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We demonstrate that the key element for a thermally activated process to follow the stretched-
exponential relaxation and the Meyer-Neldel rule is the exponential energy distribution of defect traps.
We point out that the characteristic temperature associated with the exponential energy distribution
obtained from the stretched-exponential relaxation and the Meyer-Neldel rule should have the same
value. This criterion provides a very good test for the underlying mechanism as proposed. The model

is applied to the data in semi-insulating GaAs.

We show that the decay of the persistent photoconduc-

tivity of the studied material after different illumination time follows the stretched-exponential relaxa-
tion. The obtained characteristic temperature To=453 K is in excellent agreement with that from the

Meyer-Neldel rule for the dc conductivity measurement.

the data in hydrogenated amorphous silicon.

In this paper we establish a link between two charac-
teristic phenomena of solids. These phenomena are the
stretched-exponential relaxation that describes the relaxa-
tion of a physical quantity toward equilibrium, and the
Meyer-Neldel (MN) rule that describes an exponential
relation between the activation energy and the preex-
ponential factor. The MN rule has been observed in a
wide variety of materials. These include single- crystal !
polycrystalline,? amorphous,® and organic solids,* and
even ionically conducting crystals and glasses.” The ex-
pression of the MN rule for the dc conductivity can be
written as®

E /kTo —E JKT
o =000€ /kToq ~E:l R (1)

where ogp and T are constants within a class of related
materials, and E. is the activation energy. Although the
MN rule is similar in a variety of materials suggesting a
common underlying mechanism, its origin is unclear. Re-
cently, several interesting models have been proposed to
derive the MN rule. For example, Jackson’ found that
whenever a multiple-trapping transport process is ob-
served over fixed distances as a function of temperature, a
MN rule should be observed for this transport quantity.
Dyre® and Crandall® used an exponential probability dis-
tribution of energy barriers to obtain the MN rule. For
most of the people the MN rule is often associated with
disorder of some form within the material.

The stretched-exponential relaxation of a physical
quantity N is described by the time dependence '°

N@)=N(©0)expl— (/7)1 )

where 7 is the relaxation time, and 0 < a < 1. It has also
been observed in a wide class of materials including crys-
talline'' and amorphous'? solids. Its physical mechanism
is also not clearly established. Campos, Giacometti, and
Silver'? and Crandall® used an exponential distribution of
traps to derive this expression. Kakalios, Street, and Jack-
son'? attributed this relaxation to dispersive transport
characterized by a power-law time decay of the mobility
or diffusion.

Reviewing the previous derivations for the stretched-
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The model is also successfully confirmed by

exponential relaxation and the MN rule, we can find that
some of the assumptions for these two characteristic phe-
nomena are similar. For example, Kakalios, Street, and
Jackson'? and Jackson’ both assumed dispersive transport
characterized by a power-law time dependence to obtain
the stretched-exponential relaxation and the MN rule, re-
spectively. Also it is known that the dispersive transport is
a consequence of an exponential energy distribution
of traps. Thus, one should be able to derive both the
stretched-exponential relaxation and the MN rule from a
common origin which is the exponential energy distribu-
tion. However, this point was not firmly established by
the previous authors. Jackson’ has derived these two ex-
pressions, but the physical system is limited to a multiple-
trapping transport process over fixed distances. Crandall®
went further to obtain the results by using an exponential
distribution of activation barriers, but the discussed
phenomenon is restricted to the Staebler-Wronski effect in
hydrogenated amorphous silicon, and the connection be-
tween the stretched-exponential decay and the MN rule
was not tested.

This paper demonstrates that the key element for a
thermally activated process to obey the stretched-expo-
nential relaxation and the MN rule is the exponential en-
ergy distribution of defect traps. This result is first de-
rived by considering the relaxation of the stored charge
carriers in a semiconducting material. We point out that
the characteristic temperature associated with the ex-
ponential energy distribution of traps obtained from the
stretched-exponential relaxation and the MN rule should
have the same value. This criterion provides a very good
test for underlying mechanism as we proposed. The con-
nection between the stretched-exponential relaxation and
the MN rule is then further investigated by considering
the data in semi-insulating GaAs and hydrogenated amor-
phous silicon.

Let us first consider a semiconducting material contain-
ing deep traps which may be a result of the presence of
impurities or lattice imperfections. We want to calculate
the relaxation of the stored charge carriers in the deep
traps and the variation of the dc conductivity with the ac-
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tivation energy when the number of deep defects is
changed. Here our derivation is similar to the procedures
given by Crandall.® The assumptions made in our model
are as follows: (1) the trap distribution is given by

N, ,
KkTo exp(E'/kTo) , 3)
where n,(E) is the density of traps per unit energy, T
characterizes the width of the distribution, NNV, is the total
number of the traps, and E'=E —E,, where E, is the
highest energy barrier for the stored charge carriers to re-
lax from the traps. (2) The cross section of the traps are
assumed to be independent of energy so that the probabili-
ty for the occupation of the stored charge carrier in a trap
is proportional to n, (E).

The exponential energy distribution of defects is well
known. It has been used to describe the various behaviors
in disorder solids. A brief review of the history of the ex-
ponential energy distribution has been given by Mac-
donald.'* It has also been applied to the defects in crys-
talline solids.'® The applicability of the exponential ener-
gy distribution to deep traps in disorder solids as well as in
crystalline solids can be understood by the Dyre’s argu-
ment.® At T, the relevant lattice degrees of freedom
freeze, so that the defects for T< T are unable to ex-
change energy with the lattice. When the lattice freezes,
the defect-lattice interaction energy E' becomes a func-
tion of the defect coordinates only. This function is ran-
dom in space and Eq. (3) just expresses the probability of
finding energy E' at a given defect position. Thus, Eq. (3)
is a consequence of a frustration of thermal equilibrium at
To. The frustration takes place on cooling at the sample
preparation, and it reflects the property of the freezing of
thermal disorder of defects at T. As long as defects are
present, the frustration should exist which does not de-
pend on whether the material is disorder or crystalline.
The concept here is not new. In 1950, Busch'® suggested
that a freezing of the donor concentration during cooling
after the sample preparation may exist in extrinsic semi-
conductors. Equation (3) represents the trap density in-
creases with the energy barrier for the relaxation of stored
charged carriers. In principle, trap distributions could be
exponentially increasing or decreasing functions of the en-
ergy barrier. As we point out later, these two distributions
will lead to differences in the relaxation behavior. Here,
we will restrict ourselves to Eq. (3).

The relaxation of charge carriers from deep traps is
generally a thermal process. For a thermally activated
process, the transition rate is

HI(E) =
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The rate of change of deep traps having charge carriers is

dN, (1) E
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where E; is the minimum observable transition energy for
the relaxation.

E/=len(v0t), 6)

where vy is the attempt frequency. The states with the en-
ergy barrier lower than E; will remain in equilibrium
throughout the time of measurement, and their change

Y. F. CHEN AND S. F. HUANG 44

cannot be observed. Using the assumed distribution func-
tions, Eq. (5) becomes

dN, (1) E -
dlt =— Iz;to) EIhROe ~E/KT, E=EKTo g 7

Since we are interested in the range of temperature less
than T, the argument of the integral decreases exponen-
tially at higher energy. Thus the lower limit dominates
the integral. The integration in Eq. (7) gives

dn,(t)  N() —Ep/kTo_ —bE,
dt kTOb Roe e N (8)

where b =1/kT — 1/kT,. Substituting Eq. (8), we obtain

dN,(t) - N(1)
dt kTob

where a =T7/T,. From this equation, we can see immedi-
ately that the dispersive transport characterized by a
power-law time dependence is just the consequence of the
exponential energy distribution. The solution of the
stored charge carriers remaining in the traps as a function
of time is then

Roe Bk To(yopya—t )
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and E, is given by
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T is the average relaxation time for the stored charge car-
riers, E, is the average thermal activation energy for this
relaxation. Equation (10) shows that the relaxation of the
stored charge carriers in the traps follow a stretched-
exponential function, and Eq. (12) is just the MN rule
connecting E. to the logarithm of vo. The average relaxa-
tion time as a function of the activation energy shown in
Egs. (11) and (12) is exactly the same as the expression
obtained by Dyre® and Crandall.® The physical processes
under discussion, however, are very different. We consid-
er the relaxation of the stored charge carriers in the traps,
while Dyre® considered the hopping of localized charge
carriers. But, this result should not be surprising. As long
as the processes are thermally activated and the involved
defects have an exponential energy distribution, the aver-
age relaxation time should follow the expression as shown
above.®® Thus, any physical quantities which are inverse-
ly proportional to the average relaxation time should have
its proexponential factor depending exponentially on the
activation energy. For example, the dc conductivity o in
solids can thus be written as

a=oooeb'/”°e—k'/”, (13)
where oo is a constant within a class of related materials.
This expression is just the familiar formula of the MN
rule as shown in Eq. (1). We thus demonstrate that the
key element for a thermally activated process to follow the
stretched-exponential function and the MN rule is the ex-
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ponential energy distribution of defects. Even the physi-
cal system discussed here is the relaxation of the stored
charge carriers from traps, the results can be applied to
the relaxation of an arbitrary physical quantity as long as
the defects involved in the process have an exponential en-
ergy distribution and the process is thermally activated,
for example, the relaxation of band-tail carriers in hydro-
genated amorphous silicon studied by Kakalios, Street,
and Jackson. '?

According to the thermodynamic model by Bar-Yam,
Adler, and Joannopolus,'® it predicts that all defect distri-
butions in a material are determined by the same charac-
teristic temperature To.° Thus, the characteristic temper-
ature obtained from the stretched-exponential relaxation
and the MN rule should be the same for a material even if
these two phenomena are caused by different defects.
This is a very important criterion to test the underlying
mechanism for the two expressions we proposed above.

Equations (10) and (12) can now be quantitatively
compared with the experimental data. Jimenez et al.'’
observed an optically induced long-lifetime photoconduc-
tivity in semi-insulating bulk GaAs. This result is ex-
plained by the fact that there are deep traps existing in
GaAs which can trap photoelectrons and leave photoholes
remaining a long time delocalized in the valence band be-
fore they recombine with the electrons releasing from the
traps. Thus, the relaxation of this persistent photoconduc-
tivity is equivalent to the relaxation of the stored charge
carriers from the traps as discussed above. According to
our discussion, if the traps are an exponential energy dis-
tribution, the relaxation should follow a stretched-ex-
ponential function. In Fig. 1 we plot In[In/(0) —1nZ(2)]
vs Int for the experimental data obtained at 77 K for
different illumination time. The linear behaviors for all of
these plots are evident, which indicates that the decay of
the photoexcited charge carriers can be described by the
stretched-exponential function. The decay exponents a
for all of these plots are about 0.17 *0.01, which corre-
sponds to the characteristic temperature To=453 * 25 K.
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FIG. 1. Plots of In[In/(0) —In/(¢)]1 vs Int for the photo-
current decays in semi-insulating GaAs at 77 K after several
different periods of illumination time 7; with 1.13-eV photons.
Solid dots, open circles, and triangles represent 7, =5, 9.5, and
10.5 min, respectively. The units of time for all the plots are in
seconds.
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The decay of persistent photoconductivity in crystalline
semiconductors following a stretched-exponential function
is not new, a fact that has been observed previously.”’I8
However, the mechanism of the decay kinetics has not yet
been established. Here, we point out that the exponential
energy distribution of the trap density may play an impor-
tant role to determine the relaxation of the photoexcited
charge carriers.

Let us now consider the justification of using Eq. (3).
This equation shows that the trap density increases with
the energy barrier for the relaxation of stored charge car-
riers. Because of the exponential distribution of states,
the number of charge carriers stored in the traps with
high-energy barriers increases rapidly with illumination
time. This implies that longer illumination time will pro-
duce a persistent photoconductivity that is harder to relax.
If, in contrast, there were more traps with low-energy bar-
riers, longer illumination would not produce an observable
number of stored carriers that are harder to relax. Thus,
the activation energy for the annealing of the persistent
photoconductivity should depend on illumination time.
This result is just what has been observed in Ref. 17. In
the model of dispersive transport,’ the activation energy is
written as

E, =kToln(v0)+kT01n

a
T ] (14)

00

where A4 is a constant and Dy is a microscopic diffusion
coefficient. Because this expression does not contain a
term equivalent to Ej, E; does not depend on illumination
time. This model predicts a single annealing energy of all
metastable states because the initial distribution of trans-
port agents in their dispersive trapping sites is indepen-
dent of the illumination time.® However, as shown in Ref.
17, the annealing time clearly depends on the illumination
time, which favors the present discussion.

The MN rule in semi-insulating GaAs has been ob-
served by Hilsum.'! The calculated value of the charac-
teristic temperature is found to be 457 K which is in excel-
lent agreement with the Ty obtained from the stretched-
exponential relaxation of the persistent photoconductivity
in semi-insulating GaAs as discussed above. Considering
the rather different experimental measurements by those
authors, the agreement is surprising. This agreement may
indicate that the mechanism for the stretched-exponential
relaxation and the MN rule as proposed above are indeed
correct.

As a further test of the connection between the
stretched-exponential relaxation and the MN rule, consid-
er the experimental results in hydrogenated amorphous
silicon. Kakalios, Street, and Jackson'? showed that the
relaxation of the band-tail carriers obeys the stretched-
exponential function with a characteristic temperature
600 K. This value is in excellent agreement with that ob-
tained from the MN rule in hydrogenated amorphous sil-
icon as shown in Fig. 1 of Ref. 7. In addition, several ex-
periments show more than one annealing energy for meta-
stable defects’ in the same sample which also justifies the
validity of Eq. (3).

In summary, we have demonstrated that the key ele-
ment leads a thermally activated process to follow the
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stretched-exponential relaxation and the MN rule is
the exponential distribution of defect traps. We point out
that the characteristic temperature obtained from the
stretched-exponential function and the MN rule should
have the same value. This criterion provides a very good
test for the underlying mechanism as we proposed. The
connection between the stretched-exponential relaxation
and the MN rule has been successfully confirmed by the
experimental results in semi-insulating GaAs as well as in
hydrogenated amorphous silicon. Thus, this paper not
only establishes the close connection between these two
characteristic phenomena in solids, but also demonstrates
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a microscopic mechanism for them. The distinction be-
tween the present discussion and the model of dispersive
transport lies in the observed dependence of annealing
time upon illumination time which leads to the difference
in the annealing energy, a result which favors the present
discussion. However, based on different assumptions,
these models can both predict the stretched-exponential
relaxation and the MN rule. This is because they both
reflect the underlying disorder of solids.
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