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Potential-barrier model at metal surfaces: Application to analyses
of low-energy electron-diffraction fine-structure experiments
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We propose a model for the potential barrier for electrons crossing a metal surface, in which (1) we
reproduce the effective potential of Lang and Kohn, in fact, better than any approximation in the exist-
ing literature and (2) we approach the classical image potential for large separation from the surface.
Our potential does not diverge as the electron approaches the surface and goes over smoothly to the
electron-electron interaction potential in the bulk. It reproduces the first peak in the e6'ective potential
of Lang and Kohn, which is a Friedel oscillation. %'e achieve better agreement with the Lang-Kohn po-
tential than Jennings, Jones, and Weinert in their barrier model. This makes our model useful in the
analysis of low-energy electron-diFraction Gne-structure experiments. Our simple barrier model allows
analytical solutions of the Schrodinger equation in the density-functional formalism.

I. INTRQDUCTIQN

V(z)= ' —Vo otherwise, (2)

where Vo is the inner potential and zo is the location of
the image plane.

(ii) The exponential barrier:

V(z) = —Vo/I1+exp[B(z —zo)]]

where 8 is an arbitrary constant and the other symbols

There has been renewed interest in the electron-metal
surface potential in the past few years. The detailed
knowledge of this potential is of great importance for a
correct interpretation of recent experimental observa-
tions of a class of surface states in metals' which origi-
nate from the imagelike tail of the surface potential. It is
generally accepted that at large distances from the sur-
face, the electron comes under the inAuence of the classi-
cal image potential

1
u; (z)=—

4(z —zo )

where z is the distance of the electron to the surface, and
zo the position of the image plane. This formula leads to
a divergence when z ~zo. Furthermore, the potential en-
ergy of the electron inside the crystal (the "inner poten-
tial") is approximately constant (for transition metals it is
approximately equal to 12 eV) when the incident electron
energy is below 50 eV. Like the work functions, the po-
tential of the electron inside the metal depends on the
crystal face. An excellent review by Jones and Jennings
summarizes the present state of this problem. The
difhculties with the image potential have initiated the de-
velopment of simple model barriers to describe the
electron-surface interaction.

(i) The simple step barrier:

0 if z~zo

have their usual meanings.
(iii) The truncated image barrier:

—1/4(z —zo), z &z,
V(z)= ' —Vo, z~z, ,

which introduces an image form far from the surface and
truncates it at z„where V(z, ) = —Vo, with Vo the inner
potential of the crystal.

(iv) The modified image surface potential-energy bar-
rier: Read and Jennings improved the previous barrier
model by including a (z —zo) term to provide a smooth
transition to —Vo.

(v) Dietz, McRae, and Campbell recognized the need
for a barrier in which the potential-energy function V(z )

approaches the image form as z~ ~, but which "satu-
rates" and approaches the inner potential within the
solid. Their model potential is

—1/[4(z —zo)], z )z,
ReV(z)= —V, +z/[4(z —zo) ], z, &z &z,

—Vo, z&zo .
(5a)

~ U, exp( —az ), z &zo
ImVz ='

U, otherwise . (5b)

U& and a are adjusted to obtain the correct ratio of peak
heights between the fine structure and the Bragg peaks.
In this barrier model the step at z, gives rise to spurious
reAections, which complicate the simulation of high-
resolution low-energy electron-difraction (LEED) spec-

Here Vo is the inner potential, V, is the barrier height at
the topmost layer of atoms (z =0), zo is the image plane
location, z& is the point at which saturation begins, and z,
is the point at which the inner potential is reached. In-
elastic scattering is represented by the imaginary part of
the barrier potential,
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tra .For this reason Jennings, Jones, and Weinert (JJW)
sought a more realistic saturated image barrier. Lang
and Kohn (LK) have calculated self-consistently the
effective potential for an electron near the surface of jelli-
um at various electron densities. Jennings, Jones, and
Weinert found that the effective potential calculated by
LK can be fitted well by a saturated image barrier of the
form

V(z) =

1
I 1 —exp[ —

A, (z —zo)]] if z)zo
4(z —zo )

Vo

A exp[8(z —zo)]+1

Here 2 and B are constants determined by matching
V(z) and its derivative at the reference plane z=zp so
that B= Vc/2 and 2 = —1+4VO/A, . Unfortunately, nei-
ther the JJW equation nor any barrier models proposed
so far taken into consideration the well-defined effective
potential minimum calculated by LK. This minimum is
an important characteristic of the effective potential espe-
cially at low electron densities. This minimum is placed
inside the jellium and emerges as a consequence of
electron-density Friedel oscillations near the jellium edge.
Such oscillations are found in the effective potential of
thin metal films by Mola and Vicente, where for a lower
electron density, one gets a deeper effective potential rela-
tive to the bulk.

In the present article we propose a simple potential-
barrier model with a well-defined minimum that repro-
duces Lang and Kohn's results with a higher degree of
accuracy than has been achieved so far by any other po-
tential model.

derivative at z =0. These boundary conditions lead to

z, = [1n(4Wo/v)]/v,

zo =zi —1/v .

(10)

Therefore zo and z& are not independent but are deter-
mined in terms of the previously defined set of parame-
ters.

(ii) Nonmonotonically increasing potential V(z ),

V(z)= V (z) —D sech [a(z —z )], (12)

where sech(x)=2/[exp(x)+exp( —x)]. This barrier po-
tential model incorporates three parameters (see Fig. 1):z, the location of the effective potential minimum (cal-
culated by LK); D, the effective potential minimum
depth, relative to the monotonic potential V (z); and a,

Vg~ o o ~ o

V'

V) = Vo —80,
v=pV&/8'o .

Therefore V& and v are defined in terms of a set of pa-
rameters with a clear physical meaning: Vo, the inner po-
tential of the crystal; 8'o, the effective potential at the jel-
lium edge; and p, the degree of saturation of the barrier.

The remaining parameters zo and z& are determined by
the constraints that V (z ) should be continuous and with
continuous derivative at z =z &,

Ii. PQTENTIAL-BARRIER MQDEI.

First, we optimize a monotonically increasing potential
V (z) that approaches the image form far from the sur-
face and saturates the inner potential inside the solid.
Then we superimpose on V (z) a simple function to
reproduce the important minimum in the effective poten-
tial found by LK. By this procedure we obtain a simple
and nonmonotonic potential V(z). This barrier potential
is an improvement with respect to potential-barrier mod-
els proposed so far, in which the Friedel oscillations are
neglected.

(i) Monotonically increasing potential V (z ),
r —Vo+ V, exp(pz ), z & 0

V (z)= —Woexp( —vz), 0&z &z,
—1/[4(z —zo)], z ~z, .

&ai

I

Zm

0

The effective potential profile is taken to be of exponen-
tial form, and at large distances and well inside the jelli-
um (z «0) the potential energy V (z) approaches the
inner potential Vc. At the jellium edge (z=O) it is
matched to another exponential function with parameters
Vo, V&, 8'0, p, and v determined by the constraints that
V (z) should be continuous and with a continuous

FIG. 1. (a) The efFective potential energy of an electron in the
vicinity of the jellium surface with r, =4. The open circles are
the results calculated by Lang and Kohn, Vi K (Ref. 8), and the
dashed line represents the monotonic potential V of Eq. (7).
(b) Difference Vzx —V (dashed line) and Dsech'[a(z-
—z )] (solid line).



POTENTIAL-BARRIER MODEL AT METAL SURFACES: 13 673

the width of the e6'ective potential well. Parameters D
and a are adjusted assuming that V(z) =—V (z) beyond
the jellium edge (z =0).

III. RESULTS

In Tables I—III we compare V (z) and V(z) [Eqs. (7)
and (12)] with the values proposed by JJW, Eq. (6), and
those calculated by LK, for three diferent values of r,
(r, is the Wigner-Seitz radius). Figures 2—4 show these
potentials in the regions inside and near the jellium edge.

The six independent parameters of Eq. (12) can be
represented as polynomial functions of r„

n

(6'V) =(1/n) g [V(z;)—V„(z;)]' .
i=1

(14)

p(r, ) =ao+a &(r, —2)+a2(r, —2)

+a3(r, —2) +a4(r, —
.2)

In Table IV we show the polynominal coeKcients for
the interval 2 & r, ~6.

To compare the accuracy of Eqs. (6), (7), and (12), we
calculated the mean-square difference (6 V) between
the values proposed by the previous approximations
V(z, ) and those of LK, VLK, for different r, values (see
Fig. 5):

TABLE I. Eftective potential of (a) Lang and Kohn V„K,' (b) JJW, Eq. (6) (Ref. 3) VJJw,
' (c) monoton-

ic, Eq. (7), V; and (d) nonmonotonic, Eq. (12), V(in atomic units) vs the perpendicular coordinate z in
atomic units and x in the units chosen by Lang and Kohn, with r, =2.

—1.00
—0.95
—0.90
—0.85
—0.80
—0.75
—0.70
—0.65
—0.60
—0.55
—0.50
—0.45
—0.40
—0.35
—0.30
—0.25
—0.20
—0.15
—0.10
—0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

—6.548
—6.221
—5.893
—5.566
—5.238
—4.911
—4.584
—4.256
—3.929
—3.601
—3.274
—2.947
—2.619
—2.292
—1.964
—1.637
—1.310
—0.982
—0.655
—0.327

0.000
0.327
0.655
0.982
1.310
1.637
1.964
2.292
2.619
2.947
3.274
3.601
3.929
4.256
4.584
4.911
5.238
5.566
5 ~ 893
6.221
6.S48

VLK

—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.603
—0.603
—0.603
—0.602
—0.601
—0.601
—0.599
—0.597
—0.591
—0.581
—0.564
—0.535
—0.490
—0.425
—0.357
—0.302
—0.258
—0.222
—0.193
—0.168
—0.148
—0.130
—0.115
—0.102
—0.090
—0.080
—0.071
—0.063
—0.056
—0.050
—0.044
—0.039
—0.035
—0.031

VJJw

—0.605
—0.605
—0.605
—0.605
—0.605
—0.605
—0.604
—0.604
—0.604
—0.603
—0.602
—0.600
—0.598
—0.594
—0.588
—0.579
—0.567
—0.548
—0.522
—0.487
—0.442
—0.387
—0.325
—0.267
—0.221
—0.186
—0.159
—0.137
—0.119
—0.105
—0.094
—0.084
—0.077
—0.070
—0.064
—0.059
—0.055
—0.052
—0.048
—0.045
—0.042

—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.603
—0.603
—0.602
—0.601
—0.600
—0.598
—0.595
—0.590
—O.S83
—0.571
—0.554
—0.528
—0.487
—0.425
—0.360
—0.305
—0.258
—0.219
—0.185
—0.157
—0.133
—0.113
—0.099
—0.087
—0.078
—0.071
—0.065
—0.060
—0.056
—0.052
—0.049
—0.046
—0.043
—0.041

—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.604
—0.605
—0.604
—0.602
—0.596
—0.588
—0.574
—0.556
—0.529
—0.488
—0.425
—0.360
—0.305
—0.258
—0.219
—0.185
—0.157
—0.133
—0.113
—0.099
—0.087
—0.078
—0.071
—0.065
—0.060
—0.056
—0.052
—0.049
—0.046
—0.043
—0.041
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The summation in Eq. (14) is extended from
z= —(16/37r) r, /5 up to the jellium edge z=O. The
summation starts at that coordinate value because the
difference between the efFective potential VL&(z) and the
bulk value Vo is less than 1%. The summation is extend-
ed to z =0 because, beyond the jellium edge, the values
calculated by LK do not approximate the image poten-
tial. The n values z, in the summation are those given by
LK, where

z, =2~x,. /k~, i =1,2, . . . , n .

z; is the coordinate in atomic units, kF is the Fermi wave
vector, and x, is the coordinate chosen by LK.

IV. DISCUSSIQN AND CQNCLUSIQNS

From Tables I—III and Figs. 2 —4 we learn that the
monotonic potential V (z), Eq. (7), approaches the clas-
sical image form at a large distance from the surface
(z )z, ) and saturates as the electron approaches the sur-
face and goes over smoothly to a value Vo determined by
electron-electron interactions in the bulk. From Fig. 5
we learn that, except for very low electron densities
r, -=6, the monotonic potential V (z) reproduces LK re-
sults with a higher degree of accuracy than that achieved
by the JJ% barrier model. Because of the simplicity of
V (z ) it would be easier to find analytical solutions of the
Schrodinger equation with the potential of Eq. (7) than
that of Eq. (6) of JJW.

From Figs. 2 —5 we learn that the nonmonotonic poten-

TABLE II. Same as in Table I with r, =4.

—1.00
—0.95
—0.90
—0.85
—0.80
—0.75
—0.70
—0.65
—0.60
—0.55
—0.50
—0.45
—0.40
—0.35
—0.30
—0.25
—0.20
—0.15
—0.10
—0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

—13.096
—12.441
—11.786
—11.131
—10.477
—9.892
—9.167
—8.512
—7.857
—7.203
—6.548
—5.893
—5.238
—4.585
—3.929
—3.274
—2.619
—1.964
—1.310
—0.655

0.000
0.655
1.310
1.964
2.619
3.274
3.929
4.595
5.238
5.893
6.548
7.203
7.857
8.512
9.167
9.892

10.477
11.131
11.786
12.441
13.096

—0.227
—0.227
—0.227
—0.227
—0.228
—0.228
—0.228
—0.228
—0.227
—0.227
—0.227
—0.227
—0.227
—0.229
—0.230
—0.232
—0.233
—0.231
—0.223
—0.208
—0.181
—0.151
—0.126
—0.106
—0.089
—0.074
—0.061
—0.051
—0.042
—0.034
—0.027
—0.022
—0.017
—0.014
—0.011
—0.009
—0.007
—0.005
—0.004
—0.003
—0.003

—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.230
—0.229
—0.229
—0.228
—0.226
—0.222
—0.215
—0.203
—0.183
-0.155
—0.127
—0.106
—0.090
—0.077
—0.066
—0.058
—0.051
—0.046
—0.041
—0.038
—0.034
—0.032
—0.029
—0.027
—0.025
—0.024
—0.022
—0.021
—0.020

—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.227
—0.227
—0.227
—0.227
—0.226
—0.225
—0.222
—0.216
—0.204
—0.181
—0.151
—0.126
—0.106
—0.088
—0.074
—0.062
—0.053
—0.047
—0.042
—0.038
—0.034
—0.031
—0.029
—0.027
—0.025
—0.024
—0.022
—0.021
—0.020
—0.019

—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.228
—0.227
—0.227
—0.228
—0.230
—0.231
—0.232
—0.227
—0.219
—0.205
—0.181
—0.151
—0.126
—0.106
—0.088
—0.074
—0.062
—0.053
—0.047
—0.042
—0.038
—0.034
—0.031
—0.029
—0.027
—0.025
—0.024
—0.022
—0.021
—0.020
—0.019
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TABLE III. Same as in Table II with r, =6.

—1.00
—0.95
—0.90
—0.85
—0.80
—0.75
—0.70
—0.65
—0.60
—0.55
—0.50
—0.45
—0.40
—0.35
—0.30
—0.25
—0.20
—0.15
—0.10
—0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

—19.644
—18.661
—17.679
—16.697
—15.715
—14.733
—13.751
—12.768
—11.786
—10.804
—9.822
—8.840
—7.857
—6.875
—5.893
—4.911
—3.929
—2.947
—1.964
—0.982

0.000
0.982
1.964
2.947
3.929
4.911
5.893
6.875
7.857
8.840
9.822

10.804
11.786
12.768
13.751
14.733
15.715
16.697
17.679
18.661
19.644

~LK

—0.138
—0.138
—0.138
—0.139
—0.139
—0.139
—0.139
-0.139
—0.139
—0.138
—0.138
—0.138
—0.138
—0.139
—0.141
—0.143
—0.145
—0.146
—0.143
—0.133
—0.116
—0.09S
—0.077
—0.062
—0.049
—0.039
—0.030
—0.023
—0.018
—0.013
—0.010
—0.008
—0.006
—0.004
—0.003
—0.002
—0.002
—0.001
—0.001
—0.001
—0.001

—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.140
—0.138
—0.134
—0.120
—0.097
—0.079
—0.065
—0.055
—0.047
—0.041
—0.036
—0.032
—0.028
—0.026
—0.023
—0.021
—0.020
—0.018
—0.017
—0.016
—0.015
—0.014
—0.014
—0.013

—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.138
—0.138
—0.138
—0.136
—0.131
—0.116
—0.094
—0.076
—0.062
—0.050
—0.043
—0.037
—0.032
—0.028
—0.026
—0.023
—0.021
—0.020
—0.018
—0.017
—0.016
—0.015
—0.014
—0.013
—0.013
—0.012

—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.139
—0.140
—0.141
—0.144
—0.145
—0.140
—0.133
—0.116
—0.094
—0.076
—0.062
—0.050
—0.043
—0.037
—0.032
—0.028
—0.026
—0.023
—0.021
—0.020
—0.018
—0.017
—0.016
—0.015
—0.014
—0.013
—0.013
—0.012

TABLE IV. Polynomial coefficients [Eq. l13)] of the independent parameters Vo, Wo, p, , D, and z of
Eqs. (7) and (12). The parameter o. is given as a function of r, .

~o
o

p
D

ap

0.6033
0.4247
1.2300
0.1460

—1.1459

—0.4087
—0.2564
—0.2823

0.3139
—0.5729

a2

0.1740
0.1056
0.2047

—0.2084
0.0000

0.9118+2. 138/r, .

—0.0384
—0.0231
—0.0688

0.0756
0.0000

a4

0.0033
0.0020
0.0083

—0.0081
0.0000
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FIG. 2. Comparison of the eff'ective potential energy (in units
of

2 kF, where kF is the Fermi wave vector) for an electron in

the vicinity of the jellium surface with r, =2. The open circles
represent the calculated results of Lang and Kohn {Ref. 8); the
dotted curve is the fit obtained using Eq. (6), proposed by JJW
(Ref. 3); the dashed line represents the monotonic potential V
of Eq. (7); and the solid curve is the nonmonotonic potential ac-
cording to Eq. (12). On the left-hand side the energy zero is at
the Fermi level, whereas on the right-hand side it is at the vacu-
um level.
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FIG. 4. Same as in Fig. 2 with r, =6.

~ 0QO ~ 0 ~ ~
~ ~ '+ 0 ~

~ ~ ~ g ~ ~e~ ~ ~ ~e
O~

V~~w
0

0 ~
/

/

P~
/ ~

/0 /
/

/
/

/
/

/
/

/
/

/
/

r

rrr
rrrr

r

r
rr

V

fQ

C

a
CL

g, -1.0
V

LU

a ~ ~ ~ 4 ~ 0 ~ ~

0 0 0.0
3

I

rs

I

5

I I I

-0.6 -0.4 -0.2
x (units of 2&/k~)

FIG. 3. Same as in Fig. 1 with r, =4.

FIG. 5. Mean-square diff'erences (6 V) between the values
calculated by Lang and Kohn and those proposed by (a) JJW,
Eq. (6) (dotted line); (b) the present authors (MPV) (dashed
line); monotonic potential„Eq. {7);and (c) MPV, nonmonotonic
potential, Eq. (12) (continuous line).
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tial V(z) introduces an improvement over V (z) because
it approximates the more intense peak in the effective po-
tential calculated by LK, which is a consequence of
Friedel oscillations, especially at low electron densities.
To our knowledge, this important characteristic of the
potential has not been taken into account by any of the
previously proposed barrier models.

The proposed approximation, Eqs. (7) and (12), of the
effective potential makes the barrier model suitable for
use within more general problems, particularly in tunnel-
ing, ' photoemission, field emission, thermionic emission,
inverse photoemission, LEED from crystal surfaces, the
interpretation of scanning tunnel microscope experi-
ments, " surface work-function changes upon water ab-

sorption, ' and the capacitance of metal-electrolyte inter-
face' and thin metal films. '
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