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Eff'ect of impurities on cyclotron resonance in two-dimensional electronic systems
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We have investigated the inAuence of impurities on the cyclotron resonance in two-dimensional
electron gases, using general sum-rule arguments. The method provides an explanation for the
diAerent behaviors observed in samples with either donor or acceptor 8-doped layers. The unique
behavior of the Be-doped samples at high magnetic fields can be understood in terms of a rigid
oscillation of the electron gas against the fixed impurities, which give rise to an effective harmonic
restoring force. An explicit expression for the resonant frequency is obtained, whose square is
equal to the square of the cyclotron frequency plus a constant shift. An expression for the reso-
nance linewidth is also given that involves the electron density at the position of the impurity.
The dramatic narrowing of the resonance observed in the Be-doped samples is due to this density
vanishing for some critical filling factor less than 1.

Cyclotron resonance has been used extensively as a
probe of two-dimensional electron gases (2DEG) in semi-
conductor heterostructures. For the ideal translationally
invariant system, Kohn's theorem ' stipulates that the res-
onance is infinitely sharp and that its position occurs at
the classical cyclotron frequency co, =eB/m*c. These
features are due to the fact that a transverse radiation
field couples to the center-of-mass motion which itself is
decoupled from the internal degrees of freedom. In this
situation, electron-electron interactions play no role and
the resonance corresponds to that of a free particle. With
the inevitable presence of impurities in the system, the sit-
uation changes drastically since the impurity disorder cou-
ples the center-of-mass motion to the internal degrees of
freedom. In particular, the driven motion of the electron
gas against the impurity background will normally gen-
erate density fiuctuations which are strongly affected by
electron-electron interactions. These in turn would be ex-
pected to aA'ect the character of the cyclotron resonance.

The experimental record clearly establishes the impor-
tance of these impurity related eff'ects but a coherent
picture of how the cyclotron resonance is modified has yet
to emerge. One difficulty has been the sample dependence
of the behavior observed, which presumably is associated
with the different kinds of impurities present and varia-
tions in their distribution throughout the region confining
the 2DEG. The lack of precise information about the im-
purities has made it difficult to establish correlations with
the various observed anomalies. Thus the recent series of
experiments in which the distribution of impurities is con-
trolled by the method of 8 doping or electron irradia-
tion ' are particularly important and oA'er the possibility
of clarifying the situation. But even here the distinct be-
havior of donor versus acceptor 8-doped layers seems to
have raised more questions than it has answered.

One of the intriguing observations for the Be-doped
samples is the splitting of the cyclotron resonance at some
intermediate field close to a filling factor v=2, followed
by the strengthening of a shifted resonance, and finally its
narrowing for filling factors less than unity. The Si-doped
samples do not exhibit a similar behavior but retain a rela-
tively broad resonance even to the highest fields studied.

In this paper we wish to point out that much of this data
can be understood on rather general theoretical grounds.

We consider an arbitrary 2DEG in the presence of a
perpendicular magnetic field. The Hamiltonian of the N-
electron system is

N W

H= g p;+ —A; + g v,„~(r;)+U,
i l 2' & i 1

where the vector potential in the symmetric gauge is given
by A(r) =

2 Bxr, v,„,(r) is the total external potential
acting on the electronic system (including both the
confining and impurity potentials) and U is the electron-
electron Coulomb repulsion. The experimentally measur-
able quantity is the power absorption for a normally in-
cident electromagnetic wave

P(to) = —, Ep, Q,".(to)

where Eo is the amplitude of the incident field and
Q"„(co) is the absorptive part of the current-current re-
sponse function, "

(3)

The states ln) are the exact eigenstates of H with eigen-
values e„and co„p=(8„—Gp)/A. The operator J„ is given
by

J„=—egv;, =—

Here we have introduced the total center-of-mass me-
chanical momentum P.

Motivated by the observation that the cyclotron reso-
nance in the Be-doped samples is a narrow line for high
magnetic fields, we adopt a procedure which exploits
sum-rule arguments as applied to the current-current
response function Q„"„(co). In the following we consider
coQ„"„(to) to be a spectral distribution and define a
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squared frequency by the ratio of frequency moments

fp ui'Q„"„(rp)dko
0

fP g.".( )d

The extent to which 0 reflects the actual resonant fre-

quency depends on the width of the distribution. For the
ideal situation of a &function-like response Q„"„(rv)
~8(co —0), Q is indeed the square of the resonant fre-

quency. However, for more realistic distributions the
width plays an important role in determining the value of

I

0
Using Eq. (3), the frequency moments can be expressed

in terms of commutators and Eq. (5) becomes

(0i [[H, [P.,H]], [P.,H]] 10)

(Ol [[P,H],P„]l0&

The various commutators can be worked out exactly using
the Hamiltonian H and the definition of P„ in Eq. (4).
Taking the ground-state expectation values of the indicat-
ed quantities, Eq. (6) becomes

1
—I/Mco„ fdr[V~~v„i Vinp+V„v, „tV np]+ I/m*Mro, fdr(V V v,„t) np0 =N~

1
—I/cVro2 fdrV v,„,V, np

where M=m W is the total electron mass and Vll denotes
the components of the gradient operator perpendicular to
B. np(r) is the exact ground-state density in the presence
of impurities and implicitly includes the effect of elec-
tron-electron interactions.

The expression for 0 is an exact property of the exper-
imental absorption spectrum and in the limit v,„,(r) 0,
we recover the expected result 0 =co, . To infer more
from this formal expression we shall make use of various
pieces of experimental information and consider some lim-
iting situations. In the extreme high-field limit (8 ~),
the last term in the numerator can be neglected and we
find

I

to display a positive sign in the frequency shift. The pro-
portionality of the frequency shift to c is consistent with
the experimentally observed dependence. '

As stated previously, provided the resonance is sharp,
the value of 0 obtained from the sum-rule argument actu-
ally represents the resonance position and corresponds to
the frequency of the collective mode. This mode can be
given a simple physical interpretation already alluded to
in the paper of Antoniou, MacDonald, and Swihart. '

Consider the effect of both a rigid displacement of the
ground-state wave function through a distance a and a
gauge transformation, the combined transformation being
defined by the operator

fl =rv„— drViv, „,(r) Vinp(r)—:cv, +cop. (8)

To the extent that np(f) is a relatively weak function of 8
in the limit of low filling factors (v ( I), this is precisely
of the form of the shifted resonance observed in the case
of the Be-doped samples. Since the resonance line in this
limit is sharp, we shall argue that Eq. (8) gives an accu-
rate expression for the resonance position.

In Fig. 1(a) we sketch the form of v,„t(r) and np(r) in
the vicinity of a single negatively charged impurity im-
mersed in an ideal 2DEG. It is clear from Fig. 1(a) that
the gradients of v, „,(r) and np(r) have opposite sign so
that the sign of the integral in Eq. (8) is negative, i.e. , the
impurity potential gives a positive frequency shift. One
arrives at a similar conclusion in the case of the positively
charged donor impurity sketched in Fig. 1(b), however
this situation is more complex as will become clearer later.

If the mean distance between impurities d is large com-
pared to a typical impurity screening length, it is clear
that each impurity contributes independently to the in-
tegral in Eq. (8). However the contribution of each is
different depending on its position relative to the 2DEG.
To simplify the discussion we assume a &doped layer so
that each impurity contributes the same amount. We
then find

cn'= '+co, J dr V~( v„,(r)np(r),

where c =N;/N is the concentration of impurities and v, „,
is now the external potential in the vicinity of a single im-
purity; we have performed an integration by parts in order

=sp+ dr np(r) [v,„,(r+ a) —v, „&(r) l .

The transformation therefore preserves the total kinetic
energy and total Coulomb energy of the electrons and

ii vaxt(r) (b)

, n, (r) IL
FIG. l. (a) Schematic representation of an acceptor impurity

potential in a 2DEG v„,(r), and the corresponding screening
charge density, no(r), as a function of the distance from the im-

purity, r. The dashed line is for some filling factor v&1 for
which no(0) =0. (b) As in (a) but for a positively charged
donor impurity.

T(a) =exp —imp; a/A exp i gr; a&&B . (10)r, 26c i

Defining the wave function l%'(a)) =T(a) l0), a variation-
al estimate of the energy is given by

s(a) —=(e(a) lHl@(a))
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|le(a)
drnp r a„Ba„" 8x„8x,

(i2)

only the external potential energy of the system is af-
fected. By the variational theorem e(a) is a minimum at
a=0, so that

tor is ep = A Qp= A (rpp/2+ cp, /4) ' . In this case,

&OIP.'IO& =M&OIHIO& —
l M'~p&OI&'IO&

=MA Qp —MAaip/(40p)
= —,

' M A co, +0 (nip ) . (is)

fp aiQ.".(co)dpi 1 (0~[[P„,H], P j~o)0=
fp Q„"„(cp)dco 2A (O~P ~0)

(i4)

which should give a result equivalent to Eq. (8) if our in-
terpretation is correct. The main difficulty with using Eq.
(14) to obtain the resonance position in the first place, is
the evaluation of the denominator. If the ground state ~0)
represents an ideal system without impurities it is easy to
show that (0(P„~O);d,,~

= —,
' MAcp, . The situation with im-

purities is more complex and an equivalent general ex-
pression for the matrix element cannot be given. Howev-
er, if we accept the physical picture described above and
assume the center of mass to be bound harmonically in ac-
cord with Eq. (13), the ground-state energy of the oscilla-

can be interpreted as the restoring force for this rigid dis-
placement of the 2DEG. For a random distribution of im-
purities in the system one would not expect a component
of the force in a direction transverse to the displacement,
i.e., we retain only the p = v part of |) v,„i/8x„8x, and by
symmetry, these two diagonal contributions are equal. In-
cluding the Lorentz force on the electrons, the classical
equations of motion for the center of mass become

a„=—ro, a~ —
2 dopa„, a, , =co,a„——,

'
cppaJ, (13)

which have harmonic solutions whose frequencies for
large magnetic fields (co, »aip) are 0+ =co, +cop and
0 =cop/4', . The upper mode frequency is precisely the
result obtained with the sum-rule argument, Eq. (8).
Thus the latter is consistent with the picture that the
many-electron system oscillates rigidly against the back-
ground impurity potential. To the extent that the ob-
served resonance is sharp and that the sum-rule argument
gives the correct resonance frequency, we can infer that
the 2DEG is indeed oscillating as a coherent, rigid whole,
which is clearly possible only if electron-electron correla-
tions are sufficiently strong to lock the electrons into this
kind of motion. The narrowness of the observed resonance
is indicative of the lack of dissipation to be expected in a
situation where internal excitations are suppressed.

So far in this discussion there is nothing to distinguish
the donor from acceptor-doped systems. However we
have tacitly assumed that the last term in the numerator
of Eq. (7) can be neglected at the fields of interest. In
fact, this is not really the case but we can argue that this
additional term is directly related to the width of the reso-
nance. This term allows one to distinguish naturally be-
tween donors and acceptors and can be used to explain the
diA'erent behaviors observed experimentally.

We first give an argument for the interpretation of the
term in question based on the assumption that the dynam-
ics of the electrons is consistent with the picture developed
above. In analogy with Eq. (5), we define the resonant
frequency by the equation

Thus, even though the impurities provide a harmonic re-
storing force, the (O~P„~O) matrix element is not aA'ected
to O(cop). Using the result from Eq. (15) in Eq. (14) to-
gether with the denominator of Eq. (6) evaluated previ-
ously, we find 0 =co, + cop/2', whose square is equivalent
to 0 as given by Eq. (8). Taking this as the center of the
shifted resonance, we can define the second moment of the
spectral distribution with respect to this position by

l dr(VV v, „,(r)) np(r) . (16)
m*Mm, "I-'—= n —n =2 2

2

(VV ., (r)). (VV v., (r)) = + . (18)r6 r8

This function is highly singular and its integral over all
space, in fact, diverges for a point charge. However, in a
semiconductor, the impurity charge is distributed over an
atomic volume of size a which introduces a small-r cutoA.
Assuming that the impurity is immersed in the 2DEG, Eq.
(16) can be approximated as

2
c

d
e 1+3x ()(m* pi ) a

' 3 '4
=c [a*'np(0)] (i9)

3 a A. co,

where a* =x'A /m*e is the eA'ective Bohr radius and
H* =2 Ry* =e /x'a* is the eA'ective Hartree unit of en-
ergy. The ratio of this term to the square of the frequency
shift is proportional to (H*/Aco, ) ~8 which will be
small in the extreme high-field limit, but for the field
strengths of interest (10-20 T) this ratio is of order unity.
Furthermore, the ratio (a */a) is typically 10 —10
which represents a huge enhancement, so it is clear that I
makes a significant contribution to the value of the m fre-
quency moment and is why its physical interpretation is
essential. The fact that the co moment is large of course
does not imply that the resonance is ill defined, but only
that the spectral density decreases rather slowly with in-
creasing frequency. For example, if coQ,

"
(co) were to

have a Lorentzian line shape a: [(co —0) +I l ', the
co moment would be divergent.

The final value of I is also dependent on the 2DEG den-
sity close to the impurity. In the case of a &doped layer
within the 2DEG, np(0) plays a crucial role and is ulti-
mately what distinguishes between acceptors and donors.

This contribution to 0 evidently determines the width of
the resonance I .

We now explore the implications of this interpretation.
For simplicity we consider the contribution of a single im-
purity at the origin with potential

2

v,„,(r) = ~ (i7)
K'r

The integrand in Eq. (16) contains the quantity
r
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For acceptors, the impurity potential is repulsive and
no(0) is depleted to a value below that of the average
2DEG density (see Fig. 1). On the other hand, the charge
density is enhanced for the attractive donor impurity po-
tential. This efect can be seen in the self-consistent elec-
tronic structure calculations performed in the Hartree ap-
proximation for a finite system in a magnetic field. ' Just
on this basis we would anticipate broader lines for donor
impurities as compared to acceptor impurities, all other
variables such as concentration and impurity position be-
ing equal.

We now consider the interesting case of acceptor im-
purities in greater detail and examine the behavior of
no(0) as a function of magnetic field or filling factor, us-
ing the self-consistent Hartree calculations' as a guide.
For a single impurity the single-particle eigenfunctions for
the screened impurity potential can be classified by the
Landau-level index n and the azimuthal quantum number
e which lies in the range —n ~ m ~ ~. The small-r be-
havior of these states is proportional to r so that only
the m =0 state for each Landau level has a finite ampli-
tude at the origin. Conversely, because of their finite am-
plitude, the m =0 states have higher energies for a repul-
sive impurity than the Landau states which are further re-
moved (m&0). Thus, as the filling factor is reduced
below 1, one expects the m =0 state in the lowest occupied
Landau level to be depopulated first with increasing mag-
netic field. In other words, only states with m&0 will be
occupied and as a result no(0) is strictly zero. Although
these conclusions are based on the Hartree approximation,
they should also be valid in a more rigorous treatment of
the screening problem as performed, for example, using
density functional theory' for the spin-polarized situa-
tion.

Equation (19) is not a useful result when no(0) =0. To
obtain a more accurate estimate we consider the point at
which the (n =0, m=0) level first becomes depopulated
near v=1. The removal of one electron from this state is
suScient to screen the impurity. The eAect of the impuri-
ty potential on the remaining m~0 states is, therefore, di-
minished and to a first approximation these states can be
chosen as ideal Landau states. The m=1 state has the
largest amplitude near r=O and contributes a density
which behaves as (r/1) where l =(h, c/eB) ' is the mag-

netic length. When this form of no(r) is used in Eq. (19),
the final result for I basically has (a*/a) replaced by
(a*/a)(a*/l), and since (a*/l) is of order unity, I is
reduced by about a factor of 10 relative to the situation
where no(0) is finite. Such a large reduction in the ro

moment will have a dramatic eA'ect on the apparent width
of the resonance as observed experimentally for v& 1.
The situation with donor impurities is of course quite
diferent since no(0) is always finite and in fact enhanced
above the mean 2DEG density. In view of this behavior,
there is nothing particularly significant about v=1 for
donor impurities, and is why the Si-doped system exhibits
a much broader resonance at high fields as compared to
the Be-doped samples.

In conclusion, we have presented general arguments
which provide a qualitative understanding of the cyclotron
resonance in Si and Be 8-doped samples. %e have ob-
tained an exact expression for the m moment of the elec-
tronic current-current response function which admits an
interpretation in terms of a shift of the resonant frequency
and its width. The narrow resonance observed in Be-
doped samples at high magnetic fields is due to the vanish-
ing of the contact density np(0) for some filling factor less
than 1. %'ith the reduced dissipation implied by this re-
sult, the resonance in this limit can be thought of as a
coherent cyclotron motion of the electrons in the presence
of an harmonic confining potential arising from the im-
purity background. The fact that Si-donor impurities
have a large contact density leads to qualitatively diA'erent
behavior in this case. As a final comment, we should em-
phasize that despite their generality, sum-rule arguments
are limited in what information they can provide. In par-
ticular, the detailed behavior of the cyclotron resonance
observed in &doped samples can only be determined by a
microscopic treatment of the dynamics. Nevertheless,
sum-rule arguments can still provide useful constraints
and, as we have shown, can elucidate the properties of
both the ground and excited electronic states.
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