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Possibility of quenching the integer-quantum-Hall behavior with increasing lattice asymmetry
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Conventional theories of integer-quantum-Hall behavior require the presence of generalized Landau
levels separated by gaps. By numerically studying several models of electron systems in a magnetic field,
we find that an asymmetry in the hopping strength parameters can lead to a closing of the gaps. The sys-
tems studied are the tight-binding case, as well as generalizations including next-nearest-neighbor in-
teractions. The gap closing begins at the center of the band and leads to a curve in Fermi-energy and
asymmetry-parameter space that we interpret as a phase boundary. Too much asymmetry leads to a
phase transition from quantum Hall to nonquanturn Hall behavior.

INTRODUCTION

The explanation of the integer-quantum-Hall effect by
Laughlin, ' Thouless et al. , and Streda is remarkably
general. It seems that integer-quantum-Hall (QH) behav-
ior is an almost commonplace property, implied by gauge
invariance and the existence of an elegant topological in-
variant. ' The circumstances where QH behavior would
not be observed are therefore interesting, so that much
study has been invested recently on negative conditions
such as mixing of Landau levels and tunneling effects.

Equally interesting are the effects of asymmetry of the
periodic two-dimensional (2D) lattice. The subject of
electrons in a periodic system and magnetic field is far
from trivial, and the applied magnetic field introduces in-
commensurability between lattice and magnetic transla-
tion periodicity to the 2D electron systems. The localiza-
tion and delocalization properties of electron states in a
magnetic field and its relation to disorder in the material
are still being debated. '

In this paper we study the effects of lattice asymmetry
using model 2D systems of several types. One familiar
system is the tight-binding Hamiltonian

ig, .
t; c, c e

where c; is the usual Fermion operator at site i, and the
magnetic phase factor 0, =(2sre /bc) f. ~ A dx is defined
on the link from i to j. The coupling constants t; can in-
troduce lattice asymmetry. For example, for a square lat-
tice with nearest-neighbor couplings, we take the ratio of
hopping constants in the y direction (t ) to the x direc-
tion (t„) to be given by A, =t It . We call A, the "asym-
metry parameter, " as this ratio plays an important role.
For 1=1, the case of small asymmetry, the spectrum ex-
hibits generalized Landau levels and gaps necessary for
QH behavior. This is the usual case. Surprisingly, for
X &&1, the case of large asymmetry, a region of the spec-

trum shows unexpected closing of the gaps, implying loss
of mobility gaps (in the presence of disorder) and loss of
QH behavior. It is as if large A, channeled some of the
electrons into quasi-one-dimensional (ID) (low, quench-
ing the 2D phase coherence needed for QH behavior, at
least for some of the states. The phenomenon of quench-
ing by asymmetry seems to occur rather generally, as we
conclude by investigating other types of periodic poten-
tials. It does not require t„or t to be "large" because
the critical Fermi energy (defined later) eFc depends only
on the ratio A, .

The critical value of A, at which QH behavior is lost de-
pends on the Fermi energy c~ of the system. Phenome-
nologically, we argue that too much asymmetry leads to a
phase transition of the magnetoconductance of some
states from QH to non-QH (NQH) behavior. Then, in
Fermi energy and asymmetry parameter space, a critical
line separates QH and NQH regions. Searching for the
predicted phase boundary experimentally can be a test of
existing theories of the QH efFect.

METHODOLOGY

obtaining

i8,"
t; ce "=Ec;.

j (Wi)
(2)

In the first-quantized formalism the Hamiltonian H is
given by replacing the operators c; and c; by the wave
function c; and its complex conjugate c;*. The energy
eigenstates of (l) are given by Harper's equation for the
nearest-neighbor coupling case. The equivalence is well
known, but we will review it here for completeness and to
specify our notation.

Considering H(c, , c,*) as a functional of c; and c;*, we
first generate the equation of motion

5H
=loci
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for the energy eigenstates. We let the index i =m, n,
where m and n are discrete site coordinates in the x and y
directions, respectively. Choosing Landau gauge
equivalent to A=B (O, x, O), the phase factors 8,.~ are zero
for links along the x direction and 2irmglgo in the y
direction. Here go=bc/eis the elementary quantum of
magnetic flux, and the flux through a unit cell is P. Our
nearest-neighbor hopping parameters are

mn;m'n' x ~nn'~m, m'+1+ ty~mm'~n, n'+1

by 90, so Harper's equation must have a symmetry under
this transformation. ' Indeed, the symmetry is none
other than duality symmetry, and is important in estab-
lishing the exponential localization. From the duality
symmetry, then, we anticipate quasi-1D behavior for ei-
ther large or small A, .

There is another, complementary way of obtaining
Harper's equation, used by Thouless et al. , which we
will also review. We consider the 2D continuum single-
particle Hamiltonian

Inserting these into the sum in (2) and making the ansatz
c „=c exp( ivn)—, we obtain

—i v+ i 2~m tI] /tt!
Ot (c +,+c,)+t (c e

iv izmm&—blgo+c e ' =Ec

with

H= (p e—A) + V(x)=HO+ V(x),1

2m

V(x) =2 V, cos( G, x ) +2 Vzcos( Gzy),

(4)

or, setting t /t„= k,

c +1+c 1+2k cos 2~m ——v c = rem,p
q

(3)

where G, =2ir/a, Gz =2 nlrb, and a, b are lattice parame-
ters. Solving HDQ„=E„i'„ in Landau gauge analytically
gives Landau levels with energies E„=(n + I /2)fico„
where co, =eB/m is the cyclotron frequency, and eigen-
functions

with s=E/t„, and setting the reduced flux P/Po=p/q, a
ratio of integers p and q. Equation (3) is known as
Harper's equation. We will be concerned with the depen-
dence of the eigenvalues on the parameter A, .

The case A, =1 of no asymmetry is called the self-dual
point and is rather special. For A, = 1, Hafstadter solved
(3) for the union of all eigenvalues s associated with
bound wave functions in an infinite system. The results
are well known: a spectacular, butterAylike pattern of ei-
genvalues versus magnetic fIux showing interesting frac-
tal structure. This case is assumed in most discussions
which consider the effects of periodic lattice potentials.
The behavior of the system for A,&1 is not obvious.

DUALITY AND THE CASE OF LARGE ASYMMETRY

P„k(x ',y) =e '"~P„(x'),
where

P„(x')=N„e " ' II (ax')

x'=x haik/eB . —

Here a=Qmco, /iit, N„=(a/v ir2"n!)'~, and H„ is the
nth Hermite polynomial. Each Landau level is highly de-
generate because E„ is independent of k. The lattice po-
tential V(x) will break the symmetry associated with k
degeneracy and cause mixing of different k's. Assuming
V(x,y) is weak enough so that broadened Landau levels
do not overlap with each other, we expand the single-
electron wave function P(x,y) in terms of the unper-
turbed states within one Landau level as follows:

For A, ) 1 it is known that the solutions to (3) are ex-
ponentially localized in the j variable. ' '" This result can
be made intuitively plausible for large A, at least. Equa-
tion (3) has the form of a discretized 1D Schrodinger
equation with a potential V given by

P„,(x,y) =g f,exp[i (k +jGz)y]it„(x' jG, ) . —
J

The above ansatz implements Bloch translational symme-
try i'„k(y+b)=e'""g„k(y). After some algebra, it can be
shown that

V =2k, cos 2am ——v +2 .p
q Vz(f +, f, ) +2Vicos2irj — +v f, =Ef (7)

The periodic wells in this analogy are deep for k » 1, and
the convict between the lattice and p/q periodicities
should lead to localization, as claimed. Now, by the du-
ality symmetry of Harper's equation" electrons are delo-
calized in the y direction if localized in the x direction
(and vice versa). For i(, ~ 1, electrons should move in the
delocalized y direction much more easily than in the lo-
calized x direction. For A. »1 we argue that the syste~
becomes quasi-one-dimensional.

For very small A, , which is again a case of high asym-
metry, we have the same conclusion. For example, set-
ting lattice lengths a =b for simplicity, switching
A, ~1/k is equivalent to changing x and y. The spectrum
of the square-lattice system is invariant under a rotation

where

V', = V, exp[ ,'2'(italo/Ba )], ——

Vz = Vzexp[ —,'2n($0/Bb z) ], —.
v =G (x o

=G, (A'k /eB ),

E =2(E ,'fico, ) . ——

Again we recover Harper's equation (3), except
that in this case A, = V', /Vz and s=E/Vz =(E/
Vz)exp[ —,'2m($0/Bb )]. Semiclassically it is easier for the
electrons to move along the direction of the most shallow



POSSIBILITY OF QUENCHING THE INTEGER-QUANTUM-. . . 13 605

potential. For a potential that is deep in the x direction
and shallow in the y direction, we have k && 1. Similarly,
in the tight-binding picture we have A. =t /t )) 1 for the
same effect. But the remarkable thing about the continu-
um picture is that the overall scale of the potential V is
exponentially suppressed and becomes irrelevant in (7);
only the ratio k is important. This explains the remark
made earlier that the size of the hopping constants did
not need to be large, in any physical sense, for us to dis-
cuss large asymmetry'

QUANTIZATION AND FINE STRUCTURE

We adopt the tight-binding picture, in which the mag-
netic field splits a particular band into generalized Lan-
dau levels. The Kubo formula for the off-diagonal mag-
netoconductance tensor element o.„ from a single level is

. J J ds„'v„x(q(k)lv„lq(k)&,

where lf(k) & is the eigenstate, dsz is the area element in
k space, and integration is over the reduced Brillouin
zone. Applying Stoke's theorem (8) becomes

. f dk &q(k)lv„ly(k)& . (9)

The value of the Hall conductivity is thus related to a
global quantity, the winding number (or Chem number)
of the phase of the wave function. The winding number
is necessarily an integer when the mapping from the 2D
wave-number space k to the phase is everywhere continu-
ous.

Much discussion has focused on the topological neces-
sity for nontrivial integer quantization of the conduc-
tance when the k space is periodic in the x and y direc-
tions, i.e., equivalent to a torus. However, topology alone
does not take into account the peculiar sensitivity of the
size of the magnetic Brillouin zone to the magnetic Aux

P/$0. For Plgo=p/q rational, the magnetic Brillouin
zone is q times smaller than its naive periodic size of
2~/a, where a is the lattice spacing. A slight change in
the magnetic field can create an enormous change in the
size of the zone boundary in the topological discussion.
Related to this, the number of subbands and clusters in-
side a given band is extremely sensitive: there are p sub-
bands inside each generalized Landau level. For a physi-
cal field, p and q are not very well defined since nearly
equal rational numbers can have drastically different p's
and q's. Thus it is not obvious how the Hall quantization
value is stable under tiny changes in the B field.

The issue has been discussed in the literature, ' and
some numerical calculations, ' support the fact that the
cluster gaps are stable under small variations of magnetic
field. MacDonald has discussed the recursive fractal
structure of the sy™~~cA, = 1 tight-binding spectrum
which is related to these issues, ' and applied the same
counting technique as that of Thouless et aI. , but to a
finite system which includes the edge states. ' In the fol-
lowing we show how the details of the fine structure
within clusters conspire to make the Hall conductance in-
sensitive to small variations in the rational p /q field
values in the tight-binding case.

r =qs, +pt„ (10)

for the rth level, where 1 ~ r ~ q, tr and s„are integers,
and

l t„ l

~ q /2. The current in the rth band is
I„=t, —t„,. By direct calculation one can then verify
that the total current in one cluster is insensitive to the
detailed subarrangements of currents in the subbands
within clusters, though the currents in the subbands
themselves show rather drastic variations. Some exam-
ples for p /q =

11 43 32 and —,', are shown in Fig. 1 ~

Reflecting on this, one finds that the cancellation across
sums over r inside clusters,

r0+p r0+p

g I„= g (t„—t„,),
r=r 0 r=r 0

has indeed been concocted to guarantee a stable cluster
current. For our purposes, the conclusion is that the sub-
band currents are practically irrelevant, and so is the fine

r tr Ir

2 2 1

8 2 11

7 -9 11

6 -20 -32

5 12 11

6 2 ll

5 -9 -21

4 12 11

4 2 11

3 -9 -10

1 1 1

4 1 11

3 -10 11

2 -21 -32

1 11 11

3 1 11

2 -10 -21

1 11 11

2 1 -9

1 10 10

(a) (b)

FIG. 1. Hall conductances t„and currents I, for the two
lowest Landau levels calculated by Diophantine equation ( 10)
for adjacent rational 6elds p /q. (a) p /q =

—,', , (b) p /q =
43 (c)

32 and (d) p/q 21 '

We consider several nearly equal fields, p/q=p —/q',
but q is much different from q'. An example is p/q =

—,', ,

p
'
/q

' =
43 32 and —,', , giving rise to 1 1, 43, 32, and 2 1

subbands, respectively. The empirically discovered clus-
tering of p or p

' subbands leads to spectra which are
physically similar, ignoring tiny gaps between subbands
in each cluster.

The appearance of the spectra is far from the whole
story. Laughlin's argument ' shows that each subband,
no matter how infinitesimally split, carries a whole unit of
Hall current. Since tiny changes in the B field induce
possibly huge changes in the number of subbands, there is
potentially a problem for the stability of the Hall current.

Thouless et aI. resolved this paradox for the perturba-
tive case (4) and argued that the same is true for the
tight-binding case due to the duality symmetry. We show
here explicitly the stability of the cluster currents in the
tight-binding case. Let t„be the integer Hall conductivi-
ty, i.e., cr ~

= (e /h)t„Reca. ll the Diophantine relation
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structure, however beautiful. Similar conclusions sup-
porting this point have been given in Refs. 17—20. The
cluster currents are the real physical measurable
currents. Our calculations will concentrate on depen-
dence of large gaps between clusters which can have
measurable effects. In particular, we study how large
enough A, can close large cluster gaps.

GAP CLOSING

0.0

It is commonly accepted that the existence of band or
mobility gaps is a necessary condition for quantization of
the Hall conductance. We assume this to be true, associ-
ating the mobility gaps due to the presences of impurities
or disorder with the cluster band gaps we calculate.
Thus, if the cluster gaps close, there are reasons to believe
that the quantization of the Hall conductance will fail.
At least one study, done by Aoki, ' provides a specific ex-
ample where this is true (although the context was a case
in which large disorder caused the gaps to close). Topo-
logically, two independent tori on which the wave func-
tion is specified become joined at a gap closing region.
Unless there are special boundary conditions, the non-
trivial integer winding number can disappear at such a
point, i.e., deformed continuously to zero.

This point can be illustrated simply, but a complete
discussion would rapidly become very involved. Consid-
er the magnetic Brillouin zone of two bands which touch
as two tori, joined at a "neck." The winding number can
be physically visualized as due to a topological "Aux"
running inside the holes of the tori. Once tori are joined,
certain loops around one torus can be deformed around
the other. Now, the Aux inside one torus can cancel that
of the other, implying a change in the QH quantum num-
ber. It is tempting to pursue the mathematics of the
mapping onto two- and multihole tori but we are not sure
it is relevant. Indeed there are, for a two-state system,
many new degrees of freedom, equivalent to a U(2) sys-
tem rather than U(1) XU(1). Unless there is a miraculous
match between the space involved, one expects little of
topologically importance. This is our expectation after
not only one, but two, three, or more gaps between clus-
ters close: the space becomes so large that topological
barriers become rare, if not impossible, and irrelevant.
For practical purposes, we believe QH behavior will cease
after many states mix. We emphasize that this is a prac-
tical statement: one cannot forbid something interesting,
but in an experiment one should not expect it.

—0.63
I

0
(a)

0.63 —0.29
I

0
(b)

0.29

the remainder of q/2p; for example, if q =11 and p =3,
then there are five subbands in the central cluster. Nu-
merical studies on the symmetric A, =1 system confirm
this behavior. ' ' ' For comparison, a strip-geometry
system has been solved with an independent numerical
method and it serves to check our calculation. The spec-
trum of the strip-geometry system (Fig. 3) indeed shows
very similar structure except there are extra states intrud-
ing into the gap region. The gaps in the finite system are
thus "quasigaps. " These extra states are called edge
states due to the fact that electrons in these states are lo-
calized at the edges of the system. ' ' ' '

For A,&1, we found, by Hofstadter's method, that the

2.0

E. MM
o.o

~MR.~
V'~

FIG. 2. Reduced energy c. vs wave number v showing the
split of a single band into subbands for the infinite system with
no anisotropy (A, =1) for two rational fields (a) p/q &p

and (b)

p /q =—'. Twice the size of the reduced Brillouin zone
—2m/q & v 2m/q, is shown.

QUENCHING

The 1D localization is something of an indication that
QH behavior may disappear for large A, . Thus we numer-
ically study the gaps, and the entire spectrum, for
Harper's equation with both infinite and strip-geometry
finite systems For an infinite, symmetric system we show
the splitting of a single band into subbands for several
p/q in Fig. 2. Consistent with symmetry arguments for
integer p & 1 there are p subbands which tend to cluster
together and hence create bigger gaps between clusters.
The number of subbands in the central cluster is given by

—2.0

—3.14
I

0
(a)

3.14 —3.14 0
(b)

I

3.14

FIG. 3. Reduced energy E vs wave number v showing the
split of a single band into subbands for the finite system with no
anisotropy (A, =1) for two rational fields (a) p/q=, '~ and (b)

p/q =
—,', . Notice edge states appear in the gap region.
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4.0

0.0—

—2.0

—0.13
I

0
(a)

0.13 —0.13 0.13

FIG. 4. Reduced energy'E vs wave number v for two different
asymmetry parameter A, 's for the infinite system with p/q = 49.
A, = 1.0 and 2.0 for {a)and {b), respectively. Twice the size of the
reduced Brillouin zone, —2~/q ~ v ~ 2m/q, is shown.

upper and lower bound on the eigenvalue c. obeys
~c,

~
~2(X+c), where c (1 is magnetic-field dependent.

Thus, for easy comparison with the X=1 case, we plot
the normalized eigenvalue e=2e/(A, +1) which is bound
within the closed interval [ —4, 4]. Figures 4 and 5 show
the subband structure for difFerent A, 's for infinite and
finite systems, respectively. It is evident that lattice
asymmetry reduces the band-gap width for both systems.
A gap at a particular energy will eventually vanish as the
lattice asymmetry reaches a critical value. We note that
the gaps between subbands in one cluster require only a
small amount of asymmetry to close, while the gaps be-

tween clusters are relatively dificult to close. The closing
of gaps always starts from the band center.

The value of the energy at which the gaps close is in-
dependent of the magnetic field. This is true for all fields
studied (Fig. 6); for small p/q, the physical case, the criti-
cal Fermi energy (defined later) is quite sharp. We have
not found an analytic explanation for this phenomenon.

A global survey of the spectrum is shown in Fig. 7.
One can compare Fig. 7(a), reproducing Hofstadter's cal-
culation9 at A, = 1; with Fig. 7(b), the same system at
A, = 1.5. Already at k= 1.5 the spectrum has rearranged
drastically, while retaining some of the fractal butterfly
pattern.

The gap and nongap regions have a boundary as shown
in Fig. 8. Suppressing an additive constant energy scale,
we define the energy which separates two regions as the
critical Fermi energy cFc. The system in the nongap re-
gion should behave rather like a metal and a simple
Drude model gives Hall conductance crH =nec/8, a
linear function of inverse magnetic field. As A. is varied
with the Fermi energy of the system in the vicinity of the
critical Fermi energy, there should be a phase transition
in the magnetoconductance of the system. Similarly,
shifting the Fermi level by changing carrier density at
fixed A, can also accomplish the transition of the system
from QH to NQH regions. For small p/q the gap and
nongap regions have a well-defined boundary and there-
fore a sharp transition is expected. In c.~ and k space, the
solid line in Fig. 8 shows a phase boundary line separat-
ing QH and NQH regions for an infinite system of the
nearest-neighbor-coupling case. Notice that the tiny gap
separating the QH and NQH regions has a finite width,
the error bars in Fig. 8 reflecting this uncertainty in the
definition of the critical Fermi energy. In Fig. 8, the
phase boundary for A, ( 1 is obtained by the duality sym-
metry. Our numerical results show that eF& is rather in-

4.0

2.0

0.0 ~~Jk/
3/ ~ ~h/ 0.0

—2.0

—4 0

0
(a)

3.14 —3.14 3.14
—4 0

—0.09
I

0
(a)

0.09 —O. 13 O. 13

FIG. 5. Reduced energy 'E vs wave number v for two different
asymmetry parameters A, 's for the finite system with p/q= 2'0.

A, =1.0 and 3.0 for {a) and {b), respectively. Starting from the
center of the spectrum, gap closing also occurs, similar to that
of an infinite system.

FIG. 6. Reduced energy c. vs wave number v for two rational
fields at fixed asymmetry parameter A, of 2.0, showing the insen-
sitivity of Z+c vs magnetic fields. Twice the size of the reduced
Brillouin zone, —2m/q v~2m/q, is shown. {a) p/q= 7'0, {b)

s /q= —,', .
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10.0

'Q y~i

0
,Ipf~~~Ir

I

j
I

//2

I/(

~+4.
,

0
I

0.25
I I

0.50 0.75
I

1.0
1, . 0

I

2.0 3.0 4.0
I

G. O

4.0

0.0

FIG. 8. Regions of quenched and normal quantum Hall be-
havior. Solid line shows the phase boundary c~& vs asymmetry
parameter A, for the nearest-neighbor hopping Hamiltonian.
Dashed line shows the phase boundary calculated for the Ham-
iltonian including next-to-nearest-neighbor hopping interaction.
Error bars display the error in the numerical procedure for cal-
culating the boundary (see text).

0 0.25
I I

0.50
4/4,

I

0.'75 1.0

Flax. 7. Complete spectrum of Z vs P/$0, the reduced Aux,

for the infinite system. Asymmetry parameter A, = 1.0 in (a) and
X= 1.S in {b).

sensitive to the value of p/q, i.e., the magnetic field.
Thus the predicted critical line should be independent of
the magnetic-field strength to a good approximation.

To check that the quenching is a general phenomenon,
we considered a family of Hamiltonians given by modify-
ing t „. .„.to include next-to-nearest hopping terms, i.e.,

mn;m'n' tx~nn'6m m +~+ t&5mm'~n, n'+]

+t2x~nn'~m m'+2+ 2 ~m m'n, n'+2

+2X cos 2' m ——vP
q

+/t/, cos 2 2~m —v .c =ec, (12)
q

Imposing the ansatz c „=c exp( i vn), afte—r some alge-
braic manipulations we obtain a generalization of
Harper's equation:

Cm + I +Cm —I +P(cm +2+ Cm —2)

where p = t2 It„=t2 It, representing the importance of
the next-to-nearest interaction to the nearest. Some
study has recently appeared on this kind of system.
We are interested in the same asymmetry parameter and

=t /t„ in , (12), the same definition as in (3).
The spectrum of the new system was recalculated and

gaps were studied as a function of k. The phase bound-
ary between QH and NQH behavior was redetermined
for p= —,

' and is shown as the dashed line in Fig. 8. In ac-
cordance with our expectations, the phase boundary
moves but does not disappear with a reasonably small
next-nearest-neighbor interactions. It is rather striking
that both curves (and all intermediate curves) show that
cFC is roughly linear in A, for A, ~ 1.

From this study we conclude that QH quenching may
be a generic effect of asymmetry. The localization, delo-
calization, and quasi-10 behavior seem to be generally
true and are certainly not pathologies of Harper's equa-
tion. Of course, the exact location of the phase boundary
does depend on the details of the potential. But, for the
examples studied, any natural definition of the asym-
rnetry leads to a universal linear c.~~-A, phase boundary
for large A..

PHENOMENOLOGY AND CONCLUSIONS

It would be interesting to test the quenching effect of
asymmetry experimentally. We do not pretend to have
modeled real materials with the oversimplified models
used so far, so our results are hardly quantitative. Never-
theless, we believe the results could be made quantitative
without changing the main conclusions.

The most obvious way to test the quenching behavior
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would be to use a metal-oxide-semiconductor (MOS)
structure in which the semiconductor material has some
kind of lattice asymmetry. The MOS system is a three-
layer sandwich structure consisting of a gate, the top lay-
er usually made of heavily doped polysilicon or alumi-
num, a substrate of p- or n-type semiconductor material,
and an insulating layer usually made of oxide of semicon-
ductor materials, such as SiO2, which separates the gate
and substrate. The great advantage of the MOS system is
its ability to control the density of the electron gas in the
2D inversion layer at the Si02-Si interface and hence the
Fermi energy of the system by varying the gate-substrate
voltage. Experimentally, one would wish to move the
Fermi energy to the vicinity of c.z& so that the subsequent
variation of the magnetic field is suffIcient to move the
Fermi energy in and out of the QH region. Therefore one
expects a fairly spectacular signal showing the turning on
and off of the quantization of the Hall conductance as the
Fermi energy of the system is moved back and forth
across the critical Fermi energy. However, we note that
only a limited number of Landau levels are available for
study in the current technology of MOS devices. One
may have to custom make a device with high carrier den-
sity so that the Fermi energy can be pushed into the re-
gion close to the critical Fermi energy c~&.

One can consider varying A, with hydrostatic pressure.
Consider the Hall conductance o~(B) with A, fixed. For
A, = 1, the symmetric case, the width of the plateaus in o.&
is determined by the mobility gap width, assuming a fixed
distribution of density of states for localized impurity
states in the gap. Recall that eFc(A, ) is essentially in-
dependent of B but the gaps becomes narrower for A, ) 1.

Assuming squeezing of a sample will not change the
impurity states in any significant way, then the plateau
widths in the o.~ versus 1/B plot became narrower as k
is increased. If A, can be varied by 10%, there should be a
measurable, if not very dramatic, effect.

A second method is to vary A, with 8 fixed. It is advan-
tageous to adjust B first so that o.II is close to the edge of
a step. Then, squeezing the sample might move the mo-
bility edge and produce an integer jurnp in the conduc-
tance. Enough squeezing, in principle, could push the
sample into the NQH region and hence no further integer
jumps would be observed by more squeezing. A change

in the crystal structure from very high pressure is not
necessarily disastrous: it would just correspond to an in-
crease in A, . A transition from QH to NQH behavior here
would be a spectacular signal. We note that there are ex-
perimental measurements performed under high hydro-
static pressure. It is claimed by Gregoris et QI.
that the lattice parameter changes by about O. l%%uo for 1

kbar pressure, but the systems tested are not convention-
al in the sense that they do not show QH behavior
without applied pressure. Therefore there is a need to
test the response of more conventional systems, such as a
MOS structure, to an applied hydrostatic pressure, and
data may show surprises.

Yet another way to test the ideas is to search for a
"scaling law" under which different materials should
show regularity. For a given material, the maximum Fer-
mi energy at which QH behavior quenches might be
determinable by careful doping. The asymmetry parame-
ter of the material and Ezz fix a point in the c.F& -A, plane
for each material. Materials with different lattice symme-
try have different effective k's and would exhibit a regu-
larity by lying along a universal, approximately straight
line. The problem, of course, is that k has to be calculat-
ed appropriately for the materials, so the assignment of
points on the scaling curve would be somewhat model
dependent.

Our suggestions are somewhat qualitative since much
more study is needed. The basic point that asymmetry
effectively decreases the 2D system to something acting
like one living in less than two dimensions is certainly fas-
cinating. Quantum Hall quenching will definitely attract
increasing attention if it can teach us more about the pro-
foundly interesting behavior of electrons in a magnetic
field.
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