
PHYSICAL REVIEW 8 VOLUME 44, NUMBER 24

Rapid Communications

15 DECEMBER 1991-II

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority
treatment both in the editorial once and in production 8. Rapid Communication in Physical Review 8 should be no longer than 4
printed pages and must be accompanied by an abstract Pa.ge proofs are sent to authors

Photonic bound states in periodic dielectric materials

Robert D. Meade, Karl D. Brommer, Andrew M. Rappe, and J. D. Joannopoulos
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 29 January 1991; revised manuscript received 18 September 1991)

It is demonstrated that lattice imperfections in a periodic array of dielectric material can give rise to
fully localized electromagnetic states. Calculations are performed by using a plane-wave expansion to
solve Maxwell's equations. The frequency of these localized states is tunable by varying the size of the
defect. Potential device applications in the microwave and millimeter-wave regime are proposed.

Recently, it has been suggested that a dielectric materi-
al with a three-dimensional periodicity may have a "pho-
tonic gap" in its frequency spectrum in which propagating
electromagnetic modes are forbidden. ' It has also been
proposed that photonic states in this forbidden region
should be localized in all three dimensions. Calculations
by Ho, Chan, and Soukoulis have shown that a diamond
lattice of dielectric spheres can indeed have such a gap.
In this paper, we show that lattice imperfections can intro-
duce exponentially localized states in the photonic band
gap. We focus on the frequency spectrum of dielectric
structures containing defects in an otherwise perfect dia-
mond lattice. In our calculations, we consider impurities
of two types, air spheres in the dielectric region and
dielectric spheres in the air region. In both cases, local-
ized photon modes are found to be introduced into the
gap. Variation of the size of the impurity sphere leads to
complete tunability of the frequency of this localized
mode.

Although localized modes are common in metallic cavi-
ties, these photonic bound states are unique and physically
interesting because they are localized in an entirely dielec-
tric medium. Moreover, they have discrete frequency
spectra and may be constructed from low-loss dielectric
materials. Therefore, it may be possible to reduce the dis-
sipation inherent in metallic cavities, due to skin heating
of the metallic walls, and produce discrete modes with
long lifetimes and correspondingly sharp frequency reso-
nances. We propose that this eA'ect can be exploited to
produce high-quality resonant cavities and filters in the
micro~ave and millimeter-wave regime.

In order to calculate the electromagnetic frequency
spectrum of dielectric lattices, a number of authors
have suggested expanding the electromagnetic fields in a
plane-wave basis,

H(r) =g g hG ~e~e'tk+Gi r
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where k is in the Brillouin zone, G is summed over the re-

ciprocal lattice, and ei are orthogonal to (k+6). Max-
well's equations are then expressed as a simple eigenvalue
equation,

HG~hg g =co AGg,2
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where c= 1 and
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and eG g is the Fourier transform of the inverse of the
dielectric function e(r). This eigenvalue equation is then
solved to yield the normal mode coe%cients and frequen-
cies of the electromagnetic modes. Having solved for
H(r), the other electromagnetic fields can be determined
simply. This technique provides a simple and powerful
method to solve problems in electrodynamics which takes
full account of the vector nature of the electromagnetic
radiation. The approximations, the finite size of the
plane-wave basis and Fourier transform grid, can both be
improved systematically.

Of the three similar techniques discussed in Refs. 3-5,
we chose to employ the methods of Ho, Chan, and
Soukoulis. First, they Fourier expand H(r) rather than
E(r) or D(r). Since E(r) and D(r) are discontinuous at
interfaces between media with diA'ering dielectric con-
stants, but H(r) is continuous (with discontinuities in its
first derivatives), we expect H(r) to have faster plane-
wave convergence. Second, Ho, Chan, and Soukoulis ex-
pand H(r) in a basis of transverse plane waves, rather
than expanding in a complete basis, solving for the normal
modes, and then projecting out the longitudinal solutions.

Although we would like to study the eA'ect of a single
defect in an otherwise perfect lattice, computationally it is
desirable to choose a system with a finite unit-cell size.
Therefore, we employ the supercell method in which we
place one defect in a repeated cell of atoms. In our calcu-
lations, we used the 8-atom conventional cell of diamond.
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We have performed tests using larger supercells contain-
ing 16 and 32 atoms and found similar results. We also
considered supercells of 2, 4, 8, and 16 atoms containing
dense impurities in the (I 1 I) planes, in order to determine
the dependence of bandwidth on impurity separation. %e
expand in plane waves up to a finite frequency, including—130 plane waves per polarization, per primitive unit
cell. Based on our calculations of a one-dimensiona[ sys-
tem of periodic dielectric slabs, for which an exact solu-
tion is available, we expect that the frequencies are
correct to within —5% at this plane-wave cutoff'. Al-
though fully converged calculations in these one-
dimensional systems agreed to 0.1% we found that conver-
gence in absolute frequencies was relatively slow in com-
parison to conventional electronic-structure calculations.
We attribute this to the discontinuity in the first derivative
of H(r) at the dielectric surfaces. In order to calculate
the density of states D(cu), we sampled the frequencies at
48 k points in the irreducible Brillouin zone of the 8-atom
unit cell, and then coarse grained the resulting frequen-
cies. Although we have checked explicitly that co(k) =Uk
at long wavelengths and therefore D(ru) rx: ra, this is not
accurately represented in D(ro) because of our coarse
sampling of the Brillouin zone.

Since the existence of a photonic gap is a prerequisite
for the existence of photonic bound states, we chose to be-
gin our search for localized modes considering a diamond
structure with a large gap to midgap ratio. Following the
results of Ho, Chan, and Soukoulis, we considered the
periodic arrangement of spheres of air in a dielectric
medium. We considered a material with dielectric con-
stant of 35, and chose air spheres of radius 0.29a where a
is the conventional lattice constant of the diamond cell.
We considered impurities of two types, air spheres in the
dielectric region, which were located at the hexagonal
site, and dielectric spheres in the air region, which were
located in the bond-center site. We also studied a dia-
mond lattice of dielectric spheres in air, and found evi-
dence for photonic bound states when an air sphere was
placed at the bond-center site.

Since the applicability of a band structure breaks down
when an impurity destroys the translational symmetry of
the dielectric lattice, we have calculated the density of
states of the impurity system. The density of states of the
bulk diamond lattice and of diamond with a single impuri-
ty are shown in Fig. 1. As in Ref. 3, we see that the per-
fect diamond crystal has a gap in its photonic band struc-
ture. Placing an air sphere at the hexagonal site intro-
duces a single state in the gap, at mb. Since there are no
traveling modes in the diamond lattice at cob this must be
a localized mode. This is verified in Fig. 2, which shows
that the field is localized about the defect. In fact, we find
that bound states whose frequencies are in the center of
the gap have decay lengths as small as one lattice con-
stant. We expect that this length will diverge as the
bound-state frequency approaches the continuum of ex-
tended states.

In Fig. 1 it appears that the localized modes are spread
over a modest range of frequencies. This is purely an ar-
tifact of our supercell technique. Because we are consid-
ering an array of defect states each of which is localized
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over some finite distance, there is tunneling between local-
ized states on neighboring impurities. It is this hopping
between defect states that introduces a nonzero width to
the impurity band. For simplicity, we chose the maximum
of the defect density of states to identify the actual posi-
tion of the impurity state. In the inset of Fig. 1, we show
calculations of the bandwidth for increasing impurity sep-
arations. This bandwidth decreases exponentially, as ex-
pected'for exponentially bound states. Of course, in an
experiment the lattice will be of finite size, and so the im-
purity mode will have some exponentially small amplitude
at the walls of the lattice. This will allow the localized
state to tunnel out, and will introduce a finite width to the
frequency spectrum.
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FIG. 2. H field associated with the state localized about a de-

fect at the hexagonal site. H(r) is plotted along an axis which
passes through the impurity at r =0, and extends in the [110]
direction. Because of a mirror symmetry through the (110)
plane, H(r) lies in the [110] direction. Note that the localized
state shows exponential decay with the sign alternating between
neighboring cells.
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FIG. l. Density of states in ideal diamond lattice (dashed
line), and diamond lattice with defect of radius 0.15a located at
hexagonal site (solid line). Ideal diamond lattice has a gap in
the density of states in which there are no propagating modes.
The defect introduces a single localized state in this gap at coI, ,

Inset shows the bandwidth h, ~ normal to a plane of impurities as
a function of the (I I I) impurity plane separation, 6. Note that
the bandwidth is exponential in the impurity separation, as ex-
pected for exponentially bound states. Units of frequency are
2rr/a, where a is lattice constant of the conventional unit cell,
and e = l.
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Qualitatively, we can understand this result by analogy
with the more familiar case of impurities in a crystal with
a band gap in its electronic structure. Since the wave-
length of light is shorter in the dielectric, these regions are
analogous to a region of deep potential in the crystal. In-
serting a dielectric impurity adds an attractive potential.
Sufficiently strong potentials can pull a state out of the
photonic conduction band into the gap, and increasing the
attractive character decreases the bound-state frequency,
see Fig. 3. Similarly, adding an air sphere to the dielectric
region is analogous to adding a repulsive potential which
pushes a state out of the photonic valence band. In fact,
the addition of an air sphere defect to the perfect diamond
lattice decreased the number of valence states by one, and
it created one state in the gap. We found one notable
diAerence between air and dielectric impurities. While
the presence of an air sphere creates a single, well-defined
state in the gap, the presence of a dielectric sphere intro-
duces a number of states in the gap„ the lowest of which is
doubly degenerate and is represented in Fig. 3.

Alternately, one can understand the localized mode as a
three-dimensional Fabry-Perot interferometer. Since
there are no propagating modes in the dielectric material
with frequencies in the gap, it behaves as a mirror to these
frequencies. The defect, then, is surrounded by refiecting
walls, and the localized state is analogous to the familiar
resonances of a metallic cavity.

We have also considered potential microwave and
millimeter-wave device applications for periodic dielectric
materials as resonant cavities and filters.

Materials with high dielectric constant are currently
used to fabricate resonant cavities at microwave and
millimeter-wave frequencies. Dielectric cavities reduce
the size and cost of microwave and millimeter-wave cir-
cuits by replacing bulky discrete metallic waveguides and
cavities with planar technology amenable to integrated
circuit fabrication. However, all planar circuits require
metallic shielding in order to reduce radiation losses and
to control higher-order cavity modes. Since the fields at-
tenuate only as l/r from a typical dielectric cavity, con-
duction losses due to the shielding can be appreciable.
Embedding these dielectrics in a lattice will reduce these
losses, since the field attenuates exponentially in the lat-
tice region.

Because of the strong localization in these lattices, it
seems likely that impurities in dielectric lattices will have
less power dissipation than a well-polished metallic cavity.
If the power dissipation indeed turns out to be less, then
dielectric lattices would certainly be valuable as high-g
resonant cavities. Even if the power dissipation turns out
to be greater, there are still advantages. As one attempts
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FIG. 3. Frequencies of localized modes due to lattice defects
as a function of defect size. Open circles show frequencies of air
spheres at the hexagonal site, and solid circles show frequencies
of dielectric spheres at bond-centered sites. The dashed lines
separate the regions of extended and localized states. The ra-
dius of the defect is in units of a/100 and the frequencies are in
units of 2 /atr, where a is the 1attice constant of the conventional
unit cell, and e =1.

to work at higher wavelengths, the small size of a metallic
cavity reduces the device power rating to levels that are
too small for many applications. It may be possible to
store larger electric fields in dielectric lattices without
burning out the device.

A second potential application for periodic dielectric
materials exploits the narrow linewidth of the forbidden
state in a manner similar to a Fabry-Perot interferometer.
Since a narrow transmission gap exists for all orientations,
there are no collimation losses. Second, it may be possible
to tune the filter by moving the impurity within the dielec-
tric lattice.

In conclusion, we have performed calculations of the
density of states of dielectric lattices containing defects.
We find that defects can introduce localized modes, whose
frequencies lie in the photonic band gap. We have studied
size dependence of two types of defects, air spheres in
dielectric and dielectric spheres in air. Finally, we have
outlined potential device applications for localized modes
in dielectric lattices.
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