
PHYSICAL REVIEW B VOLUME 44, NUMBER 24 15 DECEMBER 1991-II

Tight-binding approach to resonant tunneling with electron-phonon coupling
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We consider resonant tunneling through a double barrier when the electrons interact with
longitudinal-optical phonons in the double-barrier well. We use a tight-binding model for the electron
Hamiltonian, with a linear coupling to the phonon modes. Phonon-mediated scattering amplitudes for
the double-barrier structure are efficiently obtained by a recursive Green-function technique. This tech-
nique allows us to go beyond the unrealistic assumption of Lorentzian line shapes, used in previous treat-
ments. Our results are in qualitative agreement with earlier calculations, but quantitatively the phonon
peaks are enhanced typically by 50%.

I. INTRODUCTION

In idealized theoretical treatments of resonant tunnel-
ing through a double-barrier potential structure (DBS)
one assumes a perfectly clean and periodic crystal
through which the electrons move without being scat-
tered. An epitaxially grown DBS prevents free particle
motion and gives rise to a transmission spectrum with
peaks at certain resonance energies, corresponding to
quasibound states in the well between the two barriers. A
common semiconductor structure, made up of
Al„Gal As barriers enclosing a GaAs well, with the
corresponding transmission spectrum is shown in Fig. 1.
Note that there is perfect transmission, T =1, on reso-
nance in this idealized symmetric example.

In a real sample the situation is much more complex
than depicted in the figure. This is due to the various
scattering mechanisms causing deviations from a nice,
predictable one-dimensional (1D) electronic motion.
These scattering mechanisms are of two kinds, elastic, in
which the electron preserves its energy and phase
memory, and inelastic, in which the electron energy is
changed and the phase memory lost. Scattering off im-
purity atoms is an elastic process, whereas electron-
electron and electron-phonon interaction are examples of
inelastic processes. The absolute and relative importance
of the different scattering mechanisms depend strongly on
which physical system one investigates. We shall not go
into any detail on this subject, but refer the reader to the
literature' for calculations of the various scattering ma-
trix elements. At this point, let us simply state that in
polar semiconductors like GaAs the dominant scattering
process is due to coupling to longitudinal-optical (LO)
phonons.

The first experimental observation of LO-phonon-
assisted resonant tunneling was reported by Goldman,
Tsui, and Cunningham. In addition to the well-known
elastic resonance peak, they observed a replica peak in
the I-V curve of an Al Ga& As-GaAs DBS. At a cer-
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FIG. 1. A symmetric double barrier with Al Ga, „As bar-
riers enclosing a GaAs well. The transmission spectrum corre-
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sponds to 50-A barriers with 40% Al content, and a 60-A well.
There are two resonant levels, E& and E2 ~ The barrier height is
300 meV.

tain voltage across the DBS the Fermi level of the emitter
contact is lined up with the resonant level in the well, and
electrons can tunnel resonantly through the DBS. In-
creasing the bias further, one eventually brings the reso-
nant level below the emitter conduction-band edge, and
the current is strongly reduced. However, when the reso-
nant level is pulled sufficiently below the conduction-
band edge, resonant tunneling is again made possible,
now via emission of a LO phonon. The inelastic replica
peak occurs at a voltage such that the energy difference
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between the emitter contact Fermi level and the resonant
level equals a LO phonon energy A'coo.

The observation of phonon-assisted resonant tunneling
has been followed by several theoretical papers over the
last few years, ' the scope of which has been to go
beyond the phenomenological theories of earlier pa-
pers"' and include the electron-phonon coupling on a
microscopic level. Although the microscopic models in-
volve some rather drastic simplifications, they have been
quite successful in describing the experimental I- V
curves; see, for example, Wingreen, Jacobsen, and Wil-
kins or Rudberg.

The motivation of the present work is twofold. First,
we want to demonstrate how the electron —LO-phonon
interaction is included in a simple tight-binding (TB) for-
malism, and how the recursive Green-function technique
is applied in order to find the scattering amplitudes of the
DBS in the presence of an inelastic-scattering process.
Second, we shall be able to check the validity of one of
the approximations in the model of Ref. 5. In that paper
the elastic transmission coefficient To(E) is modeled with
a Lorentzian line shape, which is known to be a good ap-
proximation close to a resonant level. However, for
representative DBS parameters, the energy width of a
resonance in the elastic transmission coefficient is much
smaller than the energy of a LO phonon. ' Thus, the in-
teraction couples resonant states to states far from reso-
nance, and a Lorentzian To(E) is no longer sufficient.

Our model is similar to the one applied in Ref. 5, but
the recursive Green-function technique allows for a
better approximation of the elastic transmission
coefficient. We shall compare our results for the full
transmission coefficient T(E) with those of Ref. 5 and
find that there are no qualitative dijferences between the
two models. The quantitative effects depend upon the
choice of parameters. For the DBS used in Ref. 3 our ap-
proach yields a 50%%uo larger replica peak in T(E) than
does the model in Ref. 5.

Let us stress that we do not claim quantitative agree-
ment between our model and existing experiments. The
main object of this paper is to present an alternate ap-
proach to an already established model. One should note
some of the limitations of this model. The transport is
taken to be effectively one dimensional, which neglects
the possibility of lateral momentum transfer due to the
electron-phonon interaction. Further, the electrons are
assumed to interact with LO phonons inside the double-
barrier well only. This is based on the fact that resonant-
ly tunneling electrons spend most of the tunneling time
inside the well. However, there are barrier' and barrier-
well interface' phonons with which the electrons also in-
teract. ' Before one compares with experiment, such
effects should be taken into account.

We have organized the paper as follows. In the next
section we briefly review the most important results from
the elastic case before we include the LO-phonon term
and the electron-phonon coupling in the Hamiltonian.
Expressions for the transmission and reAection arnpli-
tudes are derived in Sec. III, and in Sec. IV we present
our numerical results. Our conclusions are collected in
Sec. V.

II. THE MODEL

We will study the transport properties of a double-
barrier potential as shown in Fig. 2. Before we include
phonons, let us repeat the major ingredients of the elastic
model. '

A. The bare electron system

The conduction-band profile is modeled with a simple
tight-binding lattice. The crystal is assumed to be per-
fectly translationally invariant in the lateral dimensions,
so the transport may be taken as strictly one dimensional.
The barrier layers are constructed by raising the local po-
tential energy of the electron by an amount 6 corre-
sponding to the conduction-band offset between barrier
and contact material. The semiconductor heterostruc-
ture used in Ref. 3 consists of Alo „Gao 6As barriers and
GaAs in well and contacts. For such a system one has
b —300 meV. The (trivial) parameter ED determines the
point of zero energy. In a simple nearest-neighbor TB
model one has the dispersion relation

E(k) = e+o2u cos(ka) . (2. l)

with

E'() ~ ' ~ ~ ~
Abc N a

~ ~ ~
Kbn

FIG. 2. A symmetric DBS in the tight-binding model. On
the barrier atoms the potential energy is co+6, and in the well
and the contacts it is co. The barrier and well widths are Nba
and N a, respectively, with a being the lattice constant.

Here u is the energy amplitude for transfering an electron
from a site to one of its nearest neighbors. For simplicity
we assume real "hopping" amplitudes u. The interatomic
spacing is a. From (2.1) we find that the conduction band
extends from eo —~2u

~
to Eo+ ~2u ~. By choosing Eo= —2u

and u = —A /2m *a, the model reproduces the
effective-mass approximation with E(k =0)=0 in the
limit of a very large bandwidth. For simplicity, and in
order to compare our results directly with those of Ref. 5,
we shall ignore the difference in effective mass in barrier
and contact material, and use a constant value of u

throughout.
As was shown in Ref. 17, we are able to treat an arbi-

trary potential profile of finite spatial extent, as long as
the contact regions to the left and right of the profile
have constant potential energy. Here we shall restrict
ourselves to a symmetric DBS, where the two barriers
both have width Xba and height A. The well width is
X a. For this system the electron part of the Hamiltoni-
an is

H, =&[li&e, &pl+i (li&&J+lI+IJ &&&
—lI)],
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E0+b, , j&[1,Xb] or jC[Xb+X +1,2Kb+X ]

(2.3)

c0, otherwise .

The atomiclike orbitals
lj ), centered at site j, are as-

sumed to form a complete, g. lj)( jl =1, and orthonor-
mal, (i

lj ) =5,", set.
In Ref. 17 we derived expressions for the transmission

and reAection amplitudes t(k) and r(k), respectively, in
terms of the Green function, defined through

G (z)(z II, ) =—1 . (2.4)

Here z is the energy variable, and (z H, ) s—hould be un-
derstood as lim + (z H, +—ig), which means that
G (z) is the retarded Green function. In the present nota-
tion we have, for an electron coming in from x = —~
with k &0,

—I'. (2%&+N +1)ka
t (k) = —2iu sin(ka)e

x (2X, +X„+1 I G IO),

r(k)= —2iu sin(ka)(OlGlO) —1 .
(2.5)

In addition to the scattering states there are also bound
states above the upper edge of the conduction band, lo-
calized in the vicinity of the double-barrier potential.
Such states were discussed extensively in Ref. 17. In the
present paper we shall only be concerned with the asymp-
totic scattering states, since they are the ones that deter-
mine, e.g. , the stationary current through the sample.

B. The bare phonon system

As mentioned in the Introduction, the dominant
scattering process in polar semiconductors is due to cou-
pling to LO phonons. We shall consider the simplest pos-
sible phonon Hamiltonian, namely that of a single LO-
phonon mode, assumed to be dispersionless with a con-
stant frequency ~0. In reality there is always a weak
dispersion co(k), but the assumption of a so-called Ein-
stein band of phonons seems to be a reasonable approxi-
mation.

In terms of a normal coordinate Q representing the dis-
placements from the equilibrium positions of the atoms, '

the Schrodinger equation for the phonons reads

~~/„( g) =e„P„(g) .

The phonon Hamiltonian is

(2.6)

H =— +—'McoDQ
2M (jg2

(2.7)

C. The electron-phonon interaction

As argued in the Introduction and in Ref. 19, we shall
assume that the electrons interact with the LO phonons

with eigenfunctions P„and corresponding energy eigen-
values e„=(n+ ,')fico0. Here M is —the reduced mass of
the oscillator, and n denotes the number of phonons in
the mode.

inside the well of the DBS only. The same assumption is
also made in Ref. 5. As is usual, we take the electron-
phonon coupling to be linear in the displacement coordi-
nate Q. This corresponds to keeping the linear term only
in an expansion of the electron-ion interaction. Then
one has

a„=y g g lj, n)g, (n',j l,
n, n ' jE we11

(2.8)

Introducing a new coordinate Q =Q+y/Me@0, one ob-
tains

H, y„(g)=(Z„y+' 2 /cd )y20„(g), (2.10)

with Hq =( —A' /2M)B /BQ + —,'McoDQ . From Sec. II B

where Q is the displacement of the jth atom in the well.
The strength of the interaction is given by the coupling
constant y. In what follows we let small letters m, n, and
p denote phonon numbers, whereas other letters denote
position in the TB lattice. Then the states

l j,n )—:
l j )p„(g) represent our noninteracting electron-

phonon system.
Our next approximation relies on the assumption that

the electron-phonon interaction introduces no "mixing"
between any two resonant levels in the well; i.e., we as-
sume that the energy splitting between the resonances is
large compared with the LO-phonon energy. ' Then the
energy of an electron, which was incident close to one
resonance, is still far away from a nearby resonance after
emission or absorption of a LO phonon. With this re-
quirement fulfilled we may study the spectral properties
of the DBS in the vicinity of one resonance without tak-
ing the others into account. In the TB model this means
that the N atoms in the well may be mapped onto a sin-
gle site. However, this must be accompanied by a renor-
malization of the coupling constant y and the hopping
amplitudes at the two barrier-well boundaries. Also, the
potential energy in the well must be changed in order to
reproduce the correct position of the resonant level.
Thus, y ~y (y, u ~u with

l
u

l
(

l
u

l
on the barrier-well

boundaries, and ED—+c. inside the well.
In the Appendix we show how to calculate c and u

for the mapping of a well with N„atoms onto a well con-
sisting of a single site. In practice, however, if one wants
to model, say, a particular Al Ga& As-GaAs DBS, one
can first calculate the position and width of the lowest
resonance in the effective-mass approximation. Subse-
quently, one chooses c and u such that the same posi-
tion and width are also obtained in the single-site TB
model.

Next we shall see how the localized electron-phonon
interaction leads to a static displacement of the
oscillator —the so-called polaron shift —accompanied by
a gain in potential energy. We saw in Sec. II B that the
eigenstates P„(g) diagonalize the phonon Hamiltonian.
However, inside the well of the DBS the phonons are de-
scribed by a different set of states y„(g), which diagonal-
ize the Hamiltonian H +H, :

f2 Q2

, +-,'M~og'+yg X.(g)=&.X.(g) .
2M gg2
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X.(Q) =0.(Q+y/M~o»
e„=(n + —,')A'coo —y /2Mcoo .

(2.11)

The equilibrium point of the oscillator is shifted by an
amount

H has eigenfunctions P„(Q) with eigenvalues
( n + —,

' )A'coo. Thus,
electron is coming in from the left with energy E and
scatters o6' the symmetric DBS. It may tunnel through
or be reAected without emitting or absorbing any pho-
nons. Alternatively, it may enter the well, emit or absorb
one or more LO phonons, and eventually tunnel out
through one of the barriers.

If the initial and final numbers of phonons are n and m,
respectively, we may write the incoming and outgoing
states as

EQ = —y/Mtvo,

and the relaxation energy due to this shift is

hE= —y /2Mcoo .

(2.12)

(2.13)
and

+;„(j,Q)=e " $„(Q), j~O; (3.1)

An analogous derivation of (2.12) and (2.13) can be found
in Ref. 20. Strictly speaking, (2. 12) and (2.13) are only
correct for a truly localized electron. However, they are
good approximations for the 08S, especially in the
opaque barrier limit, which covers most barriers of prac-
tical interest. The gain in energy is often expressed in
terms of the LO phonon energy,

gr „e P (Q), j~O

'P..t(i Q)= '

g t „e p (Q), j&2Nb+N„,
(3.2)

E= —g&~o (2.14)

which gives the relation between y and g,

y =(2Mficoog )' (2.15)

The quantities AE and g are also referred to as the
Franck-Condon energy and the Huang-Rhys factor, re-
spectively. In Ref. 5 the parameter g has been calculat-
ed for the case of interaction with a localized electron
state. It is found that g =2.02/Lo in the III-V com-
pound GaAs, and g =9.59/Lo in CdTe, which is a highly
polar II-VI material. Here L,o is the linear extent of the
localized state in angstroms.

III. TRANSMISSION AND REFLECTION
IN THE PRESENCE OF ELECTRON-PHONON

COUPLING

In Sec. IIA we had expressions for the transmission
and reflection amplitude in the elastic case. When we al-
low the electrons to interact with phonons, the situation
is slightly modified.

In Fig. 3 we have illustrated the physical situation. An

Eres

e o e o
-2 -1 0 1 Pb

Xb+ 1

0 ~ ~ ~
2Kb+ 2

FIG. 3. Resonant tunneling through a symmetric DBS with
coupling to LO phonons in the double-barrier well. The incom-
ing electron, having energy E, may be transmitted or rejected
with energy E+phcoo. Here p denotes the number of phonons
absorbed or emitted in the well. The well is modeled with a sin-

gle site. Thus, there is only one resonant level E„,. The
conduction-band edge in the well has been shifted such that the
resonant level corresponds to the lowest resonance in the origi-
nal well consisting of N atoms.

respectively. Since the electron-phonon interaction is as-
sumed to be localized to the double-barrier well, the
asymptotic scattering states in (3.1) and (3.2) can be writ-
ten as a product of a plane-wave electron part and a free-
phonon part.

The electron must be transmitted or rejected, so the
transmission and reAection amplitudes must obey the
sum rule

(3.3)

In (3.2) and (3.3) the sums run over all allowed values m
of the final number of phonons. Since the final velocity
U is, in general, diferent from the initial one U„ the
scattering amplitudes must be defined with an additional
factor (v /v„)'~ in order to conform to particle conser-
vation. The result is

t „=—2iu sin(k„a)
sin(k a )

1/2

sin(k„a)

(m, 2Nb+2IGIO, n ),
r „=[ 2iu sin(k„—a)(m, OIG O, n ) —6 „]

1/2sin(k a )
X

sin(k„a )

(3.4)

H=H, +II +H,
with

(3.5)

The elastic case, Eq. (2.5), is recovered by taking
k =k„=k and suppressing the phonon number in the
matrix elements.

We will eventually present numerical results for the
transmission coeKcient only. Therefore, we proceed by
evaluating the matrix elements (m, 2N~+2IGIO, n) of
the full Green function, corresponding to the total Ham-
iltonian
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H, =&jl, n &E, &n,j I+u &'(Ij,n &&n, j+ll
J, n J, n

+lj n&&n J ll)

+ u y(IN„n & & n, N, + ll

+ INb+2, n & & n, Nb+ 1 I+c.c.),
H =g

Ij,n &(n+ ,')iii—coo&n,j I,
J, n

H, =g Nb+1, m &yQ „&n,Nb+ll
n, m

(3.6)

& m, 2Nb+2IG O, n &
=

Nb+3

I J+(m)u I ~ +2(m)u
j =2Nb+2

& & m, Nb+1IG INb+ l, n &

0
uI (n)XuI ~ (n)

j=Nb —1

(3.7)

This expression comes about when using the Dyson equa-

The primed sum in H, means that the barrier-well
boundary hopping elements are not included. Using re-
sults from Ref. 17 we have

tion G =G +GH'G repeatedly. The Dyson equation
expresses the Green function G of the total Hamiltonian
H in terms of the perturbation H'=H —H and the
Green function G of the unperturbed Hamiltonian H .
In (3.7) I

&

—(m) = &m, j IG+ Ij,m & are "surface Green
functions, " i.e., diagonal elements of the Green function
G+ corresponding to the Hamiltonian H+ =H
—u(j, m & &m,j +ll+Ij+ l, m &&m, jl). The Dyson
equation yields recursion relations for I —:

I
~
—(m)=[z —

c~
—(m+ —,')A'coo —ul J+,(m)u] ' . (3.8)

Here z is the total energy variable, E =c0 outside the bar-
riers, and c. =c0+6 inside the barriers. Clearly,
I +(m)=I +. +,(m) for j ~2Nb+2 and I

~
(m)=I J,(m)

for j 0. This yields quadratic equations for I 2~ +2(m)
b

and I 0 (m), and from (3.8) one readily calculates
+ +

b b b

Finally, we need to evaluate the matrix elements
&m, Nb+1IGINb+ 1,n &, which are diagonal in the elec-
tron coordinate but, in general, are off-diagonal in the
phonon number. First, we need the matrix elements of
the displacement, Q „=& m

I Ql n &. This can be looked
up in a quantum-mechanics textbook, and the result is

' 1/2

(v'n +15 „+I+&n 5 „ i) . (3 9)

Now we can write down the desired matrix element of
the Green function,

& m, Nb+1IGINb+ l, n & = & m, N +bll(z H) '—INb+1

r

=
& m I y ( I

n
'

& [z —E —(n '+ —,
' )iiicoo —u [I ~, (n ') + I rv ,+2(" ) ] ] &""

I

n'

—[g ( n '+ 1]' iricoo( I
n

'
& & n '+ l

I
+ In '+ 1 & & n '

I ) ) In&, (3.10)

where we have used (2.1S). This can be viewed as the matrix element between two "sites" m and n in a semi-infinite

chain extending from n ' =0 to n ' = ~, with "position"-dependent potential energy
E„=E +(n'+ ,')ficoo+u [I & (n—')+I& +2(n')] and hopping amplitudes u„, „,+i= [g(n'+1)]'~ ficoo Note that th. e

potential energy c,„ is complex. Its imaginary part determines the energy width of the resonant level. Now we may ap-

ply the results of Ref. 17 again. The diagonal matrix element is

& n, Nb+1IGINb+ l, n &
= [z —8„(n+—,')i—ricoo —u [I z (n)+I z +2(n)] g(ficoo) [(n+ 1)X—„++,+n X„,]] (3.11)

and the off-diagonal elements are

&m, Nb+llGINb+l, n &=

[2„+,(gn')' ficoo]&n, Nb+ llGINb+1, n &, m ) n
n'=n+1

n

[X„,(gn')' iricoo]& m, Nb+1IGINb+ l, m &, m & n .
n'=m+1

(3.12)
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IV. NUMERICAL RESULTS FOR THE
TRANSMISSION COEFFICIENT

The "surface Green functions" X—„.are diagonal elements
of the Green function corresponding to the Hamiltonian

~—1Kb+ 1,n'+1)yg„, +, „,(n', N„+ 1l

+b1, 'n)yg„„+, ( 'n+1, X&+ ll .

They are determined by recursion relations analogous to
those for I and I

(X„+.) '=z —c, (n'+ —,')ficoo—
—u

I
I ~ (n')+I ~ +~(n')]

—g(n'+ 1)(A'coo) X„++, ,

(X„) ' =z —E —(n '+
—,
' )A'roo

u I'I ~ (n')+I ~ +2(n')]

gn'(A'coo) X„—

(3.13)

now with initial conditions

'hCdo

E—E„,
FIG. 4. Energy dependence of the "surface Green function"

X,+ for different values of the maximum phonon number n~ (see
the text). The curves for n~ =6 and l0 cannot be distinguished
in the figure. Parameters correspond to the lowest resonant lev-

0
el in a GaAs-Alo 4Gao 6As structure with 50-A well and barriers.

In this section we present numerical results for the
transmission coefficient in the presence of electron-
phonon interaction inside the well of the DBS. We have
chosen parameters corresponding to the lowest resonance
in an Alo 4Gao 6As-GaAs system with well and barriers
50 A wide. In Fig. 5 the elastic transmission coeScient of
the tight-binding single-site model is compared with the
Lorentzian line shape used in Ref. 5. We have also in-
cluded the transmission coefficient when calculated
within the effective-mass approximation. At the energy
E„,+%coo the TB model is much closer to the effective-
mass result than is the Lorentzian. However, due to the
single-site approximation, one will always have large de-
viations from the exact result when approaching the
second resonance.

In Fig. 6 we have plotted the total transmission
coefficient for the same parameters as in Fig. 5. The
electron-phonon coupling strength is g =0.036, appropri-
ate for a 50-A GaAs well. In the inset we compare the
first inelastic sideband, corresponding to resonant tunnel-
ing accompanied by emission of one LO phonon, in the
TB model with the one in Ref. 5. The TB model yields an
enhancement of the peak of about 50%.

The 1D current through a DBS is essentially given as
the energy integral of the transmission coefBcient.
Then, if the Fermi energy in the emitter contact is small-
er than a LO-phonon energy, the magnitude of the re-
plica peak or "shoulder" in the I-V curve will roughly be
proportional to the area under the resonance peak in the
inset of Fig. 6. Thus, without explicitly calculating the
current, we expect the TB model to give a shoulder in the
J Vcurve about 50-% higher than what was found in Ref.
5.

y. CONCLUDING REMARKS

We believe the model of Ref. 5 has convincingly shown
that the transport process in the experiment of Goldman,
Tsui, and Cunningham is resonant tunneling assisted by

2+=0 .
(3.14) 'l 0

10

Clearly, we have to choose a maximum phonon number
n such that X„++,=0. This turns out to be a very good

P

approximation even for modest values of n, since
X„+.—1/n' for large values of n'. In Fig. 4 we have plot-
ted IX&+I versus energy for n& =2, 6, and 10. As is seen,
convergence is obtained already for n =6.

Now we have everything we need to calculate the
transmission coe%cient. We are mainly interested in the
situation with no phonons present in the initial state, cor-
responding to zero temperature. Even at room tempera-
ture, the average phonon number is only (n ) =0.3 for
LO phonons in GaAs. The T =0 case is also studied in
Ref. 5, with which we shall compare our results in the
next section.

10

10

10
'l 0

FIG. 5. The elastic transmission coefficient in the vicinity of
the lowest resonant level in an Alo4Gao 6As-GaAs structure

0
with 50-A well and barriers. The solid curve is the effective
mass result (however, not taking the material dependence of m

into account), the dotted curve is calculated in the single-site
tight-binding model, and the dashed curve is the Lorentzian line

shape used in Ref. 5.
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0.06 j&Nb+ I
Ij &(Eo+&)&jl+INt, +1&e (Nb+ ll

10

5-

(lj &&j+ ll+ Ij+1&&jl)+u
j&Nb, Nb + 1

+u(INb &(Nb+ ll+ INb+1&&Nb I

+IN, +»&N. +21+IN, +2&&N, +11) .

10
'l 0

res

FIG. 6. The total transmission coe%cient, including
electron-phonon coupling in the double-barrier well. Barrier
parameters are the same as in Fig. 5. The coupling constant is

g =0.036. In a linear plot only the first inelastic sideband
would be visible on the scale of the elastic peak. In the inset we
compare the first inelastic sideband in the TB model (solid line)
with the model in Ref. 5 (dotted line).

(A3)

In order to model the lowest bound level of the original
well, H, should reproduce the bound level position, i.e.,
II,

I g & =Ei
I g &, and that part of the wave function that

(&0)
is located in the well, i.e. , g.. '& +i l(j Ig
=l&N, +ll1T&l'.

Assume that Ei and
I f '

& have been found. Then we
0

can determine the two unknowns E, and u. From
the definition of the Green function, 6 (z)
=pi(lf'"&(g' 'I)/(z E&), the si—mple poles in 6(z) give
the discrete eigenenergies of the system. In particular,
one has

emission of a LO phonon. We have presented a tight-
binding approach to the same physical model and find a
total transmission coeKcient with qualitatively the same
features as were found in Ref. 5. However, a Lorentzian
approximation of the elastic transmission coefficient is
shown to underestimate the magnitude of the transmis-
sion peak corresponding to resonant tunneling via emis-
sion of a LO phonon.
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This gives an equation for 8

Ei —E —2u I b(Ei )=0 . (A5)

Here I b is the "surface Green function"' of the infinite
barrier layers,
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APPENDIX

Also, from the definition of 6 (z), one has

I&Nb+lip&l'= »m [(z Eg )—z~E 0
0

(A6)

In this appendix we shall study the mapping of a
double-barrier well onto a single site. As argued in Sec.
IIC, we may consider tunneling through a single reso-
nant level as long as the LO phonon energy is small com-
pared with the splitting between the resonances.

Consider the electron Hamiltonian of a quantum well
of depth 5, consisting of X atoms,

~, =g[lj&E, & jl+u(lj&& j+ll+jI+1&&jl)] .

(Al)
Here E = eo for jH [Nt, + 1,Nb +N ], and e = so+ 6 oth-

erwise. Denote by I1tt & and E& the lowest bound state(0)
0

and its energy, respectively. Thus,

H, Iq'&=E, lq'&. (A2)

The e6'ective Hamiltonian for a single-site quantum well
1s

&& (Nb+1IG(z)INb+1 & ]

7

1 —2u 1 b(z)l,
BZ t0

(A7)

which determines u.
The procedure above yields a mapping of one of the

resonances in a well of i%„atoms onto the resonance of a
well consisting of a single atom. In practice, e.g. , when
modeling a particular experiment, one may instead choose
c.~ and u such that the desired position and width of the
resonance is obtained in the single-site model. This
method has been used in Sec. IV.

The mapping of the well onto a single site also requires
that the electron —LQ-phonon coupling constant be re-
normalized. We start by rewriting the interaction Hamil-
tonian (2.8) in terms of the energy eigenstates

I

g'" &:
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Xb+X

I 0, ' I'Qi = tz Qi,
j=Nb+1

(A9)

=)'l0 '
& pl&@ ' Ij&l'Q, &it

'
I

.

In the last step we again made the assumption that the
level spacing in -the well is so large compared with the
phonon energy that we may consider one level only,
I =lo. The sum in (A8) is simply a product between
two vectors Q=(Qtt . . .Qz +& ) and V

(Io ) 2 (&O)=( Iitjz +, I. . . Ig~ +z I ) in the infinite-dimensional vec-
b b u)

tor space spanned by the orbitals
Ij &. Thus, we have

b tt) 0 4 1/2where ct= IVI =( g, '
~ +, lilt

'
I
)', and Q~ is the pro-

jection of Q along V. In other words, the original well,
consisting of X„, atoms and X oscillators, has been

(Io )

mapped onto a single electron state Ig & and a single
oscillator coordinate Qi, , and the electron-phonon cou-
pling strength has been renormalized,

(A10)

From its definition above, one can see that u, and hence
y, scales with the inverse square root of the well width.
This is consistent with Eq. (2.15), y-Vg, and the result
in Ref. 5, g-Lo ', where I.o is the linear extent of the
electron wave function.
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