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We study a class of variational wave functions for strongly correlated systems by expanding the elec-
tron operators as composites of spin- 2 Fermi fields and spinless Fermi fields. The composite particles
automatically satisfy the local constraint of no double occupancy and include correlations between

opposite-spin particles in a very physical way. We calculate the energy and correlation functions for
the one-dimensional U=~ Hubbard model, where a comparison with exact results is made. The
method is computationally very tractable and can readily be generalized to higher dimensions.

I+a& =Pdl+0&

where

Pg =Q (1 —n;1 n;1), !eo& = cttt cd~i! 0& .
Ik &kF

(2)

The optimization of the single-particle kinetic energy be-
fore projection tends to provide a correlated many-body

Recent interest in the Hubbard Hamiltonian in the
strongly correlated (U)) t) limit has stimulated develop-
ment of a number of schemes for describing the low-

energy spectrum in this model. ' In this paper we dis-
cuss a variational approach for this problem which is quite
successful at describing the energy and two-point correla-
tion functions of the infinite U model in one dimension, for
which the exact solution is available for comparison. We
briefiy outline our computational approach and compare
results from our wave functions with the exact solution
and with results from the Gutzwiller wave function. The
method can easily be applied in higher dimensions and to
systems with intersite interactions, such as the t -Jmodel.

The Hubbard Hamiltonian is written as

H= —t g (ctcl. +H.c.)+Urn;tn;~,
(ij)e 1

where (ij& is the sum over nearest-neighbor pairs. We
consider here the U= ~ limit where double occupation of
a single site by an up and down electron is forbidden.

Our construction is motivated by the observation that
the Gutzwiller wave function (GW), which is perhaps the
simplest constrained many-fermion state one can con-
struct for this problem, already provides a many-body
state with a very competitive kinetic energy. The GW is
obtained by a projection of a noninteracting Fermi sea
onto the subspace with no doubly occupied sites, in the
manner,

state with a very low kinetic energy. This procedure is
widely used, and has enjoyed a number of noteworthy
successes. '

However, the GW is plagued by several well-known
pathologies. Even in one dimension, the one-particle
momentum distribution in the GW exhibits a single
discontinuity on a Luttinger Fermi surface at kF. This
feature disagrees with the known behavior of the Bethe
ansatz solution in one dimension which shows power-law
singularities in n(k) at both kF and 3kF. ' (The analo-
gous behavior of the two-dimensional model is interesting
and controversial. ) Additionally, the GW tremendously
underestimates the spin correlations in the ground state.
These failures are not surprising and originate, in part,
from the unphysically sharp correlation hole introduced
between opposite-spin particles in the GW.

In this paper we study a class of variational wave func-
tions for the strongly correlated Hubbard model which re-
tain a number of desirable properties of the GW while el-
iminating several of its di%culties in a controlled and
physical way. Indeed, exactly at half filling, our approach
is equivalent to a strict Gutzwiller projection, while away
from half filling our theory provides a significant improve-
ment of both the kinetic energy and correlation functions
relative to the GW.

To construct our wave functions, we expand the single-
electron operators in terms of composite fermions and ex-
amine two mean-field decompositions of the composite
operators. We set the single electron creation operator
equal to a product of three fermion creation operators,
each acting on a diAerent "species" of fermion, which we
write as c;~ =s;tf~g;~. The s;t operate on a spin- 2 fer-
mionic field, while f; and g; are spinless Fermi operators.
The motion of the physical electrons forces all three
species of the product particle to move in unison. Thus
the Fermi nature of the spinless fields forbids double occu-
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An integral over the local parameters 8; and P; exactly en-
forces the required constraint on the number densities.

To generate our first trial wave function we employ a
standard mean-field decoupling of each species of fermion
and rewrite the Hamiltonian (3) as

HI "=—r g [&s;t s, &&ftlj&&g; gj&+H.c.l .
&ij )a

(4)

We write the ground state of the auxiliary fermion Hamil-
tonian as a product of determinantal wave functions of
single-particle states for each field with identical particle
coordinates:

+j=F(rj. ,r)) G(r), r)) S(r),r)) (5)

where F =G =Det[pk, (rj,r) )1 and . S=Det[gk, . (rj )]
XDet[gk, (r))]. The F and G are determinants of all par-
ticle coordinates, while S is the product of determinants
for each spin. We consider only the subspace with equal
numbers of up and down electrons and choose the single-
particle basis states to be plane waves, so a given deter-
minantal element is written pk (r„)=exp(ik r„). For a
one-dimensional system of W total electrons of L sites, a
stationary configuration has wave vectors k =(2m —1

N) x/L for the —F and G fields and k = (2m —
1

N/2)x/L for each de—terminant in S. Because N is al-
ways even, the F and G obey antiperiodic boundary condi-
tions. The field S has periodic (antiperiodic) boundary
conditions for an odd (even) number of up or down elec-
trons. Alone, S is the ground state of the noninteracting
(U =0) limit of the Hubbard model.

We emphasize that single-particle basis functions other
than plane waves may be chosen as has been done with the
GW. ' In particular, simple mean-field analysis in two
dimensions indicates that a commensurate Aux phase' '
in the F and 6 fields coupled with a plane-wave S field
may stabilize at certain filling fractions.

pancy of any site, while the product of three Fermi fields
ensures that the composite operator c; retains the correct
"constrained" Fermi statistics. ' '

This procedure will be recognized as a generalization of
the frequently employed slave boson approach for strongly
correlated electrons, and amounts to replacing the slave
boson operator by a factorization in terms of a product of
the fermion fields ft and gt. This latter step has the im-
portant consequence of enforcing the hard-core constraint
in the dynamics of the auxiliary product field ftgt and
can avoid an unphysical condensation of the auxiliary
field.

We write the U =~ Hubbard Hamiltonian (1) in terms
of the composite fields as

Hcomp i P (si~iiIi'~gi~gjfj sj~+ H, c ) (3)
(ij )o

with the local constraint s;ts; =ftf; =gtg; to ensure oc-
cupation of a given site by either no fermions or three fer-
mions, one from each species. We note that the Hamil-
tonian is invariant under the following gauge transforma-
tions:

gt ~e ~l~ t fi e i if)

0.0

—0.2

03
QJ
C4 —0.4

(L&

—0.5

—0.6

0.0 0.1 0.2 0.3
Filling Fr ac.tion

0,4 0.5

FIG. 1. A comparison of the ground-state energy per site as a
function of filling fraction. The auxiliary fermion formulation
exceeds the Gutzwiller wave function for low filling fractions up
to about 0.2, while the auxiliary boson is the best approximation
for all fillings. The system size is 100 sites.

A second mean-field decoupling of the composite parti-
cle Hamiltonian is possible in which we condense the auxi-
liary Fermi fields into a single Bose field. We make the
substitution b; =f; g;, and rewrite the Hamiltonian (3)
with auxiliary bosons as

Hb " —r g (&s; sj &&b; b, &+H.c.) .
(ij)o

Our composite operator is now c; =s; b; Th.e b; obey
Bose commutation relations for operators on different
sites, but Fermi relations for same-site operators, thus
ensuring the hard-core nature. Again, we require that
the composite particles be "tied" to one another, or
si ~i =bi bi.

Hard-core bosons in a one-dimensional system can be
transformed into Fermi operators by the Jordan-Wigner
transformation: '"

aj bj exp i+g b; b; (7)
i&j

where the aj now obey Fermi statistics. So we may write
our auxiliary boson wave function as

~, -e(rj', rj ) F(rj,r)) S(r),r))
where the new function

e(r;) -Q sgn(r; —r, ) (9)
i&j

due to the transformation (7) preserves the overall Fermi
statistics of the wave function. Note that e has an-
tiperiodic boundary conditions for an even total particle
number, so the boundary convention used for %j is applic-
able here.

Since HI is effectively a mean-field approximation of
Hb, we expect +b to be superior at approximating the ex-
act behavior. However, in higher-dimensional systems,
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the transformation from hard-core Bose operators into
modified Fermi operators is no longer as simple, and it
may be easier to deal directly with %'f.

To evaluate the ground-state expectation values of the
energy and other observables for our trial wave functions
we employ the "inverse update" Monte Carlo sampling
method discussed by Ceperley, Chester, and Kalos, ' and
used with great success for the GW. ' We emphasize
that except for the necessity of evaluating an extra deter-
minant for the auxiliary fields, our wave functions are just
as simple to evaluate in this manner as the usual GW.

The energy of our wave functions as a function of elec-
tron filling is shown in Fig. 1. We have plotted for com-
parison the exact result from the Bethe ansatz and the
GW energy. As expected, +b yields a lower kinetic ener-
gy than @f for all band fillings, and at low density both
methods are superior to GW. The physics behind this im-
provement is clear: Gutzwiller projection introduces a
"sharp" correlation hole of one lattice spacing, which
raises the kinetic energy. Our composite states produce a
much smoother correlation hole with a density-dependent
breadth and a long-range oscillatory tail. However, the

product nature of our wave functions tends to overcorre-
late the electrons, costing energy. This is especially true
for +f, the product of three determinants, and for filling
fractions above approximately 0.2, the GW energy is
lower than that of %"f. As one approaches the half-filled
band, however, it is clear that our procedure is forced to
generate an "on-site" projector, identical to Gutzwiller,
and we see the methods converge numerically.

We determine the momentum distribution n(k) by
transforming the real-space single-particle density matrix
in the usual way:

n(k) =(ck~ct, ~) =—g(c; c~ )exp[ik(r; —r~)] (10)1

lJ

for a system of L sites. As in the calculation of the ener-
gy, we implement the local constraint s; s; =f; f; =g; g;
exactly in our calculation of n (k).

The momentum distribution of +g, +f, and the GW for
the quarter-filled system are shown in Fig. 2. The GW ex-
hibits a discontinuity at kF and rises for k ) kF, with no
unusual behavior at 3kF. The exact Bethe ansatz solution
has a power-law singularity near kF obeying the relation

n(k) =n(kF) —C~k —kF~'sgn(k —kF)

1.00

0 75 ~e ~ ~ ~ ~ ~ o ~ ~ ~

0.50 Gutzw i lier

with a =
8 . ' Fitting our data to this form, we find

ab =0.27 ~0.01 and af =0.58 ~0.02. Additionally we
see evidence of the singularity at 3kF that exists in the ex-
act solution.

Finally, in Fig. 3 we plot the z component of the spin-
correlation functions for the quarter-filled band, defined
by
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FIG. 2. The momentum distributions n(k) for the quarter-
filled band. The Gutzwiller wave function exhibits a discon-
tinuity at kF =n/4 and is an increasing function above kF. Both
composite particle formulations exhibit power-law singularities
at kF and weak singularities at 3kF. The system size is 100 sites.

FIG. 3. The spin-correlation functions for the quarter-filled
band. The height of the cusp at 2kF=+/2 diff'ers greatly be-
tween the difI'erent formulations: The auxiliary boson formula-
tion has the correct height within statistical errors, while the
auxiliary fermion overcorrelates and the Gutzwiller wave func-
tion undercorrelates. The system size is 60 sites.
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The power-law cusp at 2kF =+/2 is absent in the GW.
The height of the cusp predicted by the auxiliary boson
formulation of S'(2kF) =0.262+'0.008 agrees within er-
rors with the exact results from the Bethe ansatz. The
auxiliary fermion formulation tends to overcorrelate the
electrons, and it overestimates the height at 2kF.

The utility of the procedure is that it can readily be
boosted to higher dimensions, and we are currently work-
ing in this direction. As mentioned above, mean-field cal-
culations in two dimensions with the auxiliary fermion
wave function indicate that a commensurate flux phase
can stabilize at certain fillings. Additionally, hard-core
bosons in two dimensions exhibit off'-diagonal long-range
order at zero temperature, ' so we may be able to gen-

crate wave functions with true Fermi surfaces in our auxi-
liary boson formulation.

In application of the method to the one-dimensional t -J
model we have found that simple wave functions of this
form to a remarkably complete job of reproducing the
ground-state phase diagram in the J/t np-lane. ' '

In summary, we have developed a variational wave
function for the strongly correlated Hubbard model in ar-
bitrary dimension that is very tractable computationally
and superior to the Gutzwiller wave function at estimating
the energy and correlation functions in one dimension.
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