lim i fdx3[C+(1;X3,tz)G+(X3, tz, 2)
'o

—G (1~; Xt)3)C (X3,t),2)], (37)

where we have noted that Tr[S(t, +r;t, )] is just p0 for( t0 and one should observe that the Heaviside func-
tions in G+ mandate that only one of the two terms on
the right-hand side of Eq. (37) contributes at a given time.
These relations are exact and constitute a functional
differential variant of the 6KB ansatz.

III. RELATION TQ THE 6KB ANSATZ

In order to gain insight into the exact functional
differential relation of Eq. (37) as it bears on the approxi-
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mate 6KB ansatz, we now neglect all initial electron-
scatterer interactions in the initial state at to, just as the
external field is switched on, so that the initial state trace
may be decoupled as

Tr[S(t, +r;t, )4(1)q {2)].
l 2 0

=Tr[S,(t, +r;t, ))

tives with respect to phonon sources in G+ of Eq. (37) act
only on the scatterer trace Tr[S,(t, + r; t, ) ]. Recalling
Eqs. (28) and (29) (reabsorbing the gauge dependence
with G +—+6+), we form the retarded and advanced
Green's function 6+(1;2) defined in analogy to Eq. (3)
and note that for t, ~ t 0, the generating Green's function
G~ is identical to the physical Green s function g~ in the
absence of sources, so that

6+(1;2)=+il+(t i
—t2)[g) (1;2)—g & (1;2)] . (39)

In this, S,(t, + r; t, ) is the kinematic time evolution
operator of the scatterers including their sources, and
So(t, + r; t, ) is the time evolution operator of the carriers
including their sources, with the decoupling due to cut-
ting the carrier-scatterer interaction in the initial state.
To simplify our considerations, we further neglect the
carrier-carrier interactions so that the variational deriva-

Since the difference (g ) —g & ) involves field operators re-
ferred to the same initial time to, their commutator is
readily evaluated by the canonical commutation rela-
tions, yielding the retarded Green's function as (hence-
forth we always understand that the null-source limit is
to be taken after carrying out indicated variation al
differentiations)

fdx36+(1;x3, to)Tr[S, (t, +r;t, )]Tr[S (ot, + rt, )]5( x3—xz)
6+ ( 1;x2, to ) = lim

Tr[S,(t, + r; t, ) ]Tr[S0(t, +r; t, )]

C+(1;x„t,)Tr[S,(t, +r;t, )]
lirn

Tr[S,(t, +r;t, )]
(40)

Similarly, for the advanced Green's function G, we have

6 (xi, to,'2)= lim
t0

Tr[S,(t, +r;t, )]G (x„t,;2)
Tr[S,(t, +r;t, )]

(41)

Generally speaking, these retarded and advanced Green's functions do not satisfy the group property

f dx3G+ (1;3)G+ (3;2)A iG+ (1;2)—

and

f dx3G (1;3)6 (3;2)&iG (1;2), (43)

because the variational derivative acts on Tr[S, ], which has no reference corresponding to the real time domain, such
as exists for A (1;2) in Eq. (31). However, following Lipavsky, Spicka, and Velicky in the assertion of equality in Eqs.
(42) and (43) for both t, and t2 later than to, corresponding to the "semigroup" property for 6+ under the model as-
sumption of zero collision time, we can proceed to make contact with the generalized KadanoA:Baym ansatz. Rewrit-
ting Eq. (42) for G+ with substitution of Eq. (40) into the integrand, we have (recall the symbol f for stopping variation-
al difFerentiation)

—iG+(1;x„t,)= lim f dx,
0+ (1;3)Tr[S,(t, +r; t, ) ]fG+ (3;x2, to)Tr[S, (t, +r; t, )]

Tr[S,(t, + t, r)]Tr[S, (t, +r; t, )]
(44)

for t„t3) to Reabsorbing gauge dependence, Eq. (29) becomes

g & (1;2)= lim
t0

f dx3 fdx., ( I;x3, to )Tr[S (t +r t )] Tr[SO(t +r; t )+ t(x3, to )+(x4, to )]Q (x4, to,'2)

Tr[S,{t,+r;t, )] Tr[S,(t, +r; t, )]
(45)

Noting that the part of the integrand of the above equation given by C+ Tr[S, ]f/Tr[S, ] is in fact 6+, which may be
reexpressed in terms of Eq. (44), we find that g & (1;2) takes the form (t, ) t2 )
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x~ + 1;x5 t2 Tr S, x3 x4 + x5 t2, x3, to Tr S, Tr So'Il x3 to %' x4 to x4 t02
g((1;2)=i

Tr[S, ] Tr[S, ]Tr[So ]

(J + (x5 t2 x3 tp )Tr[S ]Tr[Sp@ (x3 tp )4(x4 tp ) ]0 (x4 tp'2)—t dxs dx3 dx46+ (1;xs& t2 )
Tr[S, ]Tr[Sp]

=i f dx5G+ (1;xs& t2)g ((xs& tp&x2& t2 ) .

Similarly for t, & t2, we obtain

g((1;2)= i f d—xgs((1; x,5t))6 (xs, t)', 2) .

Moreover, we obtain the GKB ansatz from these considerations,

g~(1;2)=i f dx3[G+(1;x3, t2)g&(x3, t2, 2) —g&(1;x3,t, )G (x3 t„&2)] .

(46)

(47)

(48)

It should be noted that, apart from the neglect of initial scattering interactions (as well as dropping electron-electron in-
teractions completely), the only approximation involves the assertion of the semigroup properties of 6+, with no ap-
proximation pertaining to the equal-time Green s function g&(1;x2, t, ).

Finally, we make contact with the ordinary Kadanoff-Baym ansatz with definitions analogous to Eqs. (40) and (41) to
introduce the spectral weight function A (1;2) as

A ( 1;x2, to ) = lim
A(1;x,, t, )Tr[S,(t, +r;t, )]

Tr[S,(t, +r;t, )]

Tr[S,(t, +r;t, )]A(x, , tp;2)= lim
Tr[S,(t, +r;t, )]

(49)

We further assume that the equal-time Green s functions g+(1;xz, t, ) and g&(x„t2', 2) vary slowly within the time inter-
val t&~tz and in this spirit they are represented by their midpoint values g &( x&, (t& +t 2)/2; xz, (t&+t 2) /2). Notwith-
standing the violation of group properties which this entails, it leads to

g&&( 1;2)=t fdx3[6+(1;x3,t2)g&&(x3, (t, +tz)/2; zx(&t, +t2)/2) —g (&&»x(t, +t2)/2;x3&(t, +t2)/2)6 (x3 f t&)2] . (50)

Since g+ is evaluated at equal times here, it may be referred to the Wigner function f(k;R, (t, +tz)/2). Considered
jointly with Eqs. (19), (20), and (49), we obtain the KB ansatz

1 —f(k; R, (t &+ t2)/2)
g&(k&t„t~)=+tA (k;t„t~)X f(k.R ( + )/2) (51)
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