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Eff'ective potentials, constraints, and critical wetting theory
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Renormalization-group theory based on an effective wall-inteface potential W(l;T, h), h being the
external field, predicts nonuniversality for three-dimensional critical wetting with short-range forces;
but Monte Carlo simulations disagree seriously. To illuminate this, general derivations of W(l) are re-

ported: perturbative analysis using a zero-crossing constraint on a mean-field profile to fix the inter-
face location, I, reveals defects in previous results. However, leading renormalization-group predictions
remain unchanged. A novel integral constraint for defining I is solved exactly and yields the same con-
clusion.

One of the most striking recent predictions of renormal-
ization group theory' is the nonuniversality of the criti
cal wetting transition in a (d=3)-dimensional system
with short-range forces. Specifically, all critical proper-
ties should depend strongly on the dimensionless parame-
ter' 4
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FIG. 1. Sketch of order-parameter profiles, nt(z), for critical
wetting: note l(T,O) ~ when T T,~ —,the critical wetting
temperature: see text for details.

where Z is the stiffness of the P~a interface which delocal-
izes from an inert wall at the transition when T=T,~
while, gti is the (finite) correlation length (normal to the
wall) in the bulk phase, P, that forms the wetting layer,
see Fig. 1." As co increases from 0 the exponent, vt,
of the diverging interfacial correlation length,
varies as 1/(1 —co) for to & —,

' (regime I); then as 1/
[2 —j(8to)+to], which diverges when to 2 —(regime
II); thereafter v~~

=~ (regime III).'
Although experimental tests of this theory are not yet

available, extensive Monte Carlo simulations of critical
wetting in a simple-cubic Ising model with co=1.0 have
been performed. ' Surprisingly, however, nonuniversal
behavior is not seen; indeed, the data are consistent mere-
ly with classical, mean field theory which gives v~~

= I (as
for to =0)!s Despite further studies, ' ' this sig-
nificant discrepancy remains unexplained. "

Here we examine carefully one crucial ingredient of the
renormalization-group (RG) theory, ' namely, the bare

P[m(r)l = [l & Km @+( )m]dz @+~( ~m)jdy (4)

effective wall-interface interaction W(l), where l (y) is the
fluctuating, normal distance of the interface from the
point y on the wall plane at z =0. We find' that the pre-
viously accepted conclusion, ' ' namely

W(l;T, h) =hl+ w~e
"' + w2e "+ (2)

with tc„=ntc and tc=l/(&, is poorly founded ( and not,
in general, accurate. Note that h ——h ( 0+) mea-
sures the deviation of the overall chemical potential or
equivalent external field from coexistence of bulk a and P
phases, while ~~ —T —T,~ ~ 0, where T,~ is the mean-
field critical wetting temperature; one supposes ~q,
&0.

Two points must be made: (i) Whereas the details of
W(l), beyond the linear term and the residual rapid de-
cay, would normally be irrelevant at criticality, d=3
is the marginal dimensionality for critical wetting'1'1'
and the precise form of the first three terms in (2) is
then essential to the critical behavior (ii) the RG
theory' is based on an effective interface Hamiltonian,
'jt't[l(y)], rather than on a microscopic Hamiltonian,
/f[s(r)], with "spins" in d space at points r=(y, z):
hence W(l) is not given a priori The intr. oduction via
suitable constraints of "collective coordinates, " such as
l(y), and of corresponding potentials is not, of course, new
in condensed matter physics; nevertheless we have found
relatively little explicit and precise guidance in the litera-
ture. ' Accordingly, we believe the concrete analysis
presented here has interest beyond the particular problem
of critical wetting.

To proceed systematically, one must first postulate an
explicit microscopic criterion that specifies the collective
coordinate, namely the location, z =l(y), of the interface
with respect to the wall at z =0. Then, the interface
Hamiltonian may be defined (with ktt =1) via

exp( —Pt [l]/T) =Trt'~„'I [exp( —/f [s]/T)j, (3)

where Trr denotes a trace over the microscopic variables
s(r) constrained by a fixed interface conformation,
l(y) 'Now flui.d phases or lattice systems above the
roughening transition should be satisfactorily described
at the order-parameter level with s ~m(r) and
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where m =Vm(r), m) (y) =m(y, z =0), while for the wall
coupling we may take ' ' @& = —h &m) —

2 gm), where
h ~ is the surface field which induces wetting.

To progress further, we recall that the bulk phases, P
and a, are noncritical at T,~ and hence argue that a
mean-field treatment of Trt should be adequate; of
course, the "dangerous" critical modes arise from the
capillary Auctuations of the interface to be treated via
//'I [/]. Thus we suppose @(m;T, h ) =@o(m;T) —hm
where @0(m) has a double-well form with equal minima
at m =m 0 & 0 and m =mpo& 0. For most applications
a-P symmetry should not be imposed; likewise, nonzero
values of h should be considered.

Previous discussions, ' ' ' ' although not fully explicit,
more or less adopt the route outlined. At the next stage
one concludes, neglecting /-independent terms, '

PI[/] =„dy[—' Z(V/) + W(/;T, h;h), g)] .

To determine W(/) in leading approximation one need an-
alyze only a fiat interface, V/(y)—:0; then in (3) and (4)
the task reduces to finding the constrained interfacial
profile, m=(z;/;T, h;h(, g), see Fig. 1, by minimizing the
mean-field free energy, V[m]=&'[m(z)], whence W(/)
follows directly. Now when the constraint on l is relaxed
there is a smooth optimal profile m(z;T, h;h), g), see Fig.
1, which yields the mean-field theory and gives a corre-
sponding equilibrium interfacial displacement /(T, h;h),
g) ( (/) f(). Naturally one should require A: m=(z;
/ =/) =m(z) which ensures consistency, so that minimiz-
ing W(/;T, h;h), g) on / reproduces the full mean-field be-
havior. It is clear, however that A is not a sufficient con-
dition for determining W(/).

Apparently with A in mind, previous workers have, ex-
plicitly or in essence, ' ' ' ' adopted the ansatz m=(z, /)
=m(z —A/) with A/ =/ —/. For h =0 this looks reason-
able and, in standard m theory, yields (2). However, the
ansatz violates the mean-field boundary condition at the
wall, namely, 8: Km) =d@)/dm), which follows from
(4); it also takes no account of distortions in the profile
shape induced by the constraint. Furthermore, when h &0
this method yields unacceptable terms in W(/) like e+"'
and, in fact, one finds W(/) ~ when /~ /, =2/. '

Another derivation' (' of (2) uses an intermediate ex-
pression for m in which l appears; then l is replaced by l
and a version of 8 is neglected; however, for /e/ an unac-
ceptable discontinuity in the approximate form for
m=(z;/) is implied. '

To do better one must first specify precisely the loca-
tion, l, of a constrained interface. Given a putative profile,
m(z), it is natural to adopt (as is often done implicitly) a
crossing criterion, ' i.e., m =m" at z =l where, without
loss of generality, one may take m" =0: see Fig. 1. The
task is then simply to find the mean-field profile m=(z;/)
which satisfies the constraint C: m=(z =/;/) =0. This
profile must solve the standard equation KB,m =(8@/
Bm), (i) for z (/, with the wall boundary condition 8,
above, imposed at z =0, and (ii) for z &/ with bulk
boundary condition D: 6,m 0 as z (0(0 and
m m, (T,h). The profile m=(z;/) will automatically
obey A but necessarily has a kink, i.e., a discontinuity in

Jp =K(82 ——Ic')v =3eiv '+4e4v '+ (7)

for z ~ /, where )c =gp = I/Kgp, we treat e3 (x: e,
as small parameters. '

In zeroth order the profile solving (7) and satisfying 8
and C is simply

( ./. T h) —gee(z I)+Be K(z I)

where
while

A(/;T, h;h(, g) =mp (T,h)[1+O(e "')])0,

B(/;T, h;h), g) =re '+O(mp e "'),
in which z = [h)+gmp (T,h)]/(KIc —g) turns out to be a
crucial control parameter. Note that, in contrast to previ-
ous treatments, we allow for h &0 at all stages; no anoma-
lous or singular behavior arises.

Now, in computinp iteratively the corrections to v0=, say,
p;; . . . of order ~3', one necessarily encounters con-
tributions like '

r '(e, )e Cee +D=ze ""**+ g E ee"*, ((0)
v

with p, q odd, where E~ ~ B ~+ and C, D a- B q —'

Evidently, not only do higher-order exponentials, e —"",
arise but resonances with e —' terms on the right of
(7) generate factors of z. On evaluating (4) in order to
compute W(/), one then meets integrals like fo((I00)
X[X '(v0O)] "dz, etc. , which lead to powers e ""' with
n & 0, but also to factors of l. Further iteration leads to
successively higher powers of z and /. Indeed, indefinitely
high powers of z, and thence l, appear and, at first sight,
the process appears uncontrollable I However, careful
analysis' shows that, in effect, each power of z and / car-
ries a factor of at least B-~e ' or e '. As a conse-
quence one discovers' that W(/) is not of the form (2)
unless @(m) is precisely parabolic for m~ m", i.e. ,
83 84 =0; otherwise the coefficients w~ in (2) must
be replaced by polynomials in l, namely,

W) (/) =w (o (T, h ) +w ( ) (T,h ) Ic/,

W2(/) =w20+ w2) K/+ w22(tc/), (i2)

of degree precisely j. In addition the linear term in (2)
has the coefficient

h =@(mp ) —&(m, ) =(m o
—mpo)h+O(h ) .

slope, at z =/ whenever /&/: see Fig. 1. ' The potential
W(/) then follows by evaluating (4).

Implementing this program for arbitrary @0(m), or
even for the standard rm +um model, poses an unex-
pected challenge: we have resorted to a perturbative ap-
proach. ' Note, first, that for z~/ one has' m=(z;/)
=m [z —(/ —/)] for any @(m). Consequently, the profile
in this region does not contribute to the l dependence of
W(/). To handle z~/ with equal generality, we put

v0 =m —
mp and exPand @(m) for m ~ m

" as

@=Am;„(T,h)+ 2 gp 'v0 +e3v0 +e4(I0 + .

wit" mp =mpo+Zph+0(h ), which is just the equilibri-
um value of m in the bulk P phase. Then to solve
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Of course, such changes in the behavior of W(l) have
consequences in the RG treatment. Accepting (11) and
(12) with nonvanishing w~ ~ and w22, and following Ref. 3,
one finds' that divergent corrections to the original criti-
cal behavior arise: e.g. , for co ( —,

' (regime I), the wetting
layer thickness for h 0 then diverges as'

x(l) = (1+2co)(l —co) ' lnt '+lnlnt (i4)

where t =(T,u
—T)/T, u., the last term is new but surely

hard to detect! A corresponding new term, ln!n~h
~

' ap-
pears at T=T,g and in the complete wetting behavior
above T,~.

However, this analysis neglects the r-dependence noted
in (9). When this is traced through one finds that the po-
lynoinial coefficients in (11) and (12) take the form

w (T h) =(a +b cr)e'"r '"+' ' (IS)

with a,~—=0, )x~+ =max[x, Oj, and k ~ j. This implies
w~o r, w]] e r, w2p=O(1), w2] 8 r, w22

g g o ~ ~5 5

Now recall that in (2) w~ vanishes as criticality is ap-
proached like to= (T —T,i—r)/T, u (when co ~ 2). Evi-
dently r must (and does) also vanish like to. Hence the
power-law corrections to w~o and wzo in (il) and (12)
vanish rapidly as to 0. This has no relevance to the new
complete wetting behavior but when the critical wetting
calculations are reworked recognizing this, only the
correction factors to the leading behavior are modified for
co (2 (regimes I and II). [Thus the lnlnt ' term in (14)
does not appear. ] In regime III, when co & 2, one finds
that T,n (&T,u ) and various amplitudes change but the
leading divergent forms are again unaltered. ' In sum-
mary, aithough the form (2) for W(l) is generally in-
correct when l ~ at fixed T, h, and h ~, the deviations
vanish sufficiently rapidly on approach to wetting criticali-
ty that the original RG predictions for the singular behav-
ior remain valid!

It is worth commenting that multicritical wetting is
determined in mean-field theory by ~~= =~1, =0
with k =2 for tricriticality It follows fr.om (15) that (2)
remains valid for analyzing tricriticality; however, for the
academic cases k=3,4, one should note that W4,
W5 r I W6 W7 r I, etc. , contrary to (2).

Although our conclusions are satisfying at one level, the
discrepancy with Monte Carlo simulations stands un-
resolved. The crossing criterion used for l is appealing
theoretically and its lack of dependence on the specific
value of m

"
suggests it is fairly robust. Nevertheless, it is

not really satisfactory from a laboratory viewpoint. Ac-
cordingly, we have explored the alternative integral cri
terion embodied in

e oo

l = dz[m(z) m.—]I'/(mp m.—)",

where m, (T,h) and mp (T,h) are the bulk order-
parameter values. When p = 1 this definition relates
l(=l) to the absorption, which is a natural quantity to
consider. However, while one can generally embody (16)
as a constraint by using a Lagrange multiplier, ' this ap-
proach fails when p= 1 (basically because the constraint
then perturbs the bulk phase a significantly even when

~) 12

On the other hand, p=2 also provides a physically
reasonable definition. Furthermore, if one adopts @o
=rm +um, as usual, it proves possible, although alge-
braically complex, to perform the analysis to determine
W(l) explicitly '(Th.is could also be done for p =3 and

p =4.) The forin (2) is now recaptured precisely with no
factors of l. Of course, the expressions for w~, w2,
differ from those found previously, although one still has
w~ —z and w2=0(1). The remaining changes result
from the actual difference l —l which, as expected, can be
shown' to be of order g~ (=g, ). Once again, then, the
potential W(l) used in the RG theory' may be regard-
ed as acceptable.

Our considerations thus strengthen the basis of the RG
theory and so sharpen the disagreement between theory
and simulation! Various suggested explanations have
been published ' "but fewer remain viable. Most in-
teresting might be relevant effects of lattice structure on
critical wetting even when T exceeds T„„gh,„;„g. Certain-
ly, the lattice structure causes the difference between the
stiffness Z and the tension Z; but it is hard to understand
its effects when both I and (i become large. Perhaps,
however, the simulations are as yet too small in size or still
subject to technical difficulties. The issue warrants con-
tinued attention. '
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